Меню

Как движется электрический ток в вакууме

Электрический ток в вакууме – причины появления, свойства и применение

Свободное пространство от вещества называют вакуумом. Электрический ток, являясь упорядоченным движением носителей зарядов, самостоятельно в нём появиться не может. Но существуют радиоэлектронные приборы, чаще всего усилительные, работа которых построена именно на пропускании электричества через вакуумную среду. Появление таких устройств стало возможным после открытия термоэлектронной эмиссии, фундаментального физического явления.

Электрический ток в вакууме - причины появления, свойства и применение

Электрический ток в жидкостях

Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией

, а сам раствор
электролитом
, способным проводить ток.

В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.

Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит

Электрохимический эквивалент вещества — табличная величина.

Второй закон Фарадея:

Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.

Основные понятия

С первого взгляда кажется, что ток и вакуум — это несовместимые понятия. Ведь в диэлектрике упорядоченное движение зарядов невозможно. Но на самом деле это не совсем так. Чтобы понять, почему же возникает проводимость в вакууме нужно изучить природу возникновения тока и что представляет собой газовое пространство с давлением ниже атмосферного.

В любом теле существуют частицы. Они могут находиться в свободном состоянии или быть привязаны к атому. Те и другие обладают определённым зарядом. Первые хаотично передвигаются в теле, компенсируя перемещение зарядов. Но если к материалу приложить силу, которая заставит носителей заряда двигаться в одном направлении, то возникнет электрический ток.

Его сила определяется количеством частиц прошедших через поперечное сечение тела за единицу времени. Измеряется она в амперах. Носителями зарядов могут быть:

  • протоны;
  • ионы;
  • электроны;
  • дырки.

Любое физическое тело состоит из молекул. Формируют их атомы, вокруг которых вращаются электроны. При химической реакции или внешнем воздействии электромагнитных полей происходит перемещение электронов. Они выбиваются или притягиваются другим телом, испытывающим недостаток в элементарных частицах. В результате возникает ток. Его направление совпадает с напряжённостью поля, формирующего движение частиц и создающего электричество.

Вакуум по определению представляет собой пространство, в котором нет вещества. Физики им называют среду, заполненную газом давление, которого меньше атмосферного. Воздух состоит из молекул, которые, двигаясь хаотично, сталкиваются друг с другом и различными препятствиями. Расстояние, которое молекула преодолевает после удара, называют длиной свободного пробега.

Если воздух заключить в сосуд и из него выкачивать воздух, то наступит такой момент, при котором молекулы не будут испытывать столкновение. То есть их свободный пробег будет определяться размерами ёмкости. Таким образом, хоть в сосуде и создался вакуум, некоторое количество молекул в среде останется.

Откачать же все частицы практически невозможно. Может только образоваться так называемый глубокий вакуум, в котором частичка практически не встречает сопротивление движению.

Отсюда следует, что при меньших размерах сосуда вакуум создаётся при большем давлении газа, чем в большой замкнутой ёмкости.



Электрический ток в металлах

При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.

Каждое вещество характеризуется собственным температурным коэффициентом сопротивления — табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.

Явление сверхпроводимости.

При температурах близких к абсолютному нулю (-2730C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость — микроскопический квантовый эффект.

Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.

Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.

Ионизированное состояние газа получило название плазмы

. В масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.

Прохождение электрического тока через газ называется газовым разрядом

В «рекламной» неоновой трубке протекает тлеющий разряд

. Светящийся газ представляет собой «живую плазму».


Между электродами сварочного аппарата возникает
дуговой разряд
.


Дуговой разряд горит в ртутных лампах — очень ярких источниках света.
Искровой разряд
наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!


Для
коронного разряда
характерно свечение газа, образуя «корону», окружающую электрод. Коронный разряд — основной источник потерь энергии высоковольтных линий электропередачи.

Характеристики

Электрический ток характеризуется величинами, которые описывают его свойства.

Сила и плотность тока

Для описания характеристики электричества часто используют термин «сила тока». Название не совсем удачное, так как оно характеризует только интенсивность движения электрических зарядов, а не какую-то силу в буквальном смысле. Тем не менее, этим термином пользуются, и он означает количество электричества (зарядов) проходящего через плоскость поперечного сечения проводника. Единицей измерения силы тока в системе СИ является ампер (А).

1 А означает то, что за одну секунду через поперечное сечение проводника проходит электрический заряд 1 Кл. (1А = 1 Кл/с).

