Меню

Как изменяется ток в цепи с ростом r

Переходные процессы в RC- и RL- цепях

Переходными, в электрической цепи, принято называть процессы возникающие в результате различных воздействий (например: включений или отключений цепи от источника питания, обрывах или коротких замыканиях, импульсных возмущающих воздействий и так далее) и переводящих её из одного стационарного (установившегося) состояния в новое (другое) стационарное состояние.

Рассмотрим переходный процесс в RC-цепи (рисунок 1), в состав которой входят резистор R, конденсатор С, ключ К и источник питания, на зажимах которого поддерживается постоянное напряжение E=U.

Схема RC цепи

Рисунок 1. Схема RC-цепи.

Если установить ключ К в положение ”1” (рисунок 1), то начнётся процесс заряда конденсатора С через резистор R (рисунок 2,a). Для образовавшейся цепи будет справедливо соотношение :

Суммарное напряжение в цепи

Так как на конденсаторе напряжение скачком изменяться не может, то в момент (t=0) подключения цепи к источнику питания всё напряжение источника окажется на резисторе R, то есть uR = U, uc = 0.

В начальный момент времени заряда конденсатора, ток в RC-цепи будет иметь наибольшее значение: i=U/R. Конденсатор начнёт заряжаться, напряжение на нём “постепенно” повышается, что, в свою очередь, приведёт к уменьшению падения напряжения на резисторе uR = U — uC, а следовательно и уменьшению тока в RC-цепи, вплоть до его ”полного” прекращения. Напряжение на конденсаторе, во время заряда, нарастает по экспоненциальной зависимости согласно формуле:

Напряжение на конденсаторе во время заряда

где t – любой момент времени, τ – постоянная времени заряда конденсатора в секундах:

Постоянная времени заряда конденсатора

Значения напряжения на резисторе и общего тока RC-цепи уменьшаются также по экспоненциальному закону:

Закон изменения напряжения и тока в RC цепи

Переходные процессы в RC цепи

Рисунок 2. Переходные процессы в RC-цепи. (а – при подключении к источнику; б –при замыкании цепи)

Из приведенных выше математических выражений, а также изображений на рис.2,а можно сделать вывод что, величина τ характеризует скорость заряда конденсатора или скорость затухания переходного процеесса. Через время t= τ , после подключения RC-цепи к источнику постоянного напряжения, напряжение на конденсаторе достигнет значения Напряжение на конденсаторе достигает заряда, а напряжение на резисторе уменьшится до значения Напряжение на резисторе уменьшается достигая значения. Процесс заряда конденсатора будет продолжаться до тех пор, пока напряжения на его выводах не достигнет значения равного напряжению источника питания U. Когда заряд конденсатора закончится — ток в RC-цепи становится равным нулю. Теоретически, для “полного” заряда конденсатора, потребуется бесконечно большое время.

Поэтому, принято считать, что процесс заряда конденсатора заканчивается, когда напряжение на нём достигает значений 90,95 или 99% величины напряжения источника питания U=E.

Зависимость значения величины заряда конденсатора от времени

В подавляющем большинстве случаев, как на практике, так и в теоретических расчётах, время t в течение которого конденсатор считается полностью заряженным, принимают равным 3τ. Также это можно отнести ко всем электрическим цепям, где токи меняются по экспоненциальному закону.

Если установить ключ К в положение ”2” (рисунок 1) то начнётся новый переходный процесс — разряд конденсатора С через резистор R (рисунок 2,a). В этом случае предварительно заряженный конденсатор становится фактическим источником напряжения, т.к. источник внешнего напряжения E=U перестаёт действовать и для любого момента времени становится действительным соотношение uC + uR = 0, то есть uC = -uR.

