Меню

Как двигается переменный ток по проводнику

Урок №1. Теория атома, электрический ток, проводники и диэлектрики.

Строение вещества. Элементарные частицы

В основе радиоэлектроники лежит явление, которое называется электрическим током.

Если вы учились по старым школьным учебникам, то в них написано, что атом, это самая маленькая частица вещества, которая поэтому неделима . Но это давно устарело, теперь уже точно известно, что он состоит из еще более мелких частиц. Физику частиц изучают в больших ускорителях — коллайдерах . Благодаря им учёным удаётся придать элементарным частицам вещества высокую кинетическую энергию, направить их навстречу друг другу, чтобы произвести их столкновение, иногда в результате экспериментов образуются неизвестные ранее частицы, как например бозон или антивещество. Сейчас известно, что атом состоит из электронов и ядра, состоящего в свою очередь из протонов и нейтронов. Электроны – это элементарные отрицательные заряды электричества, протоны – элементарные положительные заряды, а нейтроны – частицы, не имеющие заряда вообще.

Все они не собраны в одну кучу, они находятся в движении, между ними существуют силы взаимодействия. Между одноименными зарядами действуют силы отталкивания, а между разноименными частицами – силы притяжения.

Схема строения атома (крестиками обозначены протоны, кружочками – электроны)

Атомы, электроны и протоны

а – нейтральный атом; б – отрицательный; в – положительный.

Так как электроны движутся (как планеты вокруг Солнца) вокруг ядра (рис.1), то в атоме силы отталкивания и притяжения уравновешиваются.

Можно сказать, что это настоящая солнечная система в миниатюре! Заметьте теперь, что если в атоме имеется столько же электронов, сколько и протонов, то он нейтрален. Если электронов больше, то отрицательный заряд превосходит положительный заряд и атом становится отрицательным. Наконец если отрицательно заряженных частиц меньше, чем положительных, то атом будет положительным.

РАВНОВЕСИЕ ЗАРЯДОВ – ЭЛЕКТРИЧЕСКИЙ ТОК

Каким образом атом может оказаться положительным или отрицательным? Электроны, которые находятся далеко от ядра, испытывают слабое притяжение и, попадая в сферу притяжения другого атома, у которого не хватает электронов, покидают его, чтобы дополнить или уравновесить, соседний атом.

Запомните, что электроны перемещаются от атома, где они более многочисленны, туда, где их меньше.

Движение электронов

Рис. 2 – Электрический ток

Если каким-либо путем на одном конце металлической проволоки удастся сосредоточить отрицательно заряженные атомы, а на другом – положительно заряженные (имеющие недостаток отрицательно заряженных частиц), то электроны начнут перемещаться от одного атома к другому через все промежуточные элементы до момента установления равновесия (Рис. 2). Очевидно, что электроны пойдут от отрицательного конца к положительному. Такое упорядоченные движение и называют электрическим током.

Вот теперь вам должно быть понятно почему ток идет от отрицательного к положительному, а в школах учат об условном направлении тока говоря что он идет от плюса к минусу. В то время, когда надо было установить направление тока, произвольно выбрали направление от положительного полюса к отрицательному, потому что еще не было электронной теории.
Запомните хорошо, что ток движется от отрицательного полюса к положительному.

ПЕРЕМЕННЫЙ ТОК

Если полюсы источника тока менять местами очень быстро и к тому же ритмично то в этом случае электроны во внешнем участке цепи тоже будут попеременно изменять направление своего движения. Сначала они потекут в одном направлении, затем, когда полюсы поменяют местами, в другом, обратном предыдущему, потом вновь в прямом, опять в обратном и т.д. Во внешней цепи будет течь уже не постоянный, а как бы переменный ток.