Плотность тока – векторная величина. Вектор направлен в сторону движения положительных зарядов. Модуль этого вектора равен отношению силы тока на некотором перпендикулярном к направлению движения зарядов сечении проводника к площади этого сечения. В системе СИ измеряется в А/м2. Плотность более ёмко характеризует электричество, однако на практике чаще используется величина «сила тока».

Разница потенциалов (напряжение) на участке цепи выражается соотношением: U = I×R, где U – напряжение, I – сила тока, а R – сопротивление. Это знаменитый закон Ома.

Мощность

Электрическими силами совершается работа против активного и реактивного сопротивления. На пассивных сопротивлениях работа преобразуется в тепловую энергию. Мощностью называют работу, выполненную за единицу времени. По отношению к электричеству применяют термин «мощность тепловых потерь». Физики Джоуль и Ленц доказали, что мощность тепловых потерь проводника равна силе тока умноженной на напряжение: P = I× U. Единица измерения мощности – ватт (Вт).

Частота

Переменный ток характеризуется также частотой. Данная характеристика показывает, как за единицу времени изменяется количество периодов (колебаний). Единицей измерения частоты является герц. 1 Гц = 1 периоду за секунду. Стандартная частота промышленного тока составляет 50 Гц.

Ток смещения

Понятие «ток смещения» ввели для удобства, хотя в классическом понимании его нельзя назвать током, так как отсутствует перенос заряда. С другой стороны, интенсивность магнитного поля пребывает в зависимости от токов проводимости и смещения.

Токи смещения можно наблюдать в конденсаторах. Несмотря на то, что при зарядке и разрядке между обкладками конденсатора не происходит перемещения заряда, ток смещения протекает через конденсатор и замыкает электрическую цепь.

Электрический ток в вакууме

А возможно ли распространение электрического тока в вакууме (от лат. vacuum — пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С помощью явления термоэлектронной эмиссии

— испускания веществом электронов при нагревании.

Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) — приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток — катод

, холодный электрод, собирающий термоэлектроны —
анод
.

Физика процесса

Электрический ток в вакууме может образовываться только направленным движением электронов. Ввести их, возможно, с помощью помещения в среду металла. Для того чтобы частицы покинули поверхность проводника нужно им отдать энергию. Этот процесс называется работой выхода электронов из вещества.

Её значение для разных материалов было установлено экспериментально. Так, для наиболее популярных веществ работа выхода равна:

  • вольфрама — 4,5 эВ;
  • кадмия — 2,2 эВ;
  • цинка — 4,2 эВ;
  • оксида бария — 1 эВ.

То есть для того чтобы извлечь электрон, нужно сообщить ему определённую энергию. Только тогда он сможет вылететь с поверхности. В обычном состоянии энергия электрона в металле составляет 3,2 KT (тепловая). При комнатной температуре (T = 300 K) KT = 0,026 эВ. Этой величины будет явно недостаточно, чтобы появилась электропроводность в вакууме.

Электрический ток в вакууме - причины появления, свойства и применение

Если же нагреть тело до 3 тыс. градусов по кельвину (многие металлы начинают расплавляться), то KT = 0,26 эВ. Этого значения всё равно мало для того, чтобы выбить электроны. Но на самом деле носители имеют определённое распределение по энергиям. Найденное значение показывает среднюю величину. Поэтому в теле из-за высокой плотности заряженных частиц обязательно будут такие электроны, которые имеют энергию превышающую работу выхода.

Читайте также:  Как зависит сила напряжение электрического тока от материалов

Над поверхностью проводника появляется электронное облако. При этом чем выше температура, тем плотнее оно будет. Вылетевший электрон приводит к изменению заряда металла. В итоге он начинает втягиваться обратно. Устанавливается равновесие. Какое число электронов вылетает, такое же их количество возвращается.

Для того чтобы образовался поток зарядов нужно ввести вспомогательную цепь. Другими словами, сообщить электронам дополнительную энергию. Зависимость между током и напряжением в рассматриваемом случае не будет соответствовать закону Ома. Ведь образованное электронное облако задерживает вновь вылетающие электроны. Но если увеличить напряжение на другом выводе, то концентрация носителей в образованном поле уменьшится, значит, снизится и тормозящий эффект. Это приведёт к увеличению тока.

Таким образом, вылетающие электроны можно уподобить электра ракетам, преодолевшим земное притяжение. Если к выводу присоединить положительный электрод источника тока, то возникшее электромагнитное поле между спиралью и электродом внутри колбы с вакуумом, устремит к нему электроны. Внутри потечёт электрический ток.

