Меню

Как изменяется напряжение генератора при увеличении тока нагрузки

Напряжение генератора автомобиля, норма на холостом ходу и под нагрузкой

Напряжение генератора автомобиля, норма на холостом ходу и под нагрузкой

Из статьи вы узнаете какое напряжение генератора считается нормой на холостом ходу и под нагрузкой, как влияет данный параметр на срок службы аккумуляторной батареи.

Важные моменты

Напряжение (U) и емкость АКБ автомобиля — главные параметры, на которые необходимо уделять внимание при выборе и проверке источника питания.

Главным назначением аккумулятора является пуск двигателя в период, когда генератор машины еще не подключился к работе, а АКБ является единственным источником питания.

Чтобы исключить проблемы в эксплуатации, автовладелец должен знать следующие моменты:

  • От чего зависит ресурс аккумуляторной батареи;
  • Каким должно быть напряжение (в обычном режиме, после пуска двигателя и под нагрузкой);
  • Чем вызвано снижение емкости в холодное время года и прочие моменты.

Рассмотрим эти вопросы подробно.

От чего зависит срок годности АКБ?

Каждый производитель после изготовления батареи устанавливает гарантийный срок ее эксплуатации.

Кроме этого параметра, существует и фактический период, зависящий от многих факторов — своевременности обслуживания, соблюдения правил эксплуатации, состояния электропроводки и прочих моментов.

Из-за того, что условия обслуживания АКБ отличаются, различается и срок годности изделия.

У автовладельцев, которые эксплуатируют машину только в теплое время года, аккумулятор живет дольше всего. Другое дело, когда автомобиль нужен круглый год, вне зависимости от температуры на улице.

В такой ситуации срок годности АКБ снижается. Это вызвано и тем, что во втором случае водитель может накатать больший километраж.

Также на ресурс аккумулятора влияет:

  • Исправность и правильность работы генератора и регулятора напряжения.
  • Подключение к электропроводке автомобиля дополнительного оборудования, имеющего большой номинальный ток.
  • Режим эксплуатации. Меньше всего «живут» аккумуляторные батареи на такси, которые прохаживают большой километраж в течение года. Кроме того, такие автомобили работают в режиме частого пуска двигателя, что создает нагрузку на АКБ и генератор. При активном применении транспортного средства срок службы источника питания не превышает 1,5 лет.

При обычном режиме эксплуатации, когда автовладелец регулярно проверяет аккумулятор и проводит ТО, ресурс батареи составляет 4-5 лет при общем пробеге за этот период в 60-80 тысяч километров.

Чтобы избежать проблем, желательно периодически проверять напряжение генератора и аккумулятора.

Но упомянутый срок службы не наивысший, ведь при аккуратном обслуживании АКБ может проработать до восьми лет.

Но стоит знать, что рано или поздно замена аккумулятора потребуется, ведь с момента начала эксплуатации рабочие пластины постепенно изнашиваются. Чем больше циклов заряда и разрядки проходит батарея, тем быстрее она выходит из строя.

Практика показывает, что ключевую роль играет генератор, его исправность и текущее напряжение. Вот почему этому аспекту необходимо уделять ключевое внимание.

Какое напряжение генератора считается нормой?

Чтобы проверить напряжение генератора, необходимо завести мотор и отключить всю нагрузку. В этом случае мультиметр должен показывать 14.3 -15,5 Вольт (смотрите видео в конце статьи). Допускается отклонение на 0,1 Вольта в одну и другую сторону.

После этого необходимо поочередно подключать потребителей и проверять напряжение генератора.

Источник

Как изменяется напряжение генератора при увеличении тока нагрузки

Работа машины в различных режимах и свойства самой машины определяются ее характеристиками.

Для снятия характеристик синхронного генератора собирают схему, представленную на рис. 278.

Рис. 278. Схема снятия характеристик синхронного генератора
Рис. 278. Схема снятия характеристик синхронного генератора

Рассмотрим характеристику холостого хода синхронного генератора. Она представляет зависимость индуктированной в статоре э.д.с. Е от тока возбуждения Iв при разомкнутой внешней цепи машины:

Генератор приводится во вращение с синхронной скоростью, соответствующей номинальной частоте генератора. Увеличивают при помощи реостата ток возбуждения, отмечая показания амперметра в цепи возбуждения. По показаниям вольтметра, включенного на зажимы обмотки статора, определяют величину индуктированной э.д.с. Е.

Характеристика холостого хода синхронного генератора показана на рис. 279. Прямолинейная часть характеристики указывает на пропорциональность между индуктированной э.д.с. и током возбуждения. В дальнейшем магнитная система генератора насыщается, кривая изгибается, т. е. при значительном увеличении тока возбуждения индуктированная э.д.с. растет очень медленно. Обычно нормальная работа машины имеет место за изгибом характеристики холостого хода.

Рис. 279. Характеристика холостого хода синхронного генератора
Рис. 279. Характеристика холостого хода синхронного генератора

Зависимость напряжения на зажимах генератора U от тока нагрузки I при постоянных (пост) значениях тока возбуждения Iв, коэффициента мощности cos φ и скорости вращения n дается внешней характеристикой:

при Iв = пост, cos φ = пост, n = nн = пост.

По показаниям амперметра и вольтметра, включенных в цепь обмотки статора, строят характеристику. На рис. 280 даны внешние характеристики генератора для различных видов нагрузки.

Рис. 280. Внешние характеристики синхронного генератора
Рис. 280. Внешние характеристики синхронного генератора

Напомним, что положительным углом φ принято считать угол φ в цепи, когда ток отстает по фазе от напряжения, и отрицательным, когда ток опережает по фазе напряжение.

Изменение напряжения U с нагрузкой происходит вследствие реакции якоря и падения напряжения в обмотке якоря (статора).

При индуктивной нагрузке реактивный ток размагничивает машину и при увеличении тока нагрузки напряжение уменьшается.

При емкостной нагрузке напряжение генератора с увеличением тока нагрузки повышается вследствие действия продольно-намагничивающей реакции якоря.

Регулировочная характеристика представляет зависимость тока возбуждения Iв от тока нагрузки I при постоянных значениях напряжения на зажимах генератора U, скорости вращения n и коэффициента мощности cos φ:

Регулировочные характеристики, представленные на рис. 281, показывают, как с изменением нагрузки необходимо менять ток возбуждения, чтобы компенсировать падение напряжения в обмотке якоря и действие реакции якоря.

Рис. 281. Регулировочные характеристики синхронного генератора
Рис. 281. Регулировочные характеристики синхронного генератора

В процессе эксплуатации нагрузка генератора изменяется в течение суток как по величине, так и по своему характеру. Так, например, если генератор установлен на местной заводской электростанции, то в обеденные перерывы нагрузка значительно снижается. В вечернее время включаются лампы электрического освещения, а некоторая часть электродвигателей обычно отключается. Следовательно, активная нагрузка увеличивается, а индуктивная уменьшается и cos φ изменяется.

При увеличении активной нагрузки необходимо соответственно увеличить подачу пара, воды или нефти в первичный двигатель, а с уменьшением нагрузки, наоборот, уменьшить. Если увеличилась индуктивная нагрузка синхронного генератора (cos φ уменьшился), то необходимо увеличить ток возбуждения.

Источник

РЕГУЛИРОВАНИЕ НАПРЯЖЕНИЯ ГЕНЕРАТОРОВ

Напряжение генераторов постоянного и переменного тока зависит от частоты вращения ротора, значения отдаваемого тока, магнит­ного потока возбуждения, сопротивления обмотки якоря (у гене­ратора постоянного тока) и полного сопротивления обмотки ста­тора (у генераторов переменного тока).

•Если учитывать (при грубом приближении) только основные фак­торы, то можно считать, что

Таким образом, для обеспечения постоянства напряжения гене­ратора при изменении частоты вращения ротора необходимо обратно пропорционально частоте изменять магнитный поток. Так как магнитный поток определяется силой тока возбуждения, регулирование напряжения осуществляется периодическим включе­нием в цепь возбуждения генератора и отключением из этой цепи добавочного резистора с постоянным сопротивлением. В настоя­щее время применяются вибрационные и полупроводниковые регу­ляторы напряжения.