Ток в начальный момент ( t=0) разряда конденсатора будет иметь максимальное значение:Величина тока в начальный момент заряда конденсатора

Но по мере разряда конденсатора (превращения накопленной в его электрическом поле энергии в тепловую на резисторе R ) напряжение на нём будет уменьшаться и, как следствие, будут уменьшаться по экспоненциальному закону ток в цепи и напряжение на резисторе:

Изменение напряжений на кондесаторе и резисторе в зависимости от величины протекаемого тока

Через некоторое время, например t=3τ (см. приведенную выше табл.), на конденсаторе останется примерно 5% напряжения от начального значения, что условно можно считать окончанием переходного процесса и возвратом схемы в исходное состояние когда: uC = 0, uR = 0, i = 0.

Теперь рассмотрим переходной процесс в RL-цепи (рис.3), в состав которой входят резистор R, катушка индуктивности L, ключ К и источник питания, на зажимах которого поддерживается постоянное напряжение E=U.

Схема RL цепи

Рисунок 3. Схема RL-цепи.

При подключении к источнику E=U, переводом ключа “K” в положение 1, ток в RL-цепи не сразу достигнет значения i=U/R, а будет нарастать по экспоненциальному закону (см.рис.4,а). Это связано с тем, что кроме источника E=U, в цепи с индуктивностью L начинает действовать ЭДС самоиндукции eL, препятствующая нарастанию тока. В момент включения, когда t=0, ЭДС самоиндукции максимальна и принимает значение eL = -U, при этом все напряжения выделяются на катушке индуктивности L : Напряжение на катушке индуктивности, так как при t=0 ток в цепи i=0, следовательно iR = 0. С течением времени напряжение на катушке uL уменьшается, а ток i и напряжение на резисторе uR экспоненциально возрастают:

Изменение и тока напряжений на катушке индуктивности и резисторе при переходном процессе в RL цепи

где τ – постоянная времени RL-цепи, Постоянная времени RL цепи

Переходные процессы в RL цепи

Рисунок 4. Переходные процессы в RL-цепи.
(а – при подключении к источнику; б –при замыкании цепи)

На рисунке 4,а показано что ток в цепи, особенно в начале подключения к источнику, нарастает с наибольшей скоростью, но уже при t= τ его рост значительно замедляется, а при t=3τ практически прекращается и можно считать что его величина достигла установившегося значения i=U/R. При этом, с ростом тока, ЭДС самоиндукции уменьшается до нуля, переходной процесс заканчивается.

Процесс уменьшения тока и напряжения в RL цепи

Переведём ключ К в положение ”2” (рисунок 3) – начнётся обратный переходной процесс, ”разряда” накопленной катушкой индуктивноси “энергии магнитного поля” и превращения её в тепловую на резисторе R, . В самом начале этого переходного процесса (рисунок 4,б) напряжение на катушке возрастает скачком от нуля до uL = -U. В дальнейшем, начинается процесс уменьшения по экспоненциальному закону тока и напряжения на элементах R-L цепи:Итого:

  • переходные процессы в обеих цепях, как RC так и RL , происходят в соответствии с экспоненциальным законом ;
  • в момент подключения RC-цепи к постоянному источнику питания напряжение на конденсаторе “минимамальное” и практически равняется нулю uc = 0 (если он был разряжен), но при этом по цепи протекает максимальный ток i=U/R, значение которого постепенно уменьшается по мере заряда конденсатора (рисунок 2,а);
  • в момент подключения RL-цепи к постоянному источнику питания напряжение на катушке индуктивности принимает максимальное значение и приравнивается к величине напряжения источника, а ток имеет минимальное значение и практически равен нулю i=0, но с течением времени, по мере уменьшения ЭДС самоиндукции катушки, принимает значение i=U/R (рисунок 4,а);
  • величина τ характеризует скорость затухания переходного процесса:
  1. постоянная времени RC-цепи —Постоянная времени заряда конденсатора;
  2. постоянная времени RL-цепи —Постоянная времени RL цепи ;

Источник

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

SA Переменный ток

Содержание

Переменный электрический ток

В механической системе вынужденные колебания возникают при действии на нее внешней периодической силы. Аналогично этому вынужденные электромагнитные колебания в электрической цепи происходят под действием внешней периодически изменяющейся ЭДС или внешнего изменяющегося напряжения.