Запомните: в проводах электроосветительной сети течет переменный ток, а не постоянный, как в цепи электрического карманного фонаря. Его вырабатывают машины, называемые генераторами переменного тока. Знаки электрических зарядов на полюсах генератора непрерывно меняются, но не скачком, как в нашем примере, а плавно. Заряд того полюса генератора, который в некоторый момент времени был положительным, начинает убывать и через долю секунды становится отрицательным; отрицательный заряд сначала возрастает, потом начинает убывать, пока снова не окажется положительным, и т.д. Одновременно меняется знак заряда и другого полюса. При этом напряжение и значение тока в электрической цепи также периодически изменяются.
Графически переменный ток изображают волнистой линией — синусоидой, показанной на рисунке. Здесь вертикальная ось со стрелкой, направленной вверх, соответствует одному направлению тока, а вниз — другому направлению тока, обратному первому.

Графическое изображение переменного тока.

О чем может рассказать такой график? Ток в цепи появляется в момент времени, обозначенный на графике точкой а. Он плавно увеличивается и течет в одном направлении, достигая наибольшего значения (точка б), и также плавно убывает до нуля (точка в). Исчезнув на мгновение, ток вновь появляется, плавно возрастает и протекает в цепи, но уже в противоположном направлении. Достигнув наибольшего значения (точка г), он снова уменьшается до нуля (точка д). И далее ток, также последовательно возрастая и уменьшаясь, все время меняет , свои направление и значение.

При переменном токе электроны в проводнике как бы колеблются из стороны в сторону. Поэтому переменный ток называют также электрическими колебаниями. Одним полным, или законченным, колебанием тока принято считать упорядоченное движение электронов в проводнике, соответствующее участку графика от а до д или от в до ж. Время, в течение которого происходит одно полное колебание, называют периодом, время половины колебания — полупериодом, а наибольшее значение тока во время каждого полупериода — амплитудой.

Чтобы до конца разобраться с понятием переменный ток, посмотрите на рисунки ниже

Графическое изображение периода переменного тока и его амплитуды

Для наглядности я закрасил красным цветом период. Так как максимальное значение напряжения за половину периода это амплитуда, значит оно должно как-то обозначаться и обозначается амплитуда Um. Соответственно положительный полупериод +Um, а отрицательный полупериод -Um.

Переменный ток выгодно отличается от постоянного тем, что он легко поддается преобразованию. Так, например, при помощи специального устройства — трансформатора — можно повысить напряжение переменного тока или, наоборот, понизить его. Переменный ток, кроме того, можно выпрямить — преобразовать в постоянный ток. Эти свойства переменного тока вы будете широко использовать в своей радиолюбительской практике.
Все то, о чем я рассказал вам сейчас, знает каждый старшеклассник и разумеется, каждый радиолюбитель. Вы пользуетесь благами электричества, иногда даже расточительно, не задумываясь над тем, что ученые всего — навсего каких — нибудь лет 100 назад только — только нащупали пути практического использования этого щедрого дара природы.

ПРОВОДНИКИ, ИЗОЛЯТОРЫ, ДИЭЛЕКТРИКИ

Электрический ток проходит через металлы. Ток также проходит через растворы кислот или щелочей и через уголь. Все эти вещества называются проводниками. Их атомы содержат много электронов, которые слабо связаны с ядром. Однако существуют другие тела, в которых электроны настолько сильно связаны с ядром, что они не могут покинуть атом. В этих телах, называемых изоляторами или диэлектриками, не может образоваться электрический ток. Лучшими изоляторами, применяемыми в радио, являются кварц, эбонит, янтарь, бакелит, стекло, различные керамики, парафин. Между изоляторами и проводниками находятся полупроводники, например германий или кремний, из которых изготавливают транзисторы. Но о них мы лучше пока не будет говорить, чтобы не спуталось все в голове.

Электрический ток в проводниках из серебра и меди

Почему серебро лучший проводник чем медь? Потому что в одинаковых условиях через серебряный провод будет проходить ток большей силы, чем через провод такого же размера, но из меди. Самым лучшим диэлектриком является воздух. А самым лучшим проводником серебро. Красная медь тоже хорошо проводит ток и так как она стоит дешевле серебра, то используется чаще. А еще есть такое понятие как сверхпроводимость, но об этом подробно поговорим в следующий раз.