Вибрационный регулятор напряжения. Вибрационный регулятор (рис. 18,а) имеет добавочный резистор Rд, который включается по­следовательно с обмоткой возбуждения ОВ. При замыкании контак­тов 4, один из которых неподвижен, а другой расположен на якорьке 3, добавочный резистор замкнут накоротко. Основная обмот­ка ОО регулятора, намотанная на сердечнике 5, включена на пол­ное напряжение генератора. Пружина 2 оттягивает якорек вверх, удерживая контакты в замкнутом состоянии. При этом обмотка возбуждения ОВ через контакты, якорек и ярмо 1 подключена, минуя добавочный резистор.

При неработающем генераторе в основной обмотке 00 регуля­тора тока нет и контакты под действием пружины замкнуты. С увеличением частоты вращения сила тока возбуждения генерато­ра и его напряжение растут. При этом увеличивается сила тока основной обмотки 00 регулятора и намагничивание сердечника. Пока напряжение генератора меньше установленной величины, силы магнитного притяжения якорька к сердечнику недостаточно для преодоления силы натяжения пружины и контакты регуля­тора остаются замкнутыми, а ток в обмотку возбуждения про­ходит, минуя добавочный резистор.

Читайте также:  Электромагнитный момент двигателя постоянного тока это

При дальнейшем увеличении напряжения генератора наступает такой момент, когда сила магнитного притяжения якорька к сердечнику преодолевает силу натяжения пружины и контакты регулятора размыкаются. Вследствие этого в цепь обмотки возбуж­дения включается добавочный резистор, и напряжение генератора резко падает.

Уменьшение напряжения приводит к уменьшению тока в обмотке регулятора напряжения и, следовательно, силы притяжения якорька к сердечнику. В результате контакты регулятора вновь замыкаются, а затем при увеличении напряжения генератора размыкаются.

Описанный процесс периодически повторяется. В результате этого возникают пульсации напряжения (рис. 18, б). Среднее значение напряжения Uср, измеряемое вольтметром, определяет регули­руемое напряжение генератора. С увеличением частоты враще­ния увеличивается время разомкнутого состояния tр и уменьшается время замкнутого состояния t3. Это приводит к уменьшению тока возбуждения IB (рис. 19).

Напряжение генератора, поддерживаемое регулятором, зависит от силы натяжения пружины. Изменением силы натяжения пружины осуществляется регулировка напряжения генераторной установки.

Уменьшение пульсаций напряжения происходит следующим обра­зом. Пульсации напряжения генератора зависят от частоты колебаний якорька регулятора. Чтобы пульсации напряжения не оказывали влияния на работу потребителей, якорек регулятора должен колебаться с частотой не менее 30 Гц. Кроме того, с увеличением частоты колебаний якорька уменьшается износ контактов.

Частоту колебаний повышают применением специальных уско­ряющих обмоток, которые наматывают на сердечник регулятора, или ускоряющих резисторов. Наиболее часто применяют схему вибрационного регулятора напряжения с ускоряющим резистором (рис. 20). Здесь основная обмотка 00 регулятора подключается к генератору через ускоряющий резистор Rу, который включен последовательно с резистором Rд. Резистор Rу также является добавочным в цепи обмотки возбуждения генератора. Таким обра­зом, напряжение на обмотке регулятора равно разности между напряжением генератора и падением напряжения в ускоряющем резисторе.

Ускоряющее действие резистора Rу заключается в следующем.При замкнутых контактах регулятора через ускоряющий резистор походит ток только обмотки регулятора, величина которого составляет доли ампера. Напряжение, приложенное к обмотке регулятора, почти равно напряжению генератора, так как падение напряжения в ускоряющем резисторе очень незначительно.

При размыкании контактов ток возбуждения генератора, который вследствие явления самоиндукции не может изменяться скачком, в первый момент сохраняет свою величину и направление. Ток возбуждения проходит по ускоряющему резистору, что приво­дит к резкому увеличению падения напряжения на нем и резкому уменьшению напряжения на обмотке регулятора. Скачкообразное уменьшение напряжения в ос­новной обмотке 00 регулятора в момент размыкания контактов резко уменьшает в ней ток, а следовательно, и силу притя­жения якоря регулятора к се­рдечнику. Благодаря этому кон­такты быстро замыкаются вновь. В результате частота колебаний якоря увеличива­ется до 150—250 Гц и, сле­довательно, уменьшается пуль­сация напряжения. При при­менении ускоряющих устройств возникает отрицательное явление, связанное с увеличением напряжения генератора при увеличении частоты вращения ротора. Возрастание напряжения с увеличением частоты вращения ротора предотвращается при помощи выравнивающих обмоток или выравнивающих резисторов.

Для стабилизации напряжения наибольшее распространение получили схемы с выравнивающими обмотками (рис. 21).

Выравнивающую обмотку ВО включают в цепь через контакты регулятора последовательно с обмоткой возбуждения ОВ генератора. Ее наматывают на сердечник таким образом, чтобы ее магнитный по­ток противодействовал магнитному потоку основной обмотки 00 ре­гулятора. Магнитный поток, создаваемый выравнивающей обмоткой, значительно меньше магнитного потока, создаваемого основной обмоткой регулятора.

При увеличении частоты вращения ротора в результате увеличе­ния времени разомкнутого состояния контактов уменьшается сила то­ка не только в основной, но и в выравнивающей обмотке. Поэ­тому уменьшение магнитного потока, создаваемого основной об­моткой, сопровождается таким же по величине уменьшением магнит­ного потока, создаваемого выравнивающей обмоткой, и результи­рующий магнитный поток почти не изменяется. В результате размыкание контактов регулятора происходит независимо от частоты вращения ротора при напряжении, установленном регулировкой.

Рабочая температура регулятора меняется в значительных преде­лах (от -50 до +125 °С). Сопротивление основной обмотки регулятора напряжения, выполняемой из меди, изменяется от тем­пературы (возрастает на 40% при нагреве обмотки на 100 °С). Поэ­тому при повышении температуры основной обмотки уменьшается ток в ней и, следовательно, магнитный поток. В результате регулятор начинает работать при напряжении, большем того, на которое он от­регулирован.

Температурная компенсация осуществляется следующим обра­зом.

Для уменьшения влияния температуры на работу вибрацион­ного регулятора последовательно основной обмотке регулятора, которую выполняют с меньшим сопротивлением, включают доба­вочный резистор из нихрома или константана. Сопротивление этих материалов практически не* меняется от температуры. В резуль­тате суммарное изменение сопротивления цепи основной обмотки регулятора от температуры в несколько раз уменьшится. Таким образом, возрастание регулируемого напряжения составит пример­но 10% при нагреве на 100 °С. В ряде регуляторов роль термокомпенсационного резистора выполняет ускоряющий резистор.

Для более полной термокомпенсации вместе с резистором применяют биметаллическую пластину, на которой подвешивают якорек регулятора. Биметаллическая пластина имеет два слоя. Материалы слоев обладают резко отличающимися коэффициентами теплового расширения.

Биметаллическую пластину приклепывают к якорьку и закреп­ляют на ярме регулятора. При этом слой материала с малым коэф­фициентом температурного расширения обращен к сердечнику. При повышении температуры пластина изгибается и создает усилие, направленное против усилия пружины, и таким образом способствует вступлению регулятора в работу при меньшем напря­жении. Таким образом и обеспечивается температурная компенсация.

Для термокомпенсации применяют также магнитные шунты. Маг­нитный шунт МШ (см. рис. 26) представляет собой пластину из железоникелевого или иного термомагнитного сплава с магнитным сопротивлением, увеличивающимся при повышении температуры. Пластина закреплена в верхней части регулятора между сердечником и ярмом параллельно якорьку.