Источник

Электрический ток в вакууме — причины появления, свойства и применение

Общие сведения

Понятие вакуум сходно слову «пустота». В физике под ним понимают пространство, которое освобождено от любых веществ. Однако учёные считают, что такого места быть не может. Объясняют это они тем, что даже в самом пустом пространстве должны существовать флуктуации. Экспериментально это удалось доказать Генриху Казимиру, описавшему явление в своём конспекте.

Он предположил, что вакуум представляет собой «резервуар» в котором вблизи абсолютного нуля происходит ряд волнений. Его опыт состоял в следующем. Учёный взял две заряженные пластины и поместил их между вакуумным пространством. Под действием внешних фотонов проводники притягивались друг к другу. То есть через пространство проходила хотя и слабая, но сила.

Поэтому в физике существует особый термин — физический вакуум. Под ним понимают замкнутое пространство, в котором давление в несколько раз меньше по сравнению с газовой средой. То есть его величина не оказывает никакого влияния и ей можно пренебречь. Так как электричество образуется при перемещении элементарных носителей зарядов, которые в вакууме практически отсутствуют, при простом воздействии на среду его получить не удастся. Поэтому единственной возможностью пропустить ток через пустоту является добавление в неё заряженных частиц.

В 1879 году Эдисон, изучая причину перегорания нитей в лампах накаливания, обнаружил образование тёмного налёта около анодного вывода. Этот эффект изобретатель объяснял тем, что внутри колбы возникает разряд, вследствие которого заряженные частицы угольной пыли выбиваются с проводника. Он предположил, что если в лампу ввести дополнительный электрод с положительным зарядом, то эти частицы будут им притягиваться.

Так был открыт эффект термоэлектронной эмиссии. Другими словами, испускание заряженных частиц при нагреве проводника до температур 1500 — 2500 о С. При таких величинах электроны разрывают связи и высвобождаются. Это явление сродни испарению молекул с поверхности жидкости. Оно нашло своё применение в вакуумных электронных приборах. Например, используется в электронно-лучевых трубках, ламповых диодах.

Физика процесса

Электрический ток в вакууме может образовываться только направленным движением электронов. Ввести их, возможно, с помощью помещения в среду металла. Для того чтобы частицы покинули поверхность проводника нужно им отдать энергию. Этот процесс называется работой выхода электронов из вещества.

Её значение для разных материалов было установлено экспериментально. Так, для наиболее популярных веществ работа выхода равна:

  • вольфрама — 4,5 эВ;
  • кадмия — 2,2 эВ;
  • цинка — 4,2 эВ;
  • оксида бария — 1 эВ.

То есть для того чтобы извлечь электрон, нужно сообщить ему определённую энергию. Только тогда он сможет вылететь с поверхности. В обычном состоянии энергия электрона в металле составляет 3,2 KT (тепловая). При комнатной температуре (T = 300 K) KT = 0,026 эВ. Этой величины будет явно недостаточно, чтобы появилась электропроводность в вакууме.

Если же нагреть тело до 3 тыс. градусов по кельвину (многие металлы начинают расплавляться), то KT = 0,26 эВ. Этого значения всё равно мало для того, чтобы выбить электроны. Но на самом деле носители имеют определённое распределение по энергиям. Найденное значение показывает среднюю величину. Поэтому в теле из-за высокой плотности заряженных частиц обязательно будут такие электроны, которые имеют энергию превышающую работу выхода.

Над поверхностью проводника появляется электронное облако. При этом чем выше температура, тем плотнее оно будет. Вылетевший электрон приводит к изменению заряда металла. В итоге он начинает втягиваться обратно. Устанавливается равновесие. Какое число электронов вылетает, такое же их количество возвращается.

Для того чтобы образовался поток зарядов нужно ввести вспомогательную цепь. Другими словами, сообщить электронам дополнительную энергию. Зависимость между током и напряжением в рассматриваемом случае не будет соответствовать закону Ома. Ведь образованное электронное облако задерживает вновь вылетающие электроны. Но если увеличить напряжение на другом выводе, то концентрация носителей в образованном поле уменьшится, значит, снизится и тормозящий эффект. Это приведёт к увеличению тока.

Таким образом, вылетающие электроны можно уподобить электра ракетам, преодолевшим земное притяжение. Если к выводу присоединить положительный электрод источника тока, то возникшее электромагнитное поле между спиралью и электродом внутри колбы с вакуумом, устремит к нему электроны. Внутри потечёт электрический ток.

Вакуумный диод

Одним из типичных устройств, использующих проводимость безвоздушного пространства, является вакуумная двухэлектродная электронная лампа. Если на её положительный вывод подаётся обратное напряжение, то все испущенные катодом электроны возвращаются. При прямом же смещении носители зарядов устремляются к аноду. Другими словами, происходит выпрямление переменного сигнала. Устройство работает как диод.