Сила тока

Сила тока – количество электронов, принимающее участие в движении, в учебниках еще пишут, что это количество электричества, проходящее через поперечное сечение проводника в одну секунду. Можно говорить о токе силой в 10 электронов или в 1000. Но практически измеряют силу тока в амперах (А). Один ампер соответствует прохождению 6 000 000 000 000 000 000 электронов в секунду и это еще округленные цифры. Пользуются очень часто также боле мелкими единицами: миллиампером (мА), равным 1/1000 А, и микроампером (мкА), равным 1/1 000 000 А. Сила тока зависит от напряжения приложенного к проводнику, и от сопротивления последнего.

В этом уроке, вы познакомились с такими важнейшими понятиями как: проводники, диэлектрики и полупроводники. Что такое постоянный и переменный электрический ток. Ну и последнее что необходимо четко запомнить и уяснить — основные характеристики переменного тока на представленном графике (синусоида), это период, полупериод, частота и амплитуда.

Содержание курса и следующий урок можете найди здесь.

Источник

Скорость тока не равна скорости света!

Существует распространенное мнение о равенстве скорости тока и света, которое, однако, является заблуждением. Свет движется намного быстрее, что можно доказать после рассмотрения простейшей схемы движения тока по проводнику.

Схема и особенности движения тока в проводнике

Все вещества состоят из атомов – элементарных частиц. В центре атома находится ядро из протонов и нейтронов, а вокруг ядра вращаются отрицательно заряженные частицы. Их количество может быть разным у разных веществ.

Атомы твердых тел обладают кристаллической решеткой – структурой, в которой атомы расположены относительно друг друга в определенном порядке.

У некоторых проводников наиболее удаленные от ядра электроны могут переходить к соседним атомам – это свободное движение. Но если подключить к проводнику внешнее электромагнитное поле, можно создать электрическую цепь. Все свободные электроны будут двигаться одинаково – это и называется движением тока в передатчике.

Читайте также:  Плотность постоянного тока в медном проводнике

Пример его перемещения по проводам: есть лампочка, которая соединена с источником питания длиной в 10 км. Если включить выключатель в цепи, лампочка загорится через 300 000 км/с. Такая скорость света в вакууме. Лампочка загорается через 33,333 мксек, из чего можно сделать вывод, что электроны двигались так же быстро, как и свет. Однако то, что электроны перемещались со световой скоростью, не значит, что та же быстрота сохраняется в проводнике:

  1. Цепь замкнулась с нажатием выключателя.
  2. Электрическое поле уменьшилось в диэлектрике конденсатора, а электроны зашли на плюсовую клемму.
  3. Так уменьшилась разность потенциалов, а так как электроны в присоединенном участке начали движение, пустые места были заняты соседними отрицательными частицами из другого участка провода.
  4. Это продолжается по всему проводнику, и когда электроны достигают лампочки, она начинает светиться.
  5. Из этого следует, что измененное электрическое поле мгновенно распространилось по проводнику, а частицы – немного медленнее.

Переменный и постоянный ток – в чем разница

Разница в том, что электрические заряды движутся неодинаково. Постоянный может двигаться только в одном направлении. В твердых телах двигаются электроны, в остальных – ионы. Поэтому в твердых телах ток всегда течет от минуса к плюсу. В жидких и газообразных веществах он может двигаться в 2-х направлениях: электроны – к плюсу, а ионы – к минусу и источнику подачи энергии.

С переменным движением частиц ситуация обстоит иначе: взамен его движения только в одном направлении последнее может периодически изменяться на противоположное. Например, в городских электросетях напряжение стандартное – 220 В, а частота – 50 Гц. Частота обозначает, что за 1 секунду ток проходит синусоидальный цикл 50 раз.