При повышении температуры магнитное сопротивление шунта возрастает. При низких температурах магнитное сопротивление шунта мало, и часть магнитного потока сердечника, минуя якорек, замыкается через магнитный шунт. Таким образом компенсируется изменение магнитного потока, возникающее в резуль­тате изменения сопротивления основной обмотки регулятора от температуры. Применение магнитного шунта исключает необходи­мость в термокомпенсационном резисторе и биметаллической пла­стине.

Недостатки вибрационных регуляторов состоят в следующем. Вибрирующие контакты и пружины являются основным недо­статком вибрационных регуляторов, затрудняющим их настройку и повышающим чувствительность к вибрации. В результате изменения характеристик пружин вибрационные устройства подвер­жены разрегулировкам.

Обычный вибрационный регулятор напряжения может приме­няться с генераторами, у которых сила тока возбуждения не более 1,5—1,8 А. При больших значениях силы тока значительно сокра­щается срок службы контактов.

Особенно сказываются недостатки вибрационных регуляторов при работе с генераторными установками переменного тока, у которых сила тока возбуждения значительно больше, чем у гене­раторов постоянного тока. Чтобы получить возможность использо­вать вибрационный регулятор с мощными генераторами, применя­ют следующие способы. Часто используют не один, а два регуля­тора напряжения. Для этого обмотку возбуждения генератора раз­деляют на две одинаковые по своим параметрам и параллельно включенные ветви. Сила тока каждой ветви регулируется своим регулятором. При этом сила тока, разрываемого контактами, уменьшается вдвое.

Для уменьшения силы тока разрыва применяют также двухсту­пенчатое регулирование напряжения. Двухступенчатый регулятор напряжения имеет две пары контактов и добавочный резистор с меньшим сопротивлением. Подробно работа двухступенчатого регу­лятора рассмотрена на конкретном примере. Недостатки вибрационных регуляторов вызвали в последние годы применение с мощными генераторами полупроводниковых регуляторов напряже­ния.

Полупроводниковые регуляторы напряжения. В полупроводнико­вых регуляторах сила тока возбуждения регулируется при помощи транзисторов, эмиттерноколлекторная цепь которого включена по­следовательно с обмоткой возбуждения генератора.

Транзистор работает аналогично контактам вибрационного регу­лятора. При повышении напряжения генератора выше заданного уровня транзистор переключается в закрытое состояние (разомкну­тые контакты). При понижении уровня регулируемого напряжения транзистор переключается в открытое состояние (замкнутые кон­такты). В состоянии «открыт» сопротивление транзистора составляет доли ома, в состоянии «закрыт» — бесконечно большое значение. Полупроводниковые регуляторы напряжения могут выполняться контактно-транзисторными и бесконтактными.

Читайте также:  Заземление защитное средство от поражения электрическим током

Контактно-транзисторный регулятор (рис. 22) содержит в своей схеме вибрационное реле, управляющее транзистором Т.

Работает регулятор следующим образом. До момента достиже­ния генератором регулируемого значения напряжения Ur силы тока обмотки вибрационного реле недостаточно, чтобы контакты замкну­лись. При этом транзистор открыт, так как через него проте­кает ток базы по цепи: «плюс» генератора, переход эмиттер-база, резистор Rб, корпус генератора.

Через обмотку возбуждения ОВ в этом случае протекает полный ток возбуждения, и напряжение генератора возрастает с возрастанием частоты вращения ротора. Полное отпирание тран­зистора осуществляется подбором сопротивления резистора Rб.

При достижении напряжением генератора регулируемого значе­ния ток в основной обмотке OO реле достигает значения, при котором реле срабатывает. При замкнутых контактах потенциалы базы и эмиттера становятся равными, так как контакты шунтиру­ют переход эмиттер — база. Вследствие этого ток базы становится равным нулю, что приводит к запиранию транзистора.

В результате запирания транзистора ток возбуждения, под­держиваемый э.д.с. самоиндукции обмотки возбуждения, протекая через гасящий диод Дr, уменьшается. При этом уменьшается напряжение генератора Ur, контакты реле размыкаются, и тран­зистор открывается. Затем процесс повторяется.

Гасящий контур, выполняемый обычно в виде диода Дr, явля­ется обязательным элементом любого транзисторного регулятора. Если бы его не было, э.д.с. самоиндукции обмотки возбуждения, возникающая в момент закрытого состояния транзистора и достига­ющая несколько сотен вольт, могла бы вызвать пробой коллектор­ного перехода и отказ транзистора в работе.

В контактно-транзисторном регуляторе напряжения через контакты протекает незначительный ток, благодаря чему увеличива­ется срок их службы. Однако надежность работы регулятора по-прежнему определяется усталостной прочностью и возможной разрегулировкой пружины. Указанный недостаток исключен в бес­контактных схемах регулирования напряжения.

Бесконтактный регулятор напряжения (рис. 23) содержит тран­зистор T1, который выполняет функции контактов в контактно транзисторном регуляторе. Управление транзистором T1 осуществля­ется резисторами R1, R2 и стабилитроном Д1.

При напряжении генератора меньше регулируемого значения напряжение на резисторе R1, включенном параллельно стабилитро­ну Д1, меньше значения, соответствующего пробою стабилитрона. Стабилитрон при этом не проводит ток. следовательно, ток базы транзистора T1 равен нулю. Транзистор T1 при этом закрыт, что соответствует разомкнутому состоянию контактов, а транзистор Т2 открыт.

При достижении генератором уровня напряжения, соответ­ствующего регулируемому значению, напряжение на резисторе R1 повышается до значения, при котором стабилитрон пробивается, т. е. его сопротивление в обратном направлении резко уменьша­ется. В результате возникает ток базы транзистора T1, проте­кающий по цепи: «плюс» генератора, переход эмиттер — база тран­зистора T1, стабилитрон Д1, резистор R2, «минус» генератора. Транзистор T1 при этом открывается, что соответствует замкнутому состоянию контактов, транзистор Т2 запирается, а ток возбуждения и напряжение генератора уменьшаются. Вследствие этого напряже­ние на стабилитроне снижается ниже напряжения стабилизации, и он запирается, прерывая ток базы транзистора T1. Транзистор T1 запи­рается, а транзистор Т2 переключается в открытое состояние и т. д. Соотношение сопротивлений резисторов R1 и R2 определяет уровень регулируемого напряжения.

Схемы бесконтактных регуляторов, применяемых на практике, имеют ряд дополнительных элементов, улучшающих рабочие ха­рактеристики. Назначение дополнительных элементов рассмотрено на примерах схем конкретных регуляторов.

Источник



Регулировка напряжения и ограничение силы тока генератора

Карягин А. В. Соловьев Г. М.

Напряжение на щетках генератора зависит от числа оборотов якоря. Поэтому при большом числе оборотов коленчатого вала двигателя напряжение генератора может превысить расчетную величину, что вызовет перегорание ламп и тонких обмоток приборов, а также сильное увеличение зарядного тока аккумуляторной батареи. Постоянное напряжение генератора поддерживают электромагнитные регуляторы напряжения.

Кроме регулятора напряжения, необходим также ограничитель тока, так как даже при постоянном напряжении ток, отдаваемый генератором во внешнюю цепь, меняется в зависимости от сопротивления этой цепи. Чем больше включено потребителей (нагрузка генератора), тем меньше сопротивление этой цепи (цепь параллельная) и тем больше, следовательно, ток, отдаваемый генератором (ток нагрузки). При чрезмерном же токе сильно нагретые обмотки генератора могут быть повреждены.

Действие электромагнитных регуляторов и ограничителей основано на уменьшении магнитного потока обмотки возбуждения, в котором вращается якорь генератора. Поэтому уменьшать магнитный поток необходимо в момент превышения якорем генератора оборотов, при которых генератор дает нормальное напряжение, или когда ток во внешней цепи станет больше расчетной величины. Уменьшение магнитного потока достигается автоматическим включением в цепь обмотки возбуждения добавочного сопротивления.