Вынужденные электромагнитные колебания в электрической цепи представляют собой переменный электрический ток.

  • Переменный электрический ток — это ток, сила и направление которого периодически меняются.

Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой ω по синусоидальному или косинусоидальному закону:

u = U_m \cdot \sin \omega t\) или \(

u = U_m \cdot \cos \omega t\) ,

где u – мгновенное значение напряжения, Um – амплитуда напряжения, ω – циклическая частота колебаний. Если напряжение меняется с частотой ω, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае

Читайте также:  Амплитуда колебании плотности тока смещения

i = I_m \cdot \sin (\omega t + \varphi_c)\) ,

где φc – разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Исходя из этого можно дать еще такое определение:

  • Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.

Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.

Генератор переменного тока

Основная часть электроэнергии в мире в настоящее время вырабатывается генераторами переменного тока, создающими гармонические колебания.

  • Генератором переменного тока называется электротехническое устройство, предназначенное для преобразования механической энергии в энергию переменного тока.

ЭДС индукции генератора изменяется по синусоидальному закону

где \(<\rm E>_ =B\cdot S\cdot \omega\) — амплитудное (максимальное) значение ЭДС. При подключении к выводам рамки нагрузки сопротивлением R, через нее будет проходить переменный ток. По закону Ома для участка цепи сила тока в нагрузке

где \(I_ = \dfrac\) — амплитудное значение силы тока.

Основными частями генератора являются (рис. 1):

  • индуктор — электромагнит или постоянный магнит, который создает магнитное поле;
  • якорь — обмотка, в которой индуцируется переменная ЭДС;
  • коллектор со щетками — устройство, посредством которого снимается с вращающихся частей или подается по ним ток.

Неподвижная часть генератора называется статором, а подвижная — ротором. В зависимости от конструкции генератора его якорь может быть как ротором, так и статором. При получении переменных токов большой мощности якорь обычно делают неподвижным, чтобы упростить схему передачи тока в промышленную сеть.

На современных гидроэлектростанциях вода вращает вал электрогенератора с частотой 1-2 оборота в секунду. Таким образом, если бы якорь генератора имел только одну рамку (обмотку), то получался бы переменный ток частотой 1-2 Гц. Поэтому, для получения переменного тока промышленной частоты 50 Гц якорь должен содержать несколько обмоток, позволяющих увеличить частоту вырабатываемого тока. Для паровых турбин, ротор которых вращается очень быстро, используют якорь с одной обмоткой. В этом случае частота вращения ротора совпадает с частотой переменного тока, т.е. ротор должен делать 50 об/с.

Мощные генераторы вырабатывают напряжение 15-20 кВ и обладают КПД 97-98 %.

Из истории. Первоначально Фарадей обнаружил лишь едва заметный ток в катушке при движении вблизи нее магнита. «Какая от этого польза?» — спросили его. Фарадей ответил: «Какая может быть польза от новорож­денного?» Прошло немногим более половины столетия и, как сказал американский физик Р. Фейнман, «бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить».

*Принцип действия

Принцип действия генератора переменного тока основан на явлении электромагнитной индукции.

Пусть проводящая рамка площадью S вращается с угловой скоростью ω вокруг оси, расположенной в ее плоскости перпендикулярно однородному магнитному полю индукцией \(\vec\) (см. рис. 1).

При равномерном вращении рамки угол α между направлениями вектора индукции магнитного поля \(\vec\) и нормали к плоскости рамки \(\vec\) меняется со временем по линейному закону. Если в момент времени t = 0 угол α = 0 (см. рис. 1), то

где ω — угловая скорость вращения рамки, ν — частота ее вращения.