Это значит, что он меняет направление 100 раз в секунду, так как цикл изменяется дважды.

Скорость тока и скорость света – можно ли поставить знак равенства?

Очевидно, что быстрота движения электрических зарядов в проводах даже не близка к световой. Если бы это было правдой, современная энергетика не существовала в том виде, в котором она представлена сейчас. Добавилась бы необходимость решения сложных технических задач: на скорости 300 000 км/с заряженные частицы не способны следовать за поворотами. После разгона на прямом участке частицы бы просто вылетали по касательной, что в свою очередь требовало бы установок электромагнитных ловушек в проводах. Из-за этого участки проводки напоминали бы фрагменты адронного коллайдера.

Скорость передвижения элементарных частиц намного меньше, чем скорость света, несмотря на то, что в школе учат правилу: «Скорость тока в проводнике идентична быстроте распространения электромагнитной волны». Чтобы убедиться в этом, достаточно провести простые опыты с постоянными магнитами или эбонитом.

Скорость тока не равна скорости света! : 11 комментариев

Ну ла епт посмотрел бы как свет распространяется в проводнике у вас…

Это даже не машинный перевод с английского, это перевод с китайского. Типа, Али.

Статья для тех, кто плохо учился в школе.
Скорость свободных электронов и скорость электрического тока — это не одно и то же.

Ток имеет две составляющие:
1) ток сверхпроводимости, как туннелирование зарядов в фотоно-зарядовой среде электронного облака;
2) ток потерь, как движение электронов, обеспечивающих непрерывность фотоно-зарядовой среды, как электронного облака.

Доля второй составляющей в проводниках ничтожна и идет на разогрев проводников. Скорость движения электронов также невелика.

Основная доля — это ток сверхпроводимости. Заряды не путать с электронами и позитронами. Скорость зарядов в проводнике, по крайней мере, не меньше скорости света.

Скорость тока обусловлена не скоростью движения носителей электричества, электронов и ионов, а скоростью распространения электрического поля, а она равно скорости света.

Не надо путать скорость движения электрических зарядов со скоростью передачи напряжения. Скорость распространения напряжения и скорость света должны быть соизмеримы. Это передача давления/разрежения в эфире вакуума (около 300 000 км/с).

Впечатление такое, что автор даже школьные уроки физики прокурил в туалете.
Скорость тока как скорость движения заряженных частиц — объектов, имеющих ненулевую массу покоя, никогда не достигнет скорости света — специальная теория относительности это не позволяет.
А вот скорость распространения тока всегда и в точности равна скорости света в вакууме.
Потому что по сути в каждом случае это скорость распространения электромагнитного поля — одного и того же природного явления.

Если рассмотреть точку как энергетическое поле, то на основании Закона Проективности точка превращается в бесконечную линию которая обладает той же энергетикой, что и точка в любой точке бесконечной линии! Ну, где-то так… Отсюда, скорость передача энергии в космологическом пространстве ЭФИРА на порядки превышает скорость распространения света по-Эйнштейну!

Поздравляю с открытием природы электрического тока!

Скорость тока бесконечна. Я это могу доказать. Представьте ниточку, длиной 1 млн км. А теперь, давайте дернем за конец ниточки с одной стороны. Как вы думаете, через сколько времени дернется второй конец ниточки? А ниточка — это проводник.
Если на одном конце не станет тока, то на другом конце мгновенно исчезнет ток. Почему?
Потому что ток это не один электрон, а цепочка электронов, которые двигаются, пока замкнута цепь. При разрыве цепи движение электронов прекращается мгновенно на всей цепи, каким длинным ни был проводник.