Исследовать появление электрического тока в вакууме и газах можно с помощью радиоэлемента, состоящего из следующих частей:

  • запаянной колбы;
  • электрода из металла (анод);
  • вольфрамовой спирали (катод);
  • реостата.

Нить из вольфрама находится в герметичной колбе и подключена через реостат к генератору для регулировки силы тока. Электрод подключён к микроамперметру. С него цепь, проходя через балластный резистор, замыкается на катоде.

Реостатом можно регулировать температуру катода. Переменным сопротивлением устанавливается разность потенциалов между положительным и отрицательным выводом. Вольт-амперная характеристика, то есть зависимость анодного тока от напряжения будет формироваться следующим образом. Допустим, напряжения нет. Тогда электроны, вылетевшие из катода, притянутся обратно. Ток в цепи анода не течёт. Если на вывод подать отрицательный сигнал, то электроны будут отталкиваться. Ток снова не течёт.

Когда на анод поступает положительное напряжение, то возникает электрическое поле. Оно создаёт силу, направленную в сторону анода. Скорость полёта электронов разная, так как некоторые из них отталкиваются от уже ранее вылетевших частиц. Чем больше будет напряжённость поля, тем сильнее начнёт протекать ток. Но изменение будет происходить не линейно. Например, если увеличить напряжение в два раза, то число электронов, вылетевших из катода, увеличится в больше раз, чем это число. Чем больше разность потенциалов, тем меньше пространственный заряд электронов.

На графике эта зависимость будет представлять полукубическую параболу. Описать её можно приблизительной формулой: I = U 3/2 . Если продолжить поднимать напряжение, то напряжённость становится намного больше поля, создаваемого пространственным облаком. Все электроны начнут добираться до анода. Сила тока уже не будет зависеть от напряжения. На ВАХ это изображается прямой линией, а эффект называется током насыщения.

Электронно-лучевая трубка

В вакуумных радиолампах поток электронов направлен от анода к катоду во все стороны. Но можно создать такие конструкции, в которых электроны будут направлены в одном направлении. Создаётся такой поток с помощью специальных фокусирующих пластин. Его часто называют катодным лучом. С его помощью можно нагревать тела, например, в вакуумных печах.

По своей природе он обладает следующими свойствами:

  • на него действует электрическое и магнитное поле (сила Лоренца);
  • попадая на некоторые вещества, например, сернистый цинк, сфокусированный электронный поток приводит к интересному результату — свечению;
  • луч генерирует рентгеновское излучение.

На этих свойствах и базируется класс вакуумных приборов называемый электронно-лучевыми трубками (ЭЛТ).

Устроено такое устройство следующим образом. Электроны в приборе образовываются с помощью термоэлектронной эмиссии. Катод прибора представляет собой цилиндр с плоским основанием, покрытым окисью бария. Этот электрод испускает электроны. Чтобы управлять их интенсивностью используется сетка. Подавая на неё напряжение, можно запирать поток или отпирать.

Главная деталь в определение электронного потока это его узкая направленность. Добиться этого можно, используя дополнительные анодные выводы. Один из них ускоряющий, а другой фокусирующий. Проходя через указанный набор ускоренный сфокусированный поток вылетает из ЭЛТ. На второй анод подаётся положительное напряжение напрямую, а на ускоряющий через реостат. Разность потенциалов кратна десяткам киловольт.

Вылетев с пушки поток, попадает на экран, покрытый люминофором. Вся эта система находится в колбе с безвоздушным пространством. Для того чтобы можно было перемещать луч по поверхности экрана используют конденсаторы. В зависимости от расположения их пластин происходит отклонение потока. Вызывает его подающееся на обкладки напряжение. От его значения луч может притягиваться к одной стороне или другой, по сути, изменяя поток электрического тока в вакууме. Так, кратко, и работает ЭЛТ.

Читайте также:  Хамид гулом ток шери

Источник

§ 3.11. Электрический ток в вакууме

Когда говорят об электрическом токе в вакууме, то имеют в виду такую степень разрежения газа, при которой можно пренебречь соударениями между его молекулами. В этом случае средняя длина свободного пробега молекул больше размеров сосуда.

Такой разреженный газ является изолятором, так как в нем нет (или почти нет) свободных заряженных частиц — носителей электрического тока.

На рисунке 3.27 изображена схема цепи, содержащей сосуд, из которого откачан воздух. В этот сосуд впаяны два электрода, один из которых (анод (А) соединен с положительным полюсом источника тока (батарея G1), другой (катод К) — с отрицательным. Несмотря на достаточно большое напряжение, которое обеспечивает источник тока (около 100 В), включенный в цепь чувствительный гальванометр не фиксирует тока; это указывает на отсутствие в вакууме свободных носителей заряда.