В этом случае магнитный поток, пронизывающий рамку будет изменяться следующим образом

Тогда согласно закону Фарадея индуцируется ЭДС индукции

Подчеркнем, что ток в цепи проходит в одном направлении в течение полуоборота рамки, а затем меняет направление на противоположное, которое также остается неизменным в течение следующего полуоборота.

Действующие значения силы тока и напряжения

Пусть источник тока создает переменное гармоническое напряжение

Согласно закону Ома, сила тока в участке цепи, содержащей только резистор сопротивлением R, подключенный к этому источнику, изменяется со временем также по синусоидальному закону:

где \(I_m = \dfrac>.\) Как видим, сила тока в такой цепи также меняется с течением времени по синусоидальному закону. Величины Um, Im называются амплитудными значениями напряжения и силы тока. Зависящие от времени значения напряжения u и силы тока i называют мгновенными.

Кроме этих величин используются еще одна характеристика переменного тока: действующие (эффективные) значения силы тока и напряжения.

  • Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой I.

  • Действующим (эффективным) значением напряжения переменного тока называется напряжение такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой U.

Действующие (I, U) и амплитудные (Im, Um) значения связаны между собой следующими соотношениями:

Таким образом, выражения для расчета мощности, потребляемой в цепях постоянного тока, остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:

Необходимо отметить, что закон Ома для цепи переменного тока, содержащей только резистор сопротивлением R, выполняется как для амплитудных и действующих, так и для мгновенных значений напряжения и силы тока, вследствие того, что их колебания совпадают по фазе.

*Вывод формулы

Зная мгновенные значения u и i, можно вычислить мгновенную мощность

которая, в отличие от цепей постоянного тока, изменяется с течением времени. С учетом уравнений (1) и (2) перепишем выражение для мгновенной мощности на резисторе в виде

Первое слагаемое не зависит от времени. Второе слагаемое P2 — функция косинуса удвоенного угла и ее среднее значение за период колебаний равно нулю (рис. 2, найдите сумму площади выделенных фигур с учетом знаков).

Поэтому среднее значение мощности переменного электрического тока за период будет равно

Тогда с учетом закона Ома \(\left(I_ =\dfrac> \right)\) получаем:

По определению действующих значений необходимо сравнивать мощности (количество теплоты в единицу времени) переменного и постоянного тока. Запишем уравнения для расчета мощности постоянного тока

и сравним с уравнениями (4>:

Литература

Жилко, В.В. Физика: учеб. пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, Л.Г. Маркович. — Минск: Нар. Асвета, 2009. — С. 46-51.

Источник

Электрический ток и закон Ома

теория по физике 🧲 постоянный ток

Электрический ток — направленное движение заряженных частиц под действием внешнего электрического поля.

Условия существования электрического тока:

  • наличие заряженных частиц;
  • наличие электрического поля, которое создается источниками тока.

Носители электрического тока в различных средах

Среда Носители электрического тока
Металлы Свободные электроны
Электролиты (вещества, проводящие ток вследствие диссоциации на ионы) Положительные и отрицательные ионы
Газы Ионы и электроны
Полупроводники Электроны и дырки (атом, лишенный одного электрона)
Вакуум Электроны

Электрическая цепь и ее схематическое изображение

Электрическая цепь — это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Основные элементы электрической цепи:

  • Источник тока (генератор, гальванический элемент, батарея, аккумулятор).
  • Потребители тока (лампы, нагревательные элементы и прочие электроприборы).
  • Проводники — части цепи, обладающие достаточным запасом свободных электронов, способных перемещаться под действием внешнего электрического поля. Проводники соединяют источники и потребители тока в единую цепь.
  • Ключ (переключатель, выключатель) для замыкания и размыкания цепи.
Читайте также:  Опасная величина тока для человека смертельная опасное напряжение

Электрическая цепь также может содержать:

  • резистор — элемент электрической цепи, обладающий некоторым сопротивлением;
  • реостат — устройство для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления;
  • конденсатор — устройство, способное накапливать электрический заряд и передавать его другим элементам цепи;
  • измерительные приборы — устройства, предназначенные для измерения параметров электрической цепи.