Еще ни кто толком не объяснил, что вообще такое электрический ток,его природу, свойства, возможности — так домыслы, предположения. Один великий Н.Тесла знал, но объяснить не смог или не хотел, зная, что понять его не смогут. Посмотришь на учебники по электричеству, типа учебника по ТОЭ, — и оторопь берет: 10 см. толщины книги оказываются бессильными объяснить что такое электричество. И всё потому, что авторы сами блуждают в догадках и предположениях.

Источник

Переменный ток, не понимаю , что происходит во второй полупериод

zargius

Просмотр профиля

Группа: Пользователи
Сообщений: 15
Регистрация: 12.9.2013
Пользователь №: 35464

Olegich71

Просмотр профиля

Группа: Пользователи
Сообщений: 121
Регистрация: 6.8.2013
Пользователь №: 34793

Обратно ток идёт не от ноля трансформатора, а от ноля потребителя, который расположен на другой фазе трёхфазной цепи. Вспомните схему питания трёхфазной цепи, там хитро скачут потенциалы, чтобы у всех фаз была синусоида. То есть в тот момент когда с вашей фазы ток идёт НА трансформатор, у другой фазы он идёт ОТ трансформатора. Теоретически, если бы нагрузки на всех трёх фазах были идеально ровными, нулевой провод был бы вообще не нужен.

Сообщение отредактировал Olegich71 — 12.9.2013, 15:27

Roman D

Просмотр профиля

Инспектор Бел Амор

Группа: Пользователи
Сообщений: 9216
Регистрация: 11.8.2007
Из: Куртенгофъ
Пользователь №: 9187

Если сравнить постоянный ток с переменным, то это как ножовка и циркулярка. )

Переменный ток циркулирует по проводам вне зависимости, заземлён один из проводов или нет. Ну вот взяли мы трансформатор, а вторичную обмотку не заземлили. Где фаза, где ноль? Току пофиг, он бежит по проводам, если цепь замкнута.

zargius

Просмотр профиля

Группа: Пользователи
Сообщений: 15
Регистрация: 12.9.2013
Пользователь №: 35464

Ага, кажется я начинаю врубаться в суть дела

Тоесть заземление нулевого провода трансформатора делается лишь для того чтобы не возник потенциал при неравномерной нагрузке фаз?

Roman D

Просмотр профиля

Инспектор Бел Амор

Группа: Пользователи
Сообщений: 9216
Регистрация: 11.8.2007
Из: Куртенгофъ
Пользователь №: 9187

Это делается, чтоб людей не убило.

Олега

Просмотр профиля

Группа: Пользователи
Сообщений: 13962
Регистрация: 6.8.2007
Из: СПб
Пользователь №: 9143

Olegich71

Просмотр профиля

Группа: Пользователи
Сообщений: 121
Регистрация: 6.8.2013
Пользователь №: 34793

Да, он уравнивает систему, в противном случае были бы перенапряжения и недонапряжения. Только ремарка, нулевого провода там нет, там есть нулевая точка. Всё что я писал, было про трёхфазную систему питания, где вторичная обмотка трансформатора — звезда.

zargius

Просмотр профиля

Группа: Пользователи
Сообщений: 15
Регистрация: 12.9.2013
Пользователь №: 35464

Вот и мне собственно изначально этот момент не понятен, как же это выглядит во время второй полуволны

haramamburu

Просмотр профиля

Группа: Пользователи
Сообщений: 4022
Регистрация: 27.9.2009
Из: Дмитров
Пользователь №: 15685

А нулевой проводник — это уже не проводник? Или он не идет до «звезды» транса?