Значительно реже применяются генераторы, у которых зарядный ток регулируется третьей добавочной щеткой. Сравнительно постоянное напряжение поддерживается благодаря параллельной работе генератора и аккумуляторной батареи.

Регулятор напряжения – это электромагнитный прибор, состоящий из ярма с сердечником 8 (рис. 1) и обмоткой 7, включенной параллельно якорю Я генератора. Добавочное сопротивление 2 включено параллельно замкнутым контактам 3 и 4; при размыкании контактов сопротивление вводится в цепь обмотки возбуждения Ш (шунт).

Рисунок 1 – Схема регулятора напряжения

На рисунке 1 приведена схема регулятора напряжения:

  1. Провод;
  2. Добавочное сопротивление;
  3. Неподвижный контакт;
  4. Подвижный контакт;
  5. Якорек;
  6. Пружина;
  7. Обмотка регулятора;
  8. Ярмо с сердечником;
  9. Провод;
  10. Ш – шунт;
  11. Я – якорь генератора.

При замкнутых контактах 3 и 4 регулятора напряжения ток проходит по следующим проводникам:

а) через обмотку регулятора: положительная щетка – масса – обмотка 7 – провод 1 – отрицательная щетка;

б) через обмотку возбуждения генератора: положительная щетка — обмотка возбуждения Ш – провод 9 – ярмо 8 – контакты 4 и 3 – провод 1 – отрицательная щетка (путь тока показан на схеме стрелками).

Когда напряжение генератора повысится до расчетного предела, сердечник ярма 8, намагничиваемый током, проходящим по обмотке 7, притянет к себе якорек 5 и контакты 3 и 4 разомкнутся. При этом в цепь обмотки возбуждения включится сопротивление 2; поэтому напряжение генератора резко упадет, что повлечет уменьшение тока в обмотке 7 и ее магнитного потока, а следовательно, и снижение намагниченности сердечника. Контакты под действием пружины 6 снова соединятся и замкнут накоротко сопротивление 2, пока напряжение генератора опять не возрастет, и т. д. Контакты 3 и 4 размыкаются и замыкаются настолько быстро, что напряжение на щетках генератора практически остается постоянным при изменении числа оборотов якоря в широких пределах.

Ограничитель тока не позволяет току генератора превышать расчетную величину и работает по тому же принципу, что и регулятор напряжения, но отличается от него включением обмотки электромагнита. Обмотка 3, состоящая из небольшого числа витков толстой проволоки (рис. 2), включена последовательно между генератором и потребителями 1.

При замкнутых контактах 6 и 7 ограничителя тока и включенных потребителях пути тока будут следующие:

а) через обмотку ограничителя: положительная щетка – потребители 1 – провод 2 – обмотка 3 – ярмо 9 – отрицательная щетка;

б) через обмотку возбуждения генератора: положительная щетка – обмотка возбуждения Ш – провод 8 – контакты 7 и 6 – якорек 5 – ярмо 9 – отрицательная щетка (путь тока указан на схеме стрелками).

При достижении током расчетной силы во внешней цепи, а значит и в обмотке 3, контакты 6 и 7 размыкаются и в цепь обмотки возбуждения включается добавочное сопротивление 10. Вследствие уменьшения тока в обмотке возбуждения напряжение генератора, а следовательно, и ток, отдаваемый генератором во внешнюю цепь, снизятся, контакты снова замкнутся под действием пружины 4 и замкнут накоротко сопротивление; процесс протекает так же, как при работе регулятора напряжения.

При отключении потребителей (кроме аккумуляторной батареи) ограничитель тока поддерживает постоянную величину зарядного тока независимо от увеличения числа оборотов коленчатого вала двигателя; при включении же различных потребителей зарядный ток будет уменьшаться в зависимости от сопротивления внешней цепи (нагрузки). При этом, если ток внешней цепи превышает максимально допускаемый ограничителем, то, кроме тока генератора, во внешнюю цепь пойдет ток из аккумуляторной батареи, т.е. батарея будет разряжаться.

Читайте также:  Чем обезопасить себя при ударе током

Ограничители тока и регуляторы напряжения работают не одновременно. Пока ток, отдаваемый генератором, не достигает допускаемой максимальной величины, работает только регулятор напряжения. Когда ток генератора достигает предельной величины, ограничитель тока включает добавочное сопротивление, а регулятор напряжения перестает работать.

Генераторы с третьей щеткой устанавливались на автомобилях «Москвич» (до 1953 г.), ГАЗ-ММ, ЗИС-5М. Схема генератора с третьей щеткой показана на рис. 3. Генератор, выполненный по этой схеме, имеет, кроме двух главных щеток (положительной 4 и отрицательной 3), третью (добавочную) щетку 1. К этой щетке присоединена одним концом обмотка 2 возбуждения. Вторым концом эта обмотка соединена с главной щеткой 4. При таком включении обмотки возбуждения ток ее зависит только от величины ЭДС, возникающей в витках обмотки, расположенных между главной 4 и третьей 1 щетками.

Схема ограничителя тока

Рисунок 2 – Схема ограничителя тока

На рисунке 2 приведена схема ограничителя тока:

  1. Лампа накаливания (потребители);
  2. Провод;
  3. Обмотка ограничителя;
  4. Пружина;
  5. Якорек;
  6. Подвижный контакт;
  7. Неподвижный контакт;
  8. Провод;
  9. Ярмо с сердечником;
  10. Добавочное сопротивление;
  11. Ш – шунт;
  12. Я – якорь генератора.

При замкнутых контактах 6 и 7 ограничителя тока и включенных потребителях пути тока будут следующие:

а) через обмотку ограничителя: положительная щетка – потребители 1 – провод 2 – обмотка 3 – ярмо 9 – отрицательная щетка;

б) через обмотку возбуждения генератора: положительная щетка – обмотка возбуждения Ш – провод 8 – контакты 7 и 6 – якорек 5 – ярмо 9 – отрицательная щетка (путь тока указан на схеме стрелками).

При достижении током расчетной силы во внешней цепи, а значит и в обмотке 3, контакты 6 и 7 размыкаются и в цепь обмотки возбуждения включается добавочное сопротивление 10. Вследствие уменьшения тока в обмотке возбуждения напряжение генератора, а следовательно, и ток, отдаваемый генератором во внешнюю цепь, снизятся, контакты снова замкнутся под действием пружины 4 и замкнут накоротко сопротивление; процесс протекает так же, как при работе регулятора напряжения.

При отключении потребителей (кроме аккумуляторной батареи) ограничитель тока поддерживает постоянную величину зарядного тока независимо от увеличения числа оборотов коленчатого вала двигателя; при включении же различных потребителей зарядный ток будет уменьшаться в зависимости от сопротивления внешней цепи (нагрузки). При этом, если ток внешней цепи превышает максимально допускаемый ограничителем, то, кроме тока генератора, во внешнюю цепь пойдет ток из аккумуляторной батареи, т.е. батарея будет разряжаться.

Ограничители тока и регуляторы напряжения работают не одновременно. Пока ток, отдаваемый генератором, не достигает допускаемой максимальной величины, работает только регулятор напряжения. Когда ток генератора достигает предельной величины, ограничитель тока включает добавочное сопротивление, а регулятор напряжения перестает работать.

Генераторы с третьей щеткой устанавливались на автомобилях «Москвич» (до 1953 г.), ГАЗ-ММ, ЗИС-5М. Схема генератора с третьей щеткой показана на рис. 3. Генератор, выполненный по этой схеме, имеет, кроме двух главных щеток (положительной 4 и отрицательной 3), третью (добавочную) щетку 1. К этой щетке присоединена одним концом обмотка 2 возбуждения. Вторым концом эта обмотка соединена с главной щеткой 4. При таком включении обмотки возбуждения ток ее зависит только от величины ЭДС, возникающей в витках обмотки, расположенных между главной 4 и третьей 1 щетками.

Схема генератора с третьей щеткой

Рисунок 3 – Схема генератора с третьей щеткой

На рисунке 3 приведена схема генератора с третьей щеткой:

  1. Третья (добавочная) щетка;
  2. Обмотка возбуждения;
  3. Отрицательная щетка;
  4. Положительная щетка.