Электронная эмиссия

Электрический ток в вакууме будет существовать, если ввести в сосуд свободные носители заряда. Как это осуществить?

Наиболее просто проводимость межэлектродного промежутка в вакууме можно обеспечить с помощью электронной эмиссии с поверхности электродов. Электронная эмиссия возникает в случаях, когда часть электронов металла (электрода) приобретает в результате внешних воздействий энергию, достаточную для преодоления их связи с металлом (для совершения работы выхода Авых).

В § 3.8 мы уже познакомились с двумя видами электронной эмиссии: ионно-электронной эмиссией (при бомбардировке катода положительными ионами) и термоэлектронной эмиссией (испускание электронов с поверхности достаточно нагретого металла). Электроны испускаются также при воздействии на поверхность металла электромагнитным излучением. Такое явление называется фотоэлектронной эмиссией. И наконец, с поверхности металла испускаются электроны при бомбардировке ее быстрыми электронами. Это вторичная электронная эмиссия.

Все виды эмиссии широко используются для получения электрического тока в вакууме. Однако в большинстве современных электронных вакуумных приборов используется термоэлектронная эмиссия.

Получение электрического тока в вакууме

Посмотрим, как, используя термоэлектронную эмиссию, можно получить ток в вакууме. Для этой цели внесем изменения в цепь, схема которой изображена на рисунке 3.27. В качестве катода в вакуумном баллоне теперь впаяна вольфрамовая нить, концы которой выведены наружу и присоединены к источнику тока — батарее накала G2 (рис. 3.28). Замкнем ключ S2 и, когда вольфрамовая нить накалится, замкнем и ключ S1. Стрелка прибора при этом отклонится, в цепи появился ток. Значит, накаленная нить обеспечивает появление необходимых для существования тока носителей заряда — заряженных частиц.

С помощью опыта нетрудно убедиться, что эти частицы заряжены отрицательно.

Изменим полярность анодной батареи G1 — нить станет анодом, а холодный электрод — катодом (рис. 3.29). И хотя нить по-прежнему накалена и по-прежнему посылает в вакуум заряженные частицы, тока в цепи нет.

Из этого опыта следует, что частицы, испускаемые накаленной нитью, заряжены отрицательно — отталкиваются от холодного катода и притягиваются к аноду. Измерением заряда и массы было доказано, что катод испускает электроны.

Итак, электрический ток в вакууме представляет собой направленный поток электронов.

В отличие от тока в металлическом проводнике (где проводимость тоже электронная), в вакууме электроны движутся между электродами, ни с чем не сталкиваясь. Поэтому под действием электрического поля электроны непрерывно ускоряются. Скорость электронов у анода даже в маломощных электровакуумных приборах достигает нескольких тысяч километров в секунду, что в десятки миллиардов раз превышает среднюю скорость направленного движения электронов в металле.

Источник



Электрический ток в вакууме — причины появления, свойства и применение

Электрический ток в вакууме Электрический ток в вакууме - причины появления, свойства и применение

Виды вакуума

Как же ведет себя электрический ток в вакууме? Как и любой ток, ток в вакууме появляется при наличии источника со свободными заряженными частицами.

Какими частицами создается электрический ток в вакууме? Чтобы создать вакуум в каком-либо закрытом сосуде, необходимо из него откачать газ. Делают это чаще всего с помощью вакуумного насоса. Это такое устройство, которое необходимо, чтобы откачать газ или пар до нужного для опыта давления.

Существует четыре вида вакуума: низкий вакуум, средний вакуум, высокий вакуум и сверхвысокий вакуум.

Рис. 1. Характеристики вакуума

§ 112. Электрический ток в вакууме. Электронно-лучевая трубка

Каковы условия существования электрического тока?

До открытия уникальных свойств полупроводников в радиотехнике использовались исключительно электронные лампы.

Откачивая газ из сосуда (трубки), можно получить газ с очень малой концентрацией молекул.

Запомни Состояние газа, при котором молекулы успевают пролететь от одной стенки сосуда к другой, ни разу не испытав соударений друг с другом, называют вакуумом.

Если в сосуд с вакуумом поместить два электрода и подключить их к источнику тока, то ток между электродами не пойдёт, так как в вакууме нет носителей заряда. Следовательно, для создания тока в трубке должен быть источник заряженных частиц.