Roman D

Просмотр профиля

Инспектор Бел Амор

Группа: Пользователи
Сообщений: 9216
Регистрация: 11.8.2007
Из: Куртенгофъ
Пользователь №: 9187

haramamburu

Просмотр профиля

Группа: Пользователи
Сообщений: 4022
Регистрация: 27.9.2009
Из: Дмитров
Пользователь №: 15685

Олега

Просмотр профиля

Группа: Пользователи
Сообщений: 13962
Регистрация: 6.8.2007
Из: СПб
Пользователь №: 9143

Читайте также:  Как проверить трансформатор переменного тока

zargius

Просмотр профиля

Группа: Пользователи
Сообщений: 15
Регистрация: 12.9.2013
Пользователь №: 35464

Если ток присутствует только в замкнутой цепи, то тогда не очень понимаю откуда он берется при замыкании на землю.
Соответственно не очень понятно как электроны бегут от нуля к фазе, если нулевой провод заземлен, должны же тогда бежать в землю, нет?
как то упустил я этот момент на уроках физики

с2н5он

Просмотр профиля

Группа: Модераторы
Сообщений: 21426
Регистрация: 12.7.2009
Из: Вологодская область
Пользователь №: 14996

zargius

Просмотр профиля

Группа: Пользователи
Сообщений: 15
Регистрация: 12.9.2013
Пользователь №: 35464

Я имел ввиду что в переменном токе получается движение электронов идет сначала от фазы к нулю, а потом наоборот, тоесть циркулирует в замкнутой цепи. Если схватиться за фазный провод, то ток то пойдет через человека в землю, так? но ток то у нас переменный и из земли тока не получишь, тогда получается второй полуволны не будет? поражать человека будет только в тот период, когда ток течет от фазе к нулю\в землю , так?

ScorpionXXX

Просмотр профиля

Группа: Пользователи
Сообщений: 412
Регистрация: 31.12.2006
Пользователь №: 7989

Прикрепленное изображение

Прикрепленное изображение

Сообщение отредактировал ScorpionXXX — 13.9.2013, 10:15

zargius

Просмотр профиля

Группа: Пользователи
Сообщений: 15
Регистрация: 12.9.2013
Пользователь №: 35464

Спасибо, рисунок информативный и из всех здесь ответов, я так себе это всё и представил, НО последний глупый вопрос — почему нулевой проводник тогда не бьет током, если по нему бегают те же самые электроны из фазных проводов и обратно в фазные?

Olegich71

Просмотр профиля

Группа: Пользователи
Сообщений: 121
Регистрация: 6.8.2013
Пользователь №: 34793

Идёт. Только посредством земли, а не металлического провода. Я вас и спрашиваю, имеете ли вы ввиду что ток пойдёт через землю к потребителю? Заземляют ноль, чтобы уровнять потенциалы ноля потребителя и нулевой точки трансформатора, но это не значит что между ними есть ток.

Тут многие говорят о природе электричества, но это никак не отвечает на вопрос автора, т.к. его вопрос связан всего лишь с процессами в системы трёхфазного электроснабжения (хоть он и сам этого явно не спросил). И ещё раз, чтобы отбить все сомнения насчёт нулевого провода — если идеально уровнять нагрузки на фазах, он там не нужен вовсе! В каждый момент времени «плюс» — это одна фаза, а «минус» — другая. Вот и всё.

P.S. Вот, смотреть картинку «Анимированное изображение течения токов по симметричной трёхфазной цепи с соединением типа «звезда»». И обратите внимание — на всех трёх нагрузках ток идёт «туда-сюда» и нет там никакого НУЛЯ. В общем, надеюсь поняли.
http://ru.wikipedia.org/wiki/%D0%A2%D1%80%. %BD%D0%B8%D1%8F

Сообщение отредактировал Olegich71 — 13.9.2013, 11:37

zargius

Просмотр профиля

Группа: Пользователи
Сообщений: 15
Регистрация: 12.9.2013
Пользователь №: 35464

Ну в принципе Вы правы Мне как то проще уложить в голове представляя трехфазное питание домов\электродвигателей и т.д.

Тоесть если я правильно понимаю, если подключить трехфазный электродвигатель, у которого обмотки соединены звездой, то я могу смело докоснуться до соединения этих трех обмоток и я не отправлюсь на тот свет? правильно? ведь обмотки то имеют одинаковое сопротивление и сдвиг фаз не произойдет, так?