Автоматическое ограничение тока в трехщеточных генераторах основано на взаимодействии магнитных потоков, создаваемых током обмотки возбуждения и током якоря при нагрузке генератора.

Пока генератор не работает или работает вхолостую, когда ЭДС генератора равна электродвижущей силе аккумуляторной батареи, имеется только один магнитный поток, создаваемый током обмотки возбуждения (строго говоря, при работе вхолостую вокруг обмотки якоря возникает слабое магнитное поле, поскольку к щеткам присоединена обмотка возбуждения).

При работе же генератора под нагрузкой возникает второй магнитный поток обмотки якоря. В местах, где магнитные силовые линии потоков идут в одном направлении, магнитный поток обмотки возбуждения усиливается, а в местах, где они идут в противоположных направлениях, ослабляется; при этом происходит искажение магнитного потока, т.е. смещение магнитных силовых линии по направлению вращения якоря (рис. 3).

С повышением числа оборотов якоря напряжение на главных щетках (3 и 4) генератора стремится возрасти. Но как только напряжение генератора превысит ЭДС аккумуляторной батареи, ток генератора резко возрастает. Вследствие же увеличения тока якоря произойдет дальнейшее смещение магнитного потока Поэтому количество силовых линий, пересекаемых обмоткой якоря на участке между положительной щеткой 4 и третьей щеткой 1, уменьшится. Напряжение между этими щетками упадет, что вызовет уменьшение тока в обмотке возбуждения, а следовательно, и величины магнитного потока, в котором вращается якорь. Отсюда напряжение на главных щетках генератора почти не изменится, несмотря на увеличение числа оборотов якоря генератора.

Третья щетка регулирует напряжение только при соединении генератора с аккумуляторной батареей, служащей «буфером», выравнивающим напряжение на щетках генератора.

Благодаря малой величине сопротивления цепи генератор – батарея напряжение генератора мало отличается от ЭДС батареи. При возрастании же сопротивления в цепи генератор – батарея (окисление зажимав штырей или ослабление крепления проводов, сульфатация пластин батареи и др.), а тем более при разрыве этой цепи напряжение генератора резко увеличивается.

При работе генератора без батареи напряжение его, рассчитанное на рабочее напряжение 6 в, даже при средних оборотах возрастает с 7,0-7,5 в до 30-40 в, что приводит к перегоранию нитей включенных ламп и тонких обмоток приборов, находящихся под током, а также к сильному нагреву обмотки возбуждения.

Кроме автоматического регулирования тока в обмотке возбуждения и зависящего от него напряжения генератора, третья щетка позволяет изменять зарядный ток генератора при данном числе оборотов якоря.

Если передвинуть (вручную) третью щетку в направлении вращения якоря, зарядный ток возрастет; при смещении третьей щетки против направления вращения якоря зарядный ток уменьшится.

Это объясняется тем, что изменяется количество силовых линий, пересекаемых витками обмотки якоря, находящимся между главной и третьей щетками.

К положительным качествам генераторов с электромагнитными регуляторами напряжения и ограничителями тока относятся:

1) сохранение постоянства напряжения при всех режимах работы двигателя;

2) автоматическая регулировка зарядного тока в зависимости от состояния аккумуляторной батареи (чем больше напряжение на зажимах батареи, тем меньше зарядный ток), что способствует увеличению срока службы батареи;

3) возможность использования генератора без аккумуляторной батареи даже при средних и больших оборотах коленчатого вала двигателя.

Недостатки этих генераторов – сложное устройство регуляторов напряжения и ограничителей тока, трудность их регулировки.

Трехщеточные генераторы отличаются простым устройством, позволяют регулировать зарядный ток простым смещением третьей щетки. Однако они имеют крупные недостатки:

1) неустойчивость напряжения при изменении степени зараженности и внутреннего сопротивления аккумуляторной батареи; при этом, чем больше напряжение на зажимах батареи, тем выше напряжение на щетках генератора, а также и зарядный ток; для предохранения же батареи от перезарядки требуется при данном условии не увеличивать, а уменьшать зарядный ток;

2) невозможно использовать генератор без аккумуляторной батареи вследствие резкого повышения напряжения генератора;

3) резкое колебание зарядного тока в зависимости от мощности включенных потребителей.

Источник

Как изменяется напряжение генератора при увеличении тока нагрузки

Э. д. с. и напряжение генератора

При вращении якоря в каждомпроводнике его обмотки индуктируется э. д. с.

где В — индукция в воздушном зазоре машины;

lя и uя — активная длина проводника и скорость его перемещения в магнитном поле.

Э. д. с. генератора Е равна сумме э. д. с. e индуктируемых во всех проводниках, входящих в параллельную ветвь обмотки якоря,

где N— число проводников обмотки якоря.

Произведение для каждой данной машины представляет собой некоторую постоянную величину и может быть обозначено cE.

Следовательно, э. д. с. Е в каждой данной машине зависит только от частоты вращения якоря n и магнитного потока Ф. Регулировать ее можно двумя способами:

1) изменением магнитного потока Ф; для этого требуется изменить ток Iв в обмотке возбуждения;

2) изменением частоты вращения n.

U = E — Iя rя

где Iя rя — падение напряжения во всех обмотках, включеннях последовательно в цепь якоря (обмотках якоря, добавочных полюсов, компенсационной и последовательного возбуждения);

rя— суммарное сопротивление этих обмоток.

Следовательно, для регулирования напряжения генератора надо регулировать его э. д. с. указанными двумя способами. Оба способа используют в тепловозах для регулирования напряжения тягових генераторов. Генераторы, применяемые для питания цепей управления локомотивов, для зарядки аккумуляторных батарей и пр., работают обычно при постоянной частоте вращения п. Поэтому регулирование их напряжения осуществляется путем изменения тока

Ток нагрузки и электромагнитный тормозной момент генератора. В генераторах постоянного тока нагрузка (приемник электрической энергии) включается в цепь обмотки якоря. Поэтому ток нагрузки

Iн = U/rн = (Е — Iя rя)/rн

Следовательно, регулировать ток нагрузки генератора можно двумя способами:

1) изменением сопротивления га приемника;

2) изменением напряжения U генератора, т. е. его э. д. с. Е.

На каждый проводник обмотки якоря, находящийся в магнитном поле, действует электромагнитная сила

Совместное действие электромагнитных сил f всех N проводников якоря создает электромагнитный момент:

М = [pN/(2πa)] ФIя.

Произведение [pN/(2πa)]для каждой данной машины представляет собой постоянную величину и может быть об означено сM. Поэтому

Очевидно, что при увеличении тока генератора IяIн увеличивается и электромагнитный тормозной момент М, что требует соответствующего увеличения внешнего момента Мвн первичного двигателя (дизеля), приводящего генератор во вращение.

О свойствах генераторов постоянного тока судят по их характаристикам: холостого хода, внешней и регулировочной. Ниже будут рассмотрены эти характеристики для генераторов различного типа.

Характеристики генераторов. Генератор с независимым возбуждением. Характерной особенностью генератора с независимым возбуждением (рис. 120) является то, что его ток возбуждения Iв не зависит от тока якоря Iя, а определяется только напряжением UB, подаваемым на обмотку возбуждения, и сопротивлением rв цепи возбуждения. Обычно ток возбуждения невелик и составляет 2—5% номинального тока якоря. Для регулирования напряжения генератора в цепь обмотки возбуждения часто включают регулировочный реостат rрв. На тепловозах ток Iв регулируют путем изменения напряжения UB.