Определение

Электрическая схема — графическое изображение электрической цепи, в котором реальные элементы представлены в виде условных обозначений.

Условные обозначения некоторых элементов электрической цепи

Простейшая электрическая цепь содержит в себе источник и потребитель тока, проводники, ключ. Схематически ее можно отобразить так:

Направление электрического тока в металлах

По металлическим проводам перемещаются отрицательно заряженные электроны, т.е. ток идет от «–» к «+» источника. Направление движения электронов называют действительным. Но исторически в науке принято условное направление тока от «+» источника к «–».

Действия электрического тока (преобразования энергии)

Электрический ток способен вызывать различные действия:

  • Тепловое — электрическая энергия преобразуется в тепло. Такое преобразование обеспечивает электроплита, электрический камин, утюг.
  • Химическое — электролиты под действием постоянного электрического тока подвергаются электролизу. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы).
  • Магнитное (электромагнитное) — при наличии электрического тока в любом проводнике вокруг него наблюдается магнитное поле, т.е. проводник с током приобретает магнитные свойства.
  • Световое — электрический ток разогревает металлы до белого каления, и они начинают светиться подобно вольфрамовой спирали внутри лампы накаливания. Другой пример — светодиоды, в которых свет обусловлен излучением фотонов при переходе электрона с одного энергетического уровня на другой.
  • Механическое — параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Основные параметры постоянного тока

Постоянный ток — электрический ток, который с течением времени не изменяется по величине и направлению.

Основными параметрами электрического тока являются:

  • Сила тока. Обозначается как I. Единица измерения — А (Ампер).
  • Напряжение. Обозначается как U. Единица измерения — В (Вольт).
  • Сопротивление. Обозначается как R. Единица измерения — Ом.

Сила тока

Сила тока показывает, какой заряд q проходит через поперечное сечение проводника за 1 секунду:

I = q t . . = Δ q Δ t . . = N q e t .

N — количество электронов, q e = 1 , 6 · 10 − 19 Кл — заряд электрона, t — время (с).

Заряд, проходящий по проводнику за время t при силе тока, равной I:

Пример №1. Источник тока присоединили к двум пластинам, опущенным в раствор поваренной соли. Сила тока в цепи 0,2 А. Какой заряд проходит между пластинами в ванне за 2 минуты?

2 минуты = 120 секунд

q = I t = 0 , 2 · 120 = 24 ( К л )

Заряд, проходящий за время ∆t при равномерном изменении силы тока от I1 до I2:

Δ q = I 1 + I 2 2 . . Δ t

Сила тока и скорость движения электронов:

n — (м –3 ) — концентрация, S (м 2 ) — площадь сечения проводника, v — скорость электронов.

Внимание!

Электроны движутся по проводам со скоростью, равной долям мм/с. Но электрическое поле распространяется со скоростью света: c = 3∙10 8 м/с.

Сопротивление

Сопротивление металлов характеризует тормозящее действие положительных ионов кристаллической решетки на движение свободных электронов:

ρ — удельное сопротивление, показывающее, какое сопротивление имеет проводник длиной 1 м и площадью поперечного сечения 1 м 2 , изготовленный из определенного материала. l — длина проводника (м), S — площадь его поперечного сечения.

Пример №2. Медная проволока имеет электрическое сопротивление 6 Ом. Какое электрическое сопротивление имеет медная проволока, у которой в 2 раза больше длина и в 3 раза больше площадь поперечного сечения?

Сопротивление первого и второго проводника соответственно:

Поделим электрическое сопротивление второго проводника на сопротивление первого:

R 2 R 1 . . = ρ 2 l 3 S . . ÷ ρ l S . . = ρ 2 l 3 S . . · S ρ l . . = 2 3 . .