Olegich71

Просмотр профиля

Группа: Пользователи
Сообщений: 121
Регистрация: 6.8.2013
Пользователь №: 34793

Речь не только про приборы которые питаются от трёх фаз. У нас большенство домов питается от трёхфазной сети, просто у вас фаза «А», а у соседа фаза «Б». Вот вы на этой картинке нагрузка номер один, а сосед — номер два.

Я не хотел бы давать положительный ответ на такие вопросы вопросы )) Но по теории получается что да, в нулевой точке потенциал — ноль.

Сообщение отредактировал Olegich71 — 13.9.2013, 12:09

Источник



Ток течет от плюса к минусу: «Почему ток в цепи идёт «от плюса к минусу», если носители заряда — электроны — заряжены отрицательно и должны идти «от минуса к плюсу»?» – Яндекс.Кью – Как течет ток от п

Электрический ток – одно из основных благ цивилизации, без которого жизнь современного человечества была бы невозможна. Применяемый во всех областях современного мира (от простого электрочайника, встречающегося на кухни почти любой домохозяйки до мощной дуговой электроплавильной печи) он делает жизнь людей более удобной и простой. В то же самое время очень мало из тех, кто пользуется многочисленными электроприборами, задумывается над природой данного явления. В частности, не все понимают, что оно собой представляет, на протекании каких процессов основывается, какое направление течения заряженных частиц в проводниках и электрических цепях.


Движение зарядов в проводнике

Для того чтобы разобраться в том, как течет ток, необходимо понять его физическую сущность, основанную на атомарно-молекулярной теории строения материи, узнать, какие условия необходимы для его возникновения и существования, какие виды токов бывают, и какими характеристиками они обладают.

Физическая сущность течения тока в цепи

Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц – электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).

Основными условиями возникновения и существования электрического тока являются:

  • Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
  • Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
  • Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.

Ответы@Mail.Ru: в каком направлении протекает ток в цепи

направление тока — условность, принятая для рисования схем и не более того. Принято рисовать от + к -. Если проводник — метал (провод, например) — реальные носители — электроны — летят в обратную сторону — к плюсу. Если носитель жидкость с ионами или ионизированный газ — ионы летят в обе стороны…

Давненько принято считать движение тока от плюса к минусу, хотя реальное движение носителей заряда бывает обратным, в большинстве случаев.

от плюса к минусу

принято от + к -..но электрончики бегут наоборот… все схемы читаются от + к -..

Принято считать, что во ВНЕШНЕЙ ЦЕПИ направление тока от положителного полюса к отрицательному. А во внутренней, соответственно, наоборот.

В замкнутой электрической цепи ток идет от точки с большим потенциалом в точку с меньшим потенциалом и никакие + или — тут ни при чем.

Двести лет тому назад Фарадей поставил опыт, где демонстрируется получение тока в гальванометре при движении магнита в катушке индуктивности. Сегодня, осмысляя этот опыт, приходится делать вывод: современная теория тока проводимости в металлических проводниках ошибочна потому, что основой этой теории является движение свободных электронов при неподвижных ионах. Опыт же Фарадея демонстрирует движение, как отрицательных, так и положительных зарядов. А так как в проводнике, кроме подвижных электронов и неподвижных ионов, других зарядов нет, то следует сделать вывод: Фарадей двести лет тому назад получил, в качестве тока проводимости, электронно-позитронный ток, распространяющийся в эфире вокруг проводников.

Электрический ток и поток электронов

Единица измерения силы тока

Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.

Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням). При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах. Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.


Ядро и электроны

Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях. Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов. При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.

У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.

Читайте также:  Ток анода в 6п3с

Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).

Электрический ток в параллельной цепи

Закон Ома для неоднородного участка

В электрических схемах предусмотрены параллельные и последовательные соединения элементов. При параллельном соединении, например, резисторов, напряжение одинаково для каждого из них, а сила тока, протекающего через каждый элемент, пропорциональна его сопротивлению. Чтобы определить величину тока через каждый компонент при параллельной комбинации их соединения, используют закон Ома.