Характеристика холостого хода генератора (рис. 121, а) — зависимость напряжения U при холостом ходе от тока возбуждения Iв при отсутствии нагрузки rн, т. е. при Iн = Iя = 0 и при постоянной частоте вращения п. При холостом ходе, когда цепь нагрузки разомкнута, напряжениетенератора U равно его э. д. с. Е = сЕФп. Так как при снятии характеристики холостого хода частота вращения п поддерживается неизменной, то напряжение U зависит только от магнитного потока Ф. Поэтому характеристика холостого хода будет подобна зависимости потока Ф от тока возбуждения Iя (магнитной характеристике магнитной цепи генератора). Характеристику холостого хода легко снять экспериментально, постепенно увеличивая ток возбуждения от нуля до значения, при котором U ≈ 1,25 Uном, а затем уменьшая ток возбуждения до нуля. При этом получаются восходящая 1 и нисходящая 2 ветви характеристики. Расхождение этих вервей объясняется наличием гистерезиса в магнитопроводе машины. При Iв = 0 в обмотке якоря потоком остаточного магнетизма индуктируется остаточная э. д. с. Еост, которая обычно составляет 2—4% номинальногонапряжения Uном.

При малых токах возбуждения магнитный поток машины невелик, поэтому в этой области поток и напряжение U изменяются прямопропорционально току возбуждения и начальная часть этой характеристики представляет собой прямую. При увеличении тока возбуждения магнитная цепь генератора насыщается и нарастание напряжения U замедляется. Чем больше становится ток возбуждения, тем сильнее сказывается насыщение магнитной цепи машины и тем медленнее возрастает напряжение U. При очень больших токах возбуждения напряжение U практически перестает возрастать.

Характеристика холостого хода позволяет судить о значении возможного напряжения и о магнитных свойствах машины. Номинальное напряжение (указанное в паспорте) для машин общего применения соответствует насыщенной части характеристики («колену» этой кривой). В тепловозных генераторах, требующих регулирования напряжения в широких пределах, используют как криволинейную, так и прямолинейную ненасыщенную часть характеристики.

Э. д. с. машины изменяется пропорционально частоте вращения п, поэтому при п2

Источник



РЕГУЛИРОВАНИЕ НАПРЯЖЕНИЯ ГЕНЕРАТОРОВ

Напряжение генераторов постоянного и переменного тока зависит от частоты вращения ротора, значения отдаваемого тока, магнит­ного потока возбуждения, сопротивления обмотки якоря (у гене­ратора постоянного тока) и полного сопротивления обмотки ста­тора (у генераторов переменного тока).

•Если учитывать (при грубом приближении) только основные фак­торы, то можно считать, что

Таким образом, для обеспечения постоянства напряжения гене­ратора при изменении частоты вращения ротора необходимо обратно пропорционально частоте изменять магнитный поток. Так как магнитный поток определяется силой тока возбуждения, регулирование напряжения осуществляется периодическим включе­нием в цепь возбуждения генератора и отключением из этой цепи добавочного резистора с постоянным сопротивлением. В настоя­щее время применяются вибрационные и полупроводниковые регу­ляторы напряжения.

Вибрационный регулятор напряжения. Вибрационный регулятор (рис. 18,а) имеет добавочный резистор Rд, который включается по­следовательно с обмоткой возбуждения ОВ. При замыкании контак­тов 4, один из которых неподвижен, а другой расположен на якорьке 3, добавочный резистор замкнут накоротко. Основная обмот­ка ОО регулятора, намотанная на сердечнике 5, включена на пол­ное напряжение генератора. Пружина 2 оттягивает якорек вверх, удерживая контакты в замкнутом состоянии. При этом обмотка возбуждения ОВ через контакты, якорек и ярмо 1 подключена, минуя добавочный резистор.

Читайте также:  Электромагнитный момент двигателя постоянного тока это

При неработающем генераторе в основной обмотке 00 регуля­тора тока нет и контакты под действием пружины замкнуты. С увеличением частоты вращения сила тока возбуждения генерато­ра и его напряжение растут. При этом увеличивается сила тока основной обмотки 00 регулятора и намагничивание сердечника. Пока напряжение генератора меньше установленной величины, силы магнитного притяжения якорька к сердечнику недостаточно для преодоления силы натяжения пружины и контакты регуля­тора остаются замкнутыми, а ток в обмотку возбуждения про­ходит, минуя добавочный резистор.

При дальнейшем увеличении напряжения генератора наступает такой момент, когда сила магнитного притяжения якорька к сердечнику преодолевает силу натяжения пружины и контакты регулятора размыкаются. Вследствие этого в цепь обмотки возбуж­дения включается добавочный резистор, и напряжение генератора резко падает.

Уменьшение напряжения приводит к уменьшению тока в обмотке регулятора напряжения и, следовательно, силы притяжения якорька к сердечнику. В результате контакты регулятора вновь замыкаются, а затем при увеличении напряжения генератора размыкаются.

Описанный процесс периодически повторяется. В результате этого возникают пульсации напряжения (рис. 18, б). Среднее значение напряжения Uср, измеряемое вольтметром, определяет регули­руемое напряжение генератора. С увеличением частоты враще­ния увеличивается время разомкнутого состояния tр и уменьшается время замкнутого состояния t3. Это приводит к уменьшению тока возбуждения IB (рис. 19).

Напряжение генератора, поддерживаемое регулятором, зависит от силы натяжения пружины. Изменением силы натяжения пружины осуществляется регулировка напряжения генераторной установки.

Уменьшение пульсаций напряжения происходит следующим обра­зом. Пульсации напряжения генератора зависят от частоты колебаний якорька регулятора. Чтобы пульсации напряжения не оказывали влияния на работу потребителей, якорек регулятора должен колебаться с частотой не менее 30 Гц. Кроме того, с увеличением частоты колебаний якорька уменьшается износ контактов.

Частоту колебаний повышают применением специальных уско­ряющих обмоток, которые наматывают на сердечник регулятора, или ускоряющих резисторов. Наиболее часто применяют схему вибрационного регулятора напряжения с ускоряющим резистором (рис. 20). Здесь основная обмотка 00 регулятора подключается к генератору через ускоряющий резистор Rу, который включен последовательно с резистором Rд. Резистор Rу также является добавочным в цепи обмотки возбуждения генератора. Таким обра­зом, напряжение на обмотке регулятора равно разности между напряжением генератора и падением напряжения в ускоряющем резисторе.

Ускоряющее действие резистора Rу заключается в следующем.При замкнутых контактах регулятора через ускоряющий резистор походит ток только обмотки регулятора, величина которого составляет доли ампера. Напряжение, приложенное к обмотке регулятора, почти равно напряжению генератора, так как падение напряжения в ускоряющем резисторе очень незначительно.

При размыкании контактов ток возбуждения генератора, который вследствие явления самоиндукции не может изменяться скачком, в первый момент сохраняет свою величину и направление. Ток возбуждения проходит по ускоряющему резистору, что приво­дит к резкому увеличению падения напряжения на нем и резкому уменьшению напряжения на обмотке регулятора. Скачкообразное уменьшение напряжения в ос­новной обмотке 00 регулятора в момент размыкания контактов резко уменьшает в ней ток, а следовательно, и силу притя­жения якоря регулятора к се­рдечнику. Благодаря этому кон­такты быстро замыкаются вновь. В результате частота колебаний якоря увеличива­ется до 150—250 Гц и, сле­довательно, уменьшается пуль­сация напряжения. При при­менении ускоряющих устройств возникает отрицательное явление, связанное с увеличением напряжения генератора при увеличении частоты вращения ротора. Возрастание напряжения с увеличением частоты вращения ротора предотвращается при помощи выравнивающих обмоток или выравнивающих резисторов.

Для стабилизации напряжения наибольшее распространение получили схемы с выравнивающими обмотками (рис. 21).

Выравнивающую обмотку ВО включают в цепь через контакты регулятора последовательно с обмоткой возбуждения ОВ генератора. Ее наматывают на сердечник таким образом, чтобы ее магнитный по­ток противодействовал магнитному потоку основной обмотки 00 ре­гулятора. Магнитный поток, создаваемый выравнивающей обмоткой, значительно меньше магнитного потока, создаваемого основной обмоткой регулятора.