Отсюда сопротивление второго проводника равно:

Напряжение

Напряжение характеризует работу электрического поля по перемещению положительного заряда:

Пример №3. Перемещая заряд в первом проводнике, электрическое поле совершает работу 20 Дж. Во втором проводнике при перемещении такого же заряда электрическое поле совершает работу 40 Дж. Определить отношение U1/U2 напряжений на концах первого и второго проводников.

U 1 U 2 . . = A 1 q . . ÷ A 2 q . . = A 1 q . . · q A 2 . . = A 1 A 2 . . = 20 40 . . = 1 2 . .

Закон Ома для участка цепи

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению:

Иллюстрация закона Ома.

Сила тока направлена в сторону движения заряженных частиц (электронов). Силе тока противостоит сопротивление: чем оно больше, тем меньше сила тока (тем меньше проходит электронов через проводник в единицу времени). Но росту силы тока способствует напряжение, которое словно толкает заряженные частицы, заставляя их упорядоченно перемещаться.

Закон Ома для участка цепи с учетом формулы для расчета сопротивления:

Для сравнения и расчета сопротивления часто используют вольтамперную характеристику. Так называют графическое представление зависимости силы тока от напряжения. Пример вольтамперной характеристики:

Чем круче график, тем меньше сопротивление проводника. При расчете сопротивления важно учитывать единицы измерения величин, указанных на осях.

Пример №4. На рисунке изображен график зависимости силы тока от напряжения на одной секции телевизора. Каково сопротивление этой секции:

Точке графика, соответствующей 5 кВ, соответствует сила тока, равна 20 мА.

Сначала переведем единицы измерения величин в СИ:

R = U I . . = 5000 0 , 02 . . = 250000 ( О м ) = 250 ( к О м )

При определении сопротивления резистора ученик измерил напряжение на нём: U = (4,6 ± 0,2) В. Сила тока через резистор измерялась настолько точно, что погрешностью можно пренебречь: I = 0,500 А. По результатам этих измерений можно сделать вывод, что сопротивление резистора, скорее всего,

Источник



Переходные процессы в R-L и R-C цепях

Рассмотрим переходные процессы в цепи, содержащей последовательно соединенные резистор R и индуктивность L . Уравнение Кирхгофа для такой цепи

где u = u ( t ) — напряжение на входе цепи. Найдем решение этого уравнения для свободной составляющей тока, т.е. при u = 0, в виде i с = I e pt . Для этого подставим выражение для тока в исходное уравнение и найдем значение p

Выражение Lp + R =0 представляет собой характеристическое уравнение, которое могло быть получено без подстановки общего выражения для свободной составляющей формальной заменой в однородном дифференциальном уравнении производных тока на p k , где k — порядок производной.

Таким образом, общее решение для тока при переходном процессе в R-L цепи можно представить в виде

где t = 1/|p| = L / R — постоянная времени переходного процесса; I — постоянная интегрирования, определяемая по начальным значениям; i — установившийся ток в цепи, определяемый по параметрам R и L и напряжению на входе u .

Длительность переходного процесса в цепи, определяемая значением t , возрастает с увеличением L и уменьшением R .

Рассмотрим подключение R — L цепи к источнику постоянной ЭДС E (рис. 1 а)).

Установившийся ток в этой цепи будет определяться только ЭДС E и резистивным сопротивлением R , т.к. после окончания переходного процесса i = const и u L = Ldi / dt = 0, т.е. i у = E / R .

Полный ток в переходном процессе из выражения (1)

Для определения постоянной I найдем начальное тока. До замыкания ключа ток очевидно был нулевым, а т.к. подключаемая цепь содержит индуктивность, ток в которой не может измениться скачкообразно, то в первый момент после коммутации ток останется нулевым. Отсюда

Читайте также:  Лечение электрическим током головы

Подставляя найденное значение постоянной I в выражение для тока, получим

Из этого выражения можно определить падения напряжения на резисторе u R и индуктивности u L

Из выражений (1)-(3) следует, что ток в цепи нарастает по экспоненте с постоянной времени t = L / R от нулевого до значения E / R (рис. 1 б)). Падение напряжения на сопротивлении u R повторяет кривую тока в измененном масштабе. Напряжение на индуктивности u L в момент коммутации скачкообразно возрастает от нуля до E , а затем снижается до нуля по экспоненте (рис. 1 б)).