Термоэлектронная эмиссия. Чаще всего действие такого источника заряженных частиц основано на свойстве тел, нагретых до высокой температуры, испускать электроны.

Запомни Явление испускания электронов нагретыми металлами называется термоэлектронной эмиссией.

Это явление можно рассматривать как испарение электронов с поверхности металла. У многих твёрдых веществ термоэлектронная эмиссия начинается при температурах, при которых испарение самого вещества ещё не происходит. Такие вещества и используются для изготовления катодов.

Односторонняя проводимость. Диод. Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод, в отличие от холодного, непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако

. Электрод заряжается положительно, и под влиянием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.

В равновесном состоянии число электронов, покинувших электрод в секунду, равно числу электронов, возвратившихся на электрод за это время. Чем выше температура металла, тем выше плотность электронного облака.

При подключении электродов к источнику тока между ними возникает электрическое поле. Если положительный полюс источника тока соединён с холодным электродом (анодом), а отрицательный — с нагретым (катодом), то вектор напряжённости электрического поля направлен к нагретому электроду. Под действием этого поля электроны частично покидают электронное облако и движутся к холодному электроду. Электрическая цепь замыкается, и в ней устанавливается электрический ток. При противоположной полярности включения источника напряжённость поля направлена от нагретого электрода к холодному. Электрическое поле отталкивает электроны облака назад к нагретому электроду. Цепь оказывается разомкнутой.

Односторонняя проводимость широко использовалась раньше в электронных приборах с двумя электродами — вакуумных диодах, которые служили, как и полупроводниковые диоды, для выпрямления электрического тока. Однако в настоящее время вакуумные диоды практически не применяются.

Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в это отверстие, образуя за анодом электронный пучок. Количеством электронов в пучке можно управлять, поместив между катодом и анодом дополнительный электрод и изменяя его потенциал.

Свойства электронных пучков и их применение. Испускаемые катодом потоки электронов, движущихся в вакууме, называют иногда катодными лучами

Перечислим свойства электронных пучков (катодных лучей).

    1) Электроны в пучке движутся по прямым линиям.

2) Электронный пучок, попадая на мишень, передаёт ей часть кинетической энергии, что вызывает её нагревание. В современной технике это свойство используют для электронной плавки в вакууме сверхчистых металлов.

3) При торможении быстрых электронов, попадающих на вещество, возникает рентгеновское излучение. Это явление используют в рентгеновских трубках.

4) Некоторые вещества (стекло, сульфиды цинка и кадмия), бомбардируемые электронами, светятся. В настоящее время среди материалов этого типа (люминофоров) применяются такие, у которых в световую энергию превращается до 25% энергии электронного пучка.

5) Электронные пучки отклоняются электрическим полем. Например, проходя между пластинами конденсатора, электроны отклоняются от отрицательно заряженной пластины к положительно заряженной (рис. 16.20).

6) Электронный пучок отклоняется также в магнитном поле. Пролетая над северным полюсом магнита, электроны отклоняются влево, а пролетая над южным, отклоняются вправо. Отклонение электронных потоков, идущих от Солнца, в магнитном поле Земли приводит к тому, что свечение газов верхних слоёв атмосферы (полярное сияние) наблюдается только у полюсов.

7) Электронные пучки обладают ионизирующей способностью.

8)Электронные пучки могут проходить сквозь очень тонкие металлические пластины толщиной 0,003—0,03 мм.

Электронно-лучевая трубка. Возможность управления электронным пучком с помощью электрического или магнитного поля и свечение покрытого люминофором экрана под действием пучка применяют в электронно-лучевой трубке.

Электронно-лучевая трубка была основным элементом первых телевизоров и осциллографа — прибора для исследования быстропеременных процессов в электрических цепях (рис. 16.21).

Читайте также:  Как изменится магнитное действие катушки с током при увеличении силы тока в ней

Устройство электронно-лучевой трубки показано на рисунке 16.22. Эта трубка представляет собой вакуумный баллон, одна из стенок которого служит экраном. В узком конце трубки помещён источник быстрых электронов — электронная пушка

(рис. 16.23). Она состоит из катода, управляющего электрода и анода (чаще несколько анодов располагается друг за другом). Электроны испускаются нагретым оксидным слоем с торца цилиндрического катода С, окружённого теплозащитным экраном Н. Далее они проходят через отверстие в цилиндрическом управляющем электроде В (он регулирует число электронов в пучке). Каждый анод (А1 и А2) состоит из дисков с небольшими отверстиями. Эти диски вставлены в металлические цилиндры. Между первым анодом и катодом создаётся разность потенциалов в сотни и даже тысячи вольт. Сильное электрическое поле ускоряет электроны, и они приобретают большую скорость. Форма, расположение и потенциалы анодов выбирают так, чтобы наряду с ускорением электронов осуществлялась и фокусировка электронного пучка, т. е. уменьшение площади поперечного сечения пучка на экране почти до точечных размеров.