При увеличении частоты вращения ротора в результате увеличе­ния времени разомкнутого состояния контактов уменьшается сила то­ка не только в основной, но и в выравнивающей обмотке. Поэ­тому уменьшение магнитного потока, создаваемого основной об­моткой, сопровождается таким же по величине уменьшением магнит­ного потока, создаваемого выравнивающей обмоткой, и результи­рующий магнитный поток почти не изменяется. В результате размыкание контактов регулятора происходит независимо от частоты вращения ротора при напряжении, установленном регулировкой.

Рабочая температура регулятора меняется в значительных преде­лах (от -50 до +125 °С). Сопротивление основной обмотки регулятора напряжения, выполняемой из меди, изменяется от тем­пературы (возрастает на 40% при нагреве обмотки на 100 °С). Поэ­тому при повышении температуры основной обмотки уменьшается ток в ней и, следовательно, магнитный поток. В результате регулятор начинает работать при напряжении, большем того, на которое он от­регулирован.

Температурная компенсация осуществляется следующим обра­зом.

Для уменьшения влияния температуры на работу вибрацион­ного регулятора последовательно основной обмотке регулятора, которую выполняют с меньшим сопротивлением, включают доба­вочный резистор из нихрома или константана. Сопротивление этих материалов практически не* меняется от температуры. В резуль­тате суммарное изменение сопротивления цепи основной обмотки регулятора от температуры в несколько раз уменьшится. Таким образом, возрастание регулируемого напряжения составит пример­но 10% при нагреве на 100 °С. В ряде регуляторов роль термокомпенсационного резистора выполняет ускоряющий резистор.

Для более полной термокомпенсации вместе с резистором применяют биметаллическую пластину, на которой подвешивают якорек регулятора. Биметаллическая пластина имеет два слоя. Материалы слоев обладают резко отличающимися коэффициентами теплового расширения.

Биметаллическую пластину приклепывают к якорьку и закреп­ляют на ярме регулятора. При этом слой материала с малым коэф­фициентом температурного расширения обращен к сердечнику. При повышении температуры пластина изгибается и создает усилие, направленное против усилия пружины, и таким образом способствует вступлению регулятора в работу при меньшем напря­жении. Таким образом и обеспечивается температурная компенсация.

Читайте также:  Трансформатор тока 10кв для кабеля

Для термокомпенсации применяют также магнитные шунты. Маг­нитный шунт МШ (см. рис. 26) представляет собой пластину из железоникелевого или иного термомагнитного сплава с магнитным сопротивлением, увеличивающимся при повышении температуры. Пластина закреплена в верхней части регулятора между сердечником и ярмом параллельно якорьку.

При повышении температуры магнитное сопротивление шунта возрастает. При низких температурах магнитное сопротивление шунта мало, и часть магнитного потока сердечника, минуя якорек, замыкается через магнитный шунт. Таким образом компенсируется изменение магнитного потока, возникающее в резуль­тате изменения сопротивления основной обмотки регулятора от температуры. Применение магнитного шунта исключает необходи­мость в термокомпенсационном резисторе и биметаллической пла­стине.

Недостатки вибрационных регуляторов состоят в следующем. Вибрирующие контакты и пружины являются основным недо­статком вибрационных регуляторов, затрудняющим их настройку и повышающим чувствительность к вибрации. В результате изменения характеристик пружин вибрационные устройства подвер­жены разрегулировкам.

Обычный вибрационный регулятор напряжения может приме­няться с генераторами, у которых сила тока возбуждения не более 1,5—1,8 А. При больших значениях силы тока значительно сокра­щается срок службы контактов.

Особенно сказываются недостатки вибрационных регуляторов при работе с генераторными установками переменного тока, у которых сила тока возбуждения значительно больше, чем у гене­раторов постоянного тока. Чтобы получить возможность использо­вать вибрационный регулятор с мощными генераторами, применя­ют следующие способы. Часто используют не один, а два регуля­тора напряжения. Для этого обмотку возбуждения генератора раз­деляют на две одинаковые по своим параметрам и параллельно включенные ветви. Сила тока каждой ветви регулируется своим регулятором. При этом сила тока, разрываемого контактами, уменьшается вдвое.

Для уменьшения силы тока разрыва применяют также двухсту­пенчатое регулирование напряжения. Двухступенчатый регулятор напряжения имеет две пары контактов и добавочный резистор с меньшим сопротивлением. Подробно работа двухступенчатого регу­лятора рассмотрена на конкретном примере. Недостатки вибрационных регуляторов вызвали в последние годы применение с мощными генераторами полупроводниковых регуляторов напряже­ния.

Полупроводниковые регуляторы напряжения. В полупроводнико­вых регуляторах сила тока возбуждения регулируется при помощи транзисторов, эмиттерноколлекторная цепь которого включена по­следовательно с обмоткой возбуждения генератора.

Транзистор работает аналогично контактам вибрационного регу­лятора. При повышении напряжения генератора выше заданного уровня транзистор переключается в закрытое состояние (разомкну­тые контакты). При понижении уровня регулируемого напряжения транзистор переключается в открытое состояние (замкнутые кон­такты). В состоянии «открыт» сопротивление транзистора составляет доли ома, в состоянии «закрыт» — бесконечно большое значение. Полупроводниковые регуляторы напряжения могут выполняться контактно-транзисторными и бесконтактными.

Контактно-транзисторный регулятор (рис. 22) содержит в своей схеме вибрационное реле, управляющее транзистором Т.

Работает регулятор следующим образом. До момента достиже­ния генератором регулируемого значения напряжения Ur силы тока обмотки вибрационного реле недостаточно, чтобы контакты замкну­лись. При этом транзистор открыт, так как через него проте­кает ток базы по цепи: «плюс» генератора, переход эмиттер-база, резистор Rб, корпус генератора.

Через обмотку возбуждения ОВ в этом случае протекает полный ток возбуждения, и напряжение генератора возрастает с возрастанием частоты вращения ротора. Полное отпирание тран­зистора осуществляется подбором сопротивления резистора Rб.

При достижении напряжением генератора регулируемого значе­ния ток в основной обмотке OO реле достигает значения, при котором реле срабатывает. При замкнутых контактах потенциалы базы и эмиттера становятся равными, так как контакты шунтиру­ют переход эмиттер — база. Вследствие этого ток базы становится равным нулю, что приводит к запиранию транзистора.

В результате запирания транзистора ток возбуждения, под­держиваемый э.д.с. самоиндукции обмотки возбуждения, протекая через гасящий диод Дr, уменьшается. При этом уменьшается напряжение генератора Ur, контакты реле размыкаются, и тран­зистор открывается. Затем процесс повторяется.

Гасящий контур, выполняемый обычно в виде диода Дr, явля­ется обязательным элементом любого транзисторного регулятора. Если бы его не было, э.д.с. самоиндукции обмотки возбуждения, возникающая в момент закрытого состояния транзистора и достига­ющая несколько сотен вольт, могла бы вызвать пробой коллектор­ного перехода и отказ транзистора в работе.

В контактно-транзисторном регуляторе напряжения через контакты протекает незначительный ток, благодаря чему увеличива­ется срок их службы. Однако надежность работы регулятора по-прежнему определяется усталостной прочностью и возможной разрегулировкой пружины. Указанный недостаток исключен в бес­контактных схемах регулирования напряжения.

Бесконтактный регулятор напряжения (рис. 23) содержит тран­зистор T1, который выполняет функции контактов в контактно транзисторном регуляторе. Управление транзистором T1 осуществля­ется резисторами R1, R2 и стабилитроном Д1.

При напряжении генератора меньше регулируемого значения напряжение на резисторе R1, включенном параллельно стабилитро­ну Д1, меньше значения, соответствующего пробою стабилитрона. Стабилитрон при этом не проводит ток. следовательно, ток базы транзистора T1 равен нулю. Транзистор T1 при этом закрыт, что соответствует разомкнутому состоянию контактов, а транзистор Т2 открыт.