Подставляя выражения (3) в уравнение Кирхгофа для цепи после коммутации, можно убедиться в его справедливости в любой момент времени

Пусть рассмотренная выше R — L цепь длительное время была подключена к источнику ЭДС E , а затем замкнута накоротко (рис. 2 а)).

В этом случае установившийся ток будет равен нулю и задача сводится к отысканию его свободной составляющей. Из выражения (1)

Постоянную I можно определить из начальных условий. Установившийся ток в цепи до переключения ключа S был равен i (0 — ) = E / R , а т.к. в первый момент после коммутации ток в индуктивности сохраняет свое значение, то i (0 — ) = i (0 + ) = I = E / R . Отсюда ток и падения напряжения в цепи

Из выражений (4) следует, что при замыкании цепи накоротко ток уменьшается от E / R до нуля по экспоненте с постоянной времени t = L / R (рис. 2 б)). Падение напряжения на резисторе изменяется по такому же закону, а напряжение на индуктивности в момент коммутации скачком изменяется от нуля до — E , а затем снижается до нуля ( рис. 2б)).

Общее падение напряжения на резисторе и индуктивности в любой момент времени

как и следовало ожидать, равно нулю и в переходном процессе происходит преобразование энергии магнитного поля в тепло.

При отключении цепи содержащей индуктивность в ней могут возникать падения напряжений опасные для ее элементов. Пусть R — L цепь с подключенным к ней вольтметром отключается от источника постоянной ЭДС E (рис. 3).

Так как цепь содержит индуктивность, то после размыкания ключа S ток не сможет изменить своего значения и будет протекать в контуре R — L — V . Значение тока до коммутации i (0 — ) = E / R = i (0 + ) = i (0) Уравнение Кирхгофа для этого контура

Ri + R V i + u L = 0,

где R V — сопротивление вольтметра.

Отсюда падение напряжения на вольтметре u V = R V i (0) = ER V / R и на индуктивности u V = ( R + R V ) i (0) = E (1+ R V / R ).

Обычно R V >> R , поэтому напряжение на вольтметре и на индуктивности в момент отключения превосходят ЭДС источника в R V / R раз. Это может быть опасным для вольтметра и изоляции катушки. Если индуктивность цепи достаточно велика, то запасенной в ней энергии может оказаться достаточно для разрушения изоляции или входных цепей прибора. Поэтому при отключении цепи постоянного тока с большой индуктивностью ее предварительно замыкают на малое сопротивление, а измерительные приборы отключают .

Рассмотрим теперь процесс подключения R — L цепи к источнику переменной синусоидальной ЭДС (рис. 4 а)).

Ток после коммутации в соответствии с выражением (1)

Установившееся значение i у определяется по закону Ома как

где y — фаза напряжения на входе цепи в момент коммутации, а j = arctg( w L / R ) .

До коммутации ток в цепи был равен нулю, поэтому из выражений (5) и (6) можно найти постоянную I

следовательно, полный ток в цепи после коммутации

Таким образом, ток в цепи состоит из двух составляющих — установившегося периодического синусоидального тока и свободного, уменьшающегося по экспоненте с постоянной времени t = L / R (рис. 4 б)). В результате, ток в некоторые моменты времени превышает амплитудное значение установившегося тока.

Начальное значение свободной составляющей тока I m sin( y — j ) зависит от момента включения y . При y = j +( k +1/2) p ( k = 0, 1, 2 ј ) ток через полпериода после коммутации (рис. 4 в)) достигает максимального значения, равного I max = I m [1+e — p t /( w t ) ]. Значение e — p t /( w t ) w и постоянной времени t . При w ® µ и/или t ® µ I max ® 2.