На пути к экрану пучок последовательно проходит между двумя парами управляющих пластин, подобных пластинам плоского конденсатора (см. рис. 16.22). Если электрического поля между пластинами нет, то пучок не отклоняется и светящаяся точка располагается в центре экрана. При сообщении разности потенциалов вертикально расположенным пластинам пучок смещается в горизонтальном направлении, а при сообщении разности потенциалов горизонтальным пластинам он смещается в вертикальном направлении.

Одновременное использование двух пар пластин позволяет перемещать светящуюся точку по экрану в любом направлении. Так как масса электронов очень мала, то они почти мгновенно, т. е. за очень короткое время, реагируют на изменение разности потенциалов управляющих пластин.

В настоящее время чаще используются телевизоры с жидкокристаллическим или плазменным экраном.

В электронно-лучевой трубке, применяемой в телевизоре (так называемом кинескопе), управление пучком, созданным электронной пушкой, осуществляется с помощью магнитного поля. Это поле создают катушки, надетые на горловину трубки (рис. 16.24).

Цветной кинескоп содержит три разнесённые электронные пушки и экран мозаичной структуры, составленный из люминофоров трёх типов (красного, синего и зелёного свечения). Каждый электронный пучок возбуждает люминофоры одного типа, свечение которых в совокупности даёт на экране цветное изображение.

Электронно-лучевые трубки широко применялись в дисплеях — устройствах, присоединяемых к электронно-вычислительным машинам (ЭВМ). На экран дисплея, подобный экрану телевизора, поступала информация, записанная и переработанная ЭВМ. Можно было непосредственно видеть текст на любом языке, графики различных процессов, изображения реальных объектов, а также воображаемые объекгы, подчиняющиеся законам, записанным в программе вычислительной машины.
Ключевые слова для поиска информации по теме параграфа. Термоэлектронная эмиссия. Катодные лучи

Вопросы к параграфу

    1. Для какой цели в электронных лампах создают вакуум?

2. Наблюдается ли термоэлектронная эмиссия в диэлектриках?

3. Как осуществляется управление электронными пучками?

4. Как устроена электронно-лучевая трубка?

Электронная пушка создаёт пучок электронов в стеклянной вакуумирован- ной камере. Все электроны, покинувшие раскалённый катод пушки, покидают катод и ударяются в экран электронно-лучевой трубки. Если увеличить ускоряющее напряжение в пушке в 2 раза, то сила тока, идущего в вакууме через трубку,

    1) не изменится 3) возрастёт примерно в 2 раза 2) возрастёт примерно в раза 4) возрастёт примерно в 4 раза

Вакуумный диод, у которого анод (положительный электрод) и катод (отрицательный электрод) — параллельные пластины, работает в режиме, когда между током и напряжением выполняется соотношение I = aU3/2 (где а — некоторая постоянная величина). Линейная зависимость тока от напряжения (закон Ома) нарушается из-за

    1) свойств электронного пучка

2) появления дополнительных носителей тока

3) того, что свойства анода и катода разные

4) движения электронов в вакууме

Электрический ток в вакууме

Ток в вакууме не может существовать самостоятельно, так как вакуум является диэлектриком. В таком случае создать ток можно с помощью термоэлектронной эмиссии. Термоэлектронная эмиссия – явление, при котором электроны выходят из металлов при нагревании. Такие электроны называются термоэлектронами, а все тело – эмиттер.

На это явление впервые обратил внимание американский ученый Томас Эдисон в 1879 году.

Рис. 2. Термоэлектронная эмиссия

Эмиссия делится на:

  • вторичную электронную (выбивание быстрыми электронами);
  • термоэлектронную (испарение электронов с горячего катода);
  • фотоэлектронная (электроны выбиваются светом);
  • электронная (выбивание сильным полем).

Электроны смогут вылететь из металла, если будут обладать достаточной кинетической энергией. Она должна быть больше работы выхода электронов для данного металла. Электроны, вылетающие из катода, образуют электронное облако. Половина из них возвращается в исходное положение. В равновесном состоянии число вылетевших электронов равно количеству вернувшихся. От температуры прямо пропорционально зависит плотность электронного облака (т.е. при повышении температуры, плотность облака становится больше).