Параллельная электрическая цепь

Защита от токов короткого замыкания

Что можно сказать в заключение. Если вы планируете сделать ремонт электропроводки своими руками или модернизировать существующую, почитайте эту статью . Крайне внимательно отнеситесь к выбору аппаратов защиты вашей сети. Важный совет: когда устанавливаете или будете устанавливать новый автомат, УЗО или диффавтомат, внимательно прочитайте бумагу, которая идет в комплекте. В ней содержится такой пункт, как срок эксплуатации и срок поверки. В течении срока эксплуатации производитель дает гарантию, что устройство будет выполнять свои основные функции. Срок поверки указывает на период, в течение которого могут измениться параметры срабатывания защиты, то есть через указанный промежуток времени желательно (а я бы даже сказал обязательно) либо сделать поверку автомата, либо заменить (благо, не так дорого он стóит). Кстати, пробки с плавкими предохранителями в поверке не нуждаются. Не забывайте делать регулярный осмотр электропроводки и как минимум раз в год протягивать винтовые соединения на автоматах и шинах нулевых и заземляющих проводов. Не забывайте про заземление — оно поможет вовремя выявить устройства с поврежденной изоляцией.

Источники напряжения обычно называют источниками питания. Для увеличения тока или напряжения, а может и того и другого источники питания (элементы, батареи) могут соединяться вместе. Существует три типа соединения элементов питания: 1. Последовательное соединение элементов. 2. Параллельное соединение элементов. 3. Последовательно-параллельное (смешанное) соединение элементов.

Вид цепи и напряжение

В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:

  • Цепи постоянного тока;
  • Цепи переменного тока.

Cила тока: формула

Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).

На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.

Для цепей переменного тока характерны такие виды и значения напряжения, как:

  • мгновенное;
  • амплитудное;
  • среднее значение;
  • среднеквадратическое;
  • средневыпрямленное.

Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)

Базовые понятия о электричестве

Прежде чем приступить к работам, связанным с электричеством, необходимо немного «подковаться» теоретически в этом вопросе.Если говорить просто, то обычно под электричеством подразумевается это движение электронов под действием электромагнитного поля.

Главное — понять, что электричество — энергия мельчайших заряженных частиц, которые движутся внутри проводников в определенном направлении(рис. 1.1).

Движение электронов в проводнике

Постоянный ток практически не меняет своего направления и величины во времени. Допустим, в обычной батарейке постоянный ток. Тогда заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет.

Переменный ток — это ток, который с определенной периодичностью меняет направление движения и величину. Представьте ток как поток воды, текущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую.

С током это происходит намного быстрее — 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком.

На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного.

Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор (рис. 1.2).

Трансформатор на подстанции понижает напряжение от высоковольтной линии для передачи в бытовую сеть

Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

При помощи трансформатора (специального устройства в виде катушек) переменный ток преобразуется с низкого напряжения на высокое и наоборот, как это представлено на иллюстрации (рис. 1.3).

Виды токов: постоянные и переменные

В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:

  • Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
  • Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.


Основные характеристики переменного тока

Как течет ток от плюса к минусу

Тема: в какую сторону идёт ток в проводах, электрических цепях, схемах.

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.
Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

Двунаправленное перемещение зарядов

Наряду с упорядоченным движением носителей зарядов (электронов), в проводниках наблюдается также незначительный обратный процесс – условное перемещение положительных зарядов, потерявших отрицательные частицы атомов. Вместе с основным током данное явление получило название двунаправленное перемещение зарядов. Особенно оно ярко проявляется при протекании электричества через электролиты (явление электролиза).


Двунаправленное перемещение зарядов в аккумуляторной батарее

Значение перемещения электронов в электрической схеме

Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема. Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,

диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.

Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.

Источник