При достижении генератором уровня напряжения, соответ­ствующего регулируемому значению, напряжение на резисторе R1 повышается до значения, при котором стабилитрон пробивается, т. е. его сопротивление в обратном направлении резко уменьша­ется. В результате возникает ток базы транзистора T1, проте­кающий по цепи: «плюс» генератора, переход эмиттер — база тран­зистора T1, стабилитрон Д1, резистор R2, «минус» генератора. Транзистор T1 при этом открывается, что соответствует замкнутому состоянию контактов, транзистор Т2 запирается, а ток возбуждения и напряжение генератора уменьшаются. Вследствие этого напряже­ние на стабилитроне снижается ниже напряжения стабилизации, и он запирается, прерывая ток базы транзистора T1. Транзистор T1 запи­рается, а транзистор Т2 переключается в открытое состояние и т. д. Соотношение сопротивлений резисторов R1 и R2 определяет уровень регулируемого напряжения.

Схемы бесконтактных регуляторов, применяемых на практике, имеют ряд дополнительных элементов, улучшающих рабочие ха­рактеристики. Назначение дополнительных элементов рассмотрено на примерах схем конкретных регуляторов.

Читайте также:  Тест по теме энергия магнитного поля тока

Источник

Регулирование частоты и напряжения асинхронного генератора.Регулирование изменений

Общие проблемы регулирования асинхронного генератора

При оценке общих показателей автономного асинхронного генератора необходимо учитывать существенное изменения напряжения такие эксплуатационные факторы, как изменение частоты генерируемого
напряжения, которая варьирует с изменением нагрузки и скольжения, если частота вращения ротора поддерживается постоянной, а также колебания выходного напряжения U, появляющиеся вследствие электрической и магнитной несимметрии ротора.

Пульсации напряжения, обусловленные электрической не симметрией, возрастают при увеличении нагрузки и могут быть сведены к минимуму при качественной заливке короткозамкнутой клетки и выбраковке роторов с дефектами обмотки.
Магнитная несимметричность, связанная с возможной овальностью пакетов ротора и статора, эксцентриситетом, магнитной анизотропией сердечников, приводит к периодическим изменениям магнитного сопротивления на пути основного магнитного ротора и, как следствие, к колебаниям выходного напряжения. Устранение овальности и веерная сборка пакета ротора практически полностью исключают эту причину колебаний напряжения.
При оценке технико-экономических показателей автономного асинхронного генератора учитывается также необходимость в конденсаторной батарее как источнике реактивной мощности для создания магнитного ноля и компенсации реактивности нагрузки.
Значение реактивной мощности, затрачиваемой на создание магнитного поля асинхронного генератора с магнитной индукцией в зазоре Вт, определяется из соотношения может регулироваться или изменением емкости конденсаторов Ск, или же величиной напряжения Uc.
[adsense_id=»1″]

В настоящее время практическое применение находят конденсаторы типа К-71 с улучшенными массогабаритными показателями, имеющими удельную массу 0,3 — 0,6 кг/кВА. Если учесть, что cos

На рис. 5.30 приведены зависимости емкости С от относительной частоты вращения n2/n ном. при поддержании неизменным стабилизированного напряжения асинхронного генератора мощностью 4,5 кВт при работе в режиме холостого хода. Как видно, подбор необходимой емкости пришлось выполнять, исходя из соотношений:

Из этих соотношении следует, что при значениях скорости вращения ротора п2 стабилизации напряжения при изменении нагрузки в пределах (0,5…1,25)Р„ необходимо использовать 25…30% плошади паза, что должно быть предусмотрено при проектировании.
[adsense_id=»1″]
Следует отметить, что это не приводит к существенному увеличению габаритов асинхронного генератора, однако сопровождаемся искажением кривой ноля в воздушном зазоре и соответствующими искажениями в кривой напряжения даже при синусоидальном распределении МДС.

Схема автоматического регулирования напряжения и частоты асинхронного генератора на варикондах (рис. 5.31),

которая работам следующим образом.Измерители частоты и напряжения ИЧ и ИН фиксируют отклонение этих параметров or номинальных значений и формируют сигналы на усилители УЭ и УБ, которые затем выпрямляются и после преобразования подаются на вариконды. Вариконды в зависимости oт величины управляющего сигнала увеличивают или уменьшают емкостный ток возбуждения, стабилизируя напряжение на выходе регулируемого асинхронного генератора. На выходе канала частоты ИЧ-УБ установлен серводвигатель СД, частота вращения,которого изменяется и воздействует на регулятор оборотов приводного двигателя ПД.На рис. 5.32 приведена схема регулирования, построенная на применении бесконтактных тиристорных ключей БТК, управляемых вычислительным элементом и подключающих отдельные секции батареиконденсаторов С1.С2…Сп в зависимости от изменения напряжения регулируемого асинхронного генератора.

Вычислительное устройство включает в себя суммирующее устройство СУ, формирующее сигнал по отклонению напряжения, импульсный элемент ИЭ, к спорый преобразует этот сигнал в импульсный и передает на вычислительный элемент ВЭ, суммирующий импульсы с учетом знака отклонения и обеспечивающий определенный закон регулирования напряжения.
Преобразованный таким образом сигнал поступает на ступенчатый преобразователь и далее — на ВТК.

Применение варикондов в системах регулирования асинхронного генератора привлекательно еще одним замечательным свойством — высоким сопротивлением постоянному току, что позволяет управлять их емкостью с ничтожно малой величиной мощности канала управления.

В работе описана такая схема (рис. 5.33) регулирования варикондов постоянным напряжением, пропорциональным — разности заданного и фактического напряжения в предположении, что нагрузка регулируемого асинхронного генератора остается неизменной, а частота его вращения меняется.Датчик частоты вращения 1 индукционного типа формирует высокочастотный сигнал (60 кГц) с частотой срывов, пропорциональной частоте вращения регулируемого асинхронного генератора. В преобразователе 2 сигнал прямоугольной формы преобразуется в импульсы со строго определенной длительностью и параметров этих импульсов (пауз) меняется в зависимости от временных среднее значение тока и, последовательно, напряжение на входе и выходе формирователя 5 сигнала
управления варикондами.

Для регулирования напряжения весьма эффективным может быть использование трансформатора

с переменным коэффициентом трансформации. На рис. 5.34 приведена схема стабилизации, построенная на изменении напряжения на конденсаторах возбуждения.
Если конденсаторы возбуждения включать на повышающую обмотку трансформатора с переменным коэффициентом трансформации к, можно уменьшить их габариты и массу. При обычной частоте (50 Гц) масса и габаритные размеры трансформатора оказываются весьма значительными.
Кроме того, для компенсации реактивного тока самого трансформатора требуются дополнительно емкости конденсаторов.Регулировать выходное напряжение асинхронного генератора можно также включением насыщающего реактора (L) (рис. 5.35).
При уменьшении напряжения генератора, связанного с увеличением нагрузки, насыщение реактора уменьшается, а его индуктивность увеличивается. Это приводит к уменьшению индуктивного тока и, как следствие, к увеличению напряжения регулируемого реактора. Как и в предыдущей схеме, в данном случае также необходимо предусматриваю» увеличение емкости конденсаторов.В качестве асинхронного генератора могут успешно применяться асинхронные машины с фазным ротором. При этом возможны следующие варианты включения:
1. Конденсаторы возбуждения включаются на зажимы статорной обмотки, параллельно нагрузке. Реостат через контактные кольца подключается к фазному ротору. Стабилизация частоты достигается одновременным изменением емкости конденсаторов и активного сопротивления реостата.
2. Конденсаторы возбуждения включаются в цепь фазного ротора, нагрузка — в цепь статора. Стабилизация частоты осуществляется изменением емкости конденсаторов возбуждения.
3. Конденсаторы возбуждения включаются в цепь статора или ротора через трансформатор или автотрансформатор с переменным коэффициентом трансформации (рис. 5.36). Регулирование частоты обеспечивается изменением коэффициента трансформации, при этом конденсаторы возбуждения включаются во вторичную цепь повышающего трансформатора,что значительно уменьшает необходимую емкость конденсаторов.[adsense_id=»1″]

Источник