При подключении электродов к источнику между ними возникает электрическое поле. Если положительный полюс источника тока соединить с анодом (холодным электродом), а отрицательный – с катодом (нагретым электродом), то напряженность электрического поля будет направлена к нагретому электроду.

Как электрический ток может появиться в вакууме

Для того, чтобы создать в вакууме полноценный электрический ток, необходимо использовать такое физическое явление, как термоэлектронная эмиссия. Она основана на свойстве какого-либо определенного вещества испускать при нагревании свободные электроны. Такие электроны, выходящие из нагретого тела, получили название термоэлектронов, а все тело целиком называется эмиттером.

Что представляет собой электрический ток в вакууме

Термоэлектронная эмиссия лежит в основе работы вакуумных приборов, более известных, как электронные лампы. В самой простейшей конструкции содержится два электрода. Один из них катод, представляет собой спираль, материалом которой служит молибден или вольфрам. Именно он накаливается электрическим током. Второй электрод называется анодом. Он находится в холодном состоянии, выполняя задачу по сбору термоэлектронов. Как правило, анод изготавливается в форме цилиндра, а внутри его размещается нагреваемый катод.

Где берутся свободные носители зарядов в вакууме? Вакуумный диод

Если в сосуде создан вакуум, то в нем все же есть немало молекул, некоторые из них могут быть и ионизированы. Но заря­женных частичек в таком сосуде для вы­явления заметного тока мало.

Как же получить в вакууме достаточное количество свободных носителей заряда? Если нагреть проводник, пропуская по нему электрический ток или другим способом (рис. 7.6), то часть свободных электронов в металле будут иметь достаточную энергию, чтобы выйти из металла (выполнить работу выхода).

Явление излучения электронов нака­ленными телами называется термоэлектрон­ной эмиссией.

Однако кинетическую энергию свобод­ных электронов в веществе можно увели­чить и с помощью света.

Излучение элект­ронов веществом под действием света назы­вается фотоэлектронной эмиссией, или внеш­ним фотоэффектом.

Рис. 7.6. Излучение электронов раска­ленным проводником

Природу и закономернос­ти внешнего фотоэффекта объяснил Альберт Эйнштейн, за что и получил Нобелевскую премию по физике 1921 г.

Рассмотрим подробнее явления, происхо­дящие в сосуде (баллоне), где имеется про­водник, который может быть накален с помощью электрического тока (рис. 7.6). В баллоне создан вакуум.

Поскольку при нагревании проводника из него излучаются электроны, то может возникнуть мысль, что электроны с тече­нием времени могут заполнить весь баллон. Тем не менее это не так. Будем называть этот проводник в баллоне катодом. Элект­роны, которые оставили накаленный катод, образуют вокруг него облачко. Это вызвано тем, что катод, утратив часть свободных электронов, заряжается положительно. Поло­жительно заряженный катод и удерживает возле себя облачко электронов.

Рис. 7.7. Если в баллон ввести поло­жительно заряженный анод, то в пепи появится электрический ток

Катод (гр.— опускание, движе­ние книзу): 1) Электрод прибора или ус­тройства, который соединяют с отрицательным полюсом ис­точника тока. 2) Отрицательный полюс источ­ника тока (гальванического эле­мента и т. п.). 3) Источник электронов в элект­ронно-вакуумных приборах. Материал с сайта https://worldofschool.ru

Рис. 7.8. Внутреннее строение вакуум­ного диода

Если теперь в баллон ввести еще один электрод (анод) и создать электрическое поле между анодом и катодом (рис. 7.7), то в баллоне возникнет электрический ток. В этом случае ток возможен, поскольку по­ложительно заряженный анод притягивает отрицательно заряженные электроны. Если же анод будет иметь отрицательный заряд, то электроны от него будут отталкиваться. Однако при небольших напряжениях наи­более быстрые электроны все же могут до­лететь до анода, и в цепи может наблюдать­ся небольшой ток. При увеличении напря­жения (если анод заряжен отрицательно) ток в цепи совсем прекратится.

Анод (гр.— путь вверх, восхож­дение): 1) Электрод электро- и радио­технических приборов, электро­литических ванн и других ус­тройств, соединяющихся с по­ложительным полюсом источ­ника электрического тока. 2) Положительный полюс источ­ника электрического тока.

Рассмотренный прибор называется ваку­умным диодом, строение одного из которых показано на рис. 7.8. Практически диод про­водит ток лишь в одном направлении — когда анод заряжен положительно. Поэтому его используют в основном для выпрям­ления переменных токов. Однако в наше время вакуумные диоды в выпрямителях повсеместно вытеснены полупроводниковы­ми диодами — более надежными, экономич­ными, долговечными.

Источник