При y = j + k p ( k = 0, 1, 2 ј ) свободный ток в момент коммутации равен нулю и переходный процесс отсутствует . В цепи сразу после коммутации возникает установившийся режим. Эта особенность переходных процессов на переменном токе используется в устройствах детерминированного включения . В них момент включения нагрузки выбирают таким образом, чтобы уменьшить или исключить большие значения тока, напряжения или других параметров.

Перейдем к рассмотрению переходных процессов в цепи с последовательным соединением резистора R и емкости C . По второму закону Кирхгофа для этой цепи

Ток в емкости можно представить в виде i = Cdu C / dt . Отсюда

Решение этого дифференциального уравнения для напряжения на емкости также можно представить суммой свободной и установившейся составляющих u C = u у + u с . Свободную составляющую найдем из решения однородного уравнения ( u = 0) в виде u с = U e pt . Подставим это выражение в уравнение и найдем значение p

Выражение RCp + 1 = 0 представляет собой характеристическое уравнение, которое могло быть получено без подстановки общего выражения для свободной составляющей формальной заменой в однородном дифференциальном уравнении производных от напряжения на емкости на p k , где k — порядок производной.

Отсюда общее решение для напряжения на емкости

u C = u у + u с = u у + U e — t / t ,

где U — постоянная интегрирования, определяемая из начальных значений; t = 1/|p| = RC — постоянная времени переходного процесса.

Рассмотрим процесс подключения последовательной R — C цепи к источнику постоянной ЭДС E (рис. 5 а)).

В отличие от индуктивности, емкость после накопления заряда может длительное время сохранять его. Поэтому начальное значение напряжения на емкости U 0 может быть произвольным и иметь произвольный знак по отношению к ЭДС источника.

Установившееся значение напряжения на емкости после замыкания ключа S всегда будет равно E , т.к. на постоянном токе в установившемся режиме du C / dt = 0 и i = Cdu C / dt = 0, а u C = u — Ri = E — Ri = E . Поэтому из выражения (8) напряжение на емкости в общем виде будет равно

u C = u у + u с = E + U e — t / t .

Пусть напряжение на емкости до коммутации было u C (0 — ) = ± U 0 (знак + соответствует полярности напряжения на рис. 5 а) без скобок). Тогда из (9) для момента времени непосредственно после замыкания ключа найдем постоянную U

а затем и выражение для напряжения на емкости в виде

где t = RC — постоянная времени переходного процесса.

Отсюда можно найти ток в цепи и падение напряжения на резисторе

На рис. 5 б)-г) приведены временные диаграммы переходного процесса подключения R — C цепи к источнику постоянной ЭДС для трех вариантов начальных значений напряжения на емкости: 1) E > U 0 > 0 ; 2) E U 0 и U 0 > 0; 3) U 0 U 0 до E . В то время как ток и напряжение на резисторе в момент коммутации скачкообразно изменяются на величину пропорциональную разности или сумме E и U 0 , а затем монотонно уменьшаются до нуля. При этом, если E U 0 , то ток и падение напряжения на R отрицательны, т.е. происходит разряд емкости.

Полный разряд емкости происходит при отсутствии внешних источников энергии (рис. 1 а)). После переключения ключа S вся энергия накопленная в электрическом поле емкости C преобразуется в тепло в резисторе R .

Напряжение на емкости в переходном процессе будет иметь только свободную составляющую

u C = u с = U e — t / t

и если цепь достаточно длительное время была подключена к источнику, то в момент переключения напряжение на емкости будет равно E . Поэтому постоянная U будет равна

u C (0 — ) = E = u C (0 + ) = U ,

а напряжение на емкости в переходном процессе —

u C = E e — t / t .

Отсюда ток в цепи и напряжение на резисторе

Источник