Меню

Как измерить выходное напряжение осциллографом

Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз

Осциллограф — устройство, демонстрирующие силу тока, напряжение, частоты и сдвиг фаз электрической цепи. Прибор отображает соотношение времени и интенсивности электрического сигнала. Все значения изображены при помощи простого двумерного графика.

Осциллограф цифровой запоминающий GW Instek GDS-71104B.

Для чего предназначен осциллограф

Осциллограф используется электронщиками и радиолюбителями для того, чтобы измерить:

  • амплитуду электрического сигнала — соотношение напряжения и времени;
  • проанализировать сдвиг фаз;
  • увидеть искажение электрического сигнала;
  • на основе результатов вычислить частоту тока.

Несмотря на то, что осциллограф демонстрирует характеристики анализируемого сигнала, чаще его используют для выявления процессов происходящих в электрической цепи. Благодаря осциллограмме специалисты получают следующую информацию:

  • форму периодического сигнала;
  • значение положительной и отрицательной полярности;
  • диапазон изменения сигнала во времени;
  • длительность положительного и отрицательного полупериода.

Большинство из этих данных можно получить при помощи вольтметра. Однако тогда придётся производить замеры с частотностью в несколько секунд. При этом велик процент погрешности вычислений. Работа с осциллографом значительно экономит время получения необходимых данных.

Принцип действия осциллографа

Осциллограф выполняет замеры при помощи электронно-лучевой трубки. Это лампа, которая фокусирует анализируемый ток в луч. Он попадает на экран прибора, отклоняясь в двух перпендикулярных направлениях:

  • вертикальное – показывает исследуемое напряжение;
  • горизонтальное – демонстрирует затраченное время.

Электронная трубка осциллографа.

За отклонение луча отвечают две пары пластин электронно-лучевой трубки. Те, что расположены вертикально, всегда находятся под напряжением. Это помогает распределять разнополюсные значения. Положительное притяжение отклоняется вправо, отрицательное — влево. Таким образом, линия на экране прибора движется слева направо с постоянной скоростью.

На горизонтальные пластины также действует электрический ток, что отклоняет демонстрирующий показатель напряжения луча. Положительный заряд — вверх, отрицательный — вниз. Так на дисплее устройства появляется линейный двухмерный график, который называется осциллограммой.

Расстояние, которое проходит луч от левого до правого края экрана называется развёрткой. Линия по горизонтали отвечает за время измерения. Помимо стандартного линейного двухмерного графика существует также круглые и спиральные развёртки. Однако пользоваться ими не так удобно как классическими осциллограммами.

Классификация и виды

Различают два основных вида осциллографов:

  • аналоговые — аппараты для измерения средних сигналов;
  • цифровые — приборы преобразовывают получаемое значение измерений в «цифровой» формат для дальнейшей передачи информации.

По принципу действия существуют следующая классификация:

  1. Универсальные модели.
  2. Специальное оборудование.

Наиболее популярными являются универсальные устройства . Эти осциллографы используют для анализа различных видов сигналов:

  • гармонических;
  • одиночных импульсов;
  • импульсных пачек.

Универсальные приборы предназначены для разнообразных электрических устройств. Они позволяют измерять сигналы в диапазоне от нескольких наносекунд. Погрешность измерений составляет 6-8%.

Универсальные осциллографы делятся на два основных вида:

  • моноблочные — имеют общую специализацию измерений;
  • со сменными блоками — подстраиваются под конкретную ситуацию и тип прибора.

Специальные устройства разрабатываются под определённый вид электрической техники. Так существуют осциллографы для радиосигнала, телевизионного вещания или цифровой техники.

Универсальные и специальные устройства делятся на:

  • скоростные – применяются в быстродействующих приборах;
  • запоминающие — аппараты, сохраняющие и воспроизводящие ранее сделанные показатели.

При выборе устройства следует внимательно изучить классификации и виды, чтобы приобрести прибор под конкретную ситуацию.

Устройство и основные технические параметры

Каждый прибор имеет ряд следующих технических характеристик:

  1. Коэффициент возможной погрешности при измерении напряжения (у большинства приборов это значение не превышает 3%).
  2. Значение линии развёртки устройства — чем больше эта характеристика, тем дольше временной промежуток наблюдения.
  3. Характеристика синхронизации, содержащая в себе: диапазон частот, максимальные уровни и нестабильность системы.
  4. Параметры вертикального отклонения сигнала с входной ёмкостью оборудования.
  5. Значения переходной характеристики, показывающие время нарастания и выброс.

Помимо перечисленных выше основных значений, у осциллографов присутствуют дополнительные параметры, в виде амплитудно-частотная характеристики, демонстрирующей зависимость амплитуды от частоты сигнала.

Цифровые осциллографы также обладают величиной внутренней памяти. Этот параметр отвечает за количество информации, которую аппарат может записать.

Как выполняются измерения

Экран осциллографа поделён на небольшие клетки, которые называются делениями. В зависимости от прибора каждый квадрат будет равен определённому значению. Наиболее популярное обозначение: одно деление – 5 единиц. Также на некоторых приборах присутствует ручка для управления масштабом графика, чтобы пользователям было удобнее и точнее производить измерения.

Прежде чем начать измерение любого рода следует присоединить осциллограф к электрической цепи. Щуп подключается на любой из свободных каналов (если в приборе, больше чем 1 канал) или на генератор импульсов, при его наличии в устройстве. После подключения на дисплее аппарата появятся различные изображения сигналов.

Читайте также:  Номинальное напряжение пылесоса это

Если сигнал получаемый прибором обрывистый, то проблема заключается в присоединении щупа. Некоторые из них оборудованы миниатюрными винтами, которые необходимо закрутить. Также в цифровых осциллографах решает проблему обрывистого сигнала фикция автоматического позиционирования.

Источник



Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Как измерить ток с помощью осциллографа

Измерение тока является простой задачей – все, что вам нужно сделать, это подключить мультиметр к цепи, которую вы хотите измерить, и счетчик даст вам чистое значение тока для использования в дальнейшем. Но иногда нет возможности разорвать цепь, чтобы соединить мультиметр с тем, что вы хотите измерить. Это также решается довольно просто – вам просто нужно измерить напряжение на известном сопротивлении в цепи, тогда ток – это просто напряжение, деленное на сопротивление (из закона Ома).

Как измерить ток с помощью осциллографа

Все становится немного сложнее, когда вы хотите измерить изменяющиеся сигналы. Это зависит от частоты обновления (количества выборок в секунду) мультиметра, и обычный человек может воспринимать только небольшое изменений в отображении в секунду. Измерение переменного тока становится немного проще, если ваш мультиметр измеряет среднеквадратичное напряжение (среднеквадратичное напряжение – это напряжение сигнала переменного тока, который будет передавать то же количество энергии, что и источник постоянного тока этого напряжения). Это измерение строго ограничено периодическими сигналами (прямоугольные волны и тому подобное строго исключены, если только среднеквадратическое значение не является «истинным», даже в этом случае нет никаких гарантий точности измерения). Большинство мультиметров также имеют низкочастотную фильтрацию, что предотвращает измерение переменного тока выше нескольких сотен герц.

Осциллограф заполняет промежуток между человеческим восприятием и устойчивыми значениями мультиметра – он отображает своего рода график напряжения-времени сигнала, который позволяет лучше визуализировать изменяющиеся сигналы по сравнению с набором меняющихся чисел на мультиметре.

Измерение сигналов с частотой до нескольких гигагерц также возможно при наличии правильного оборудования. Однако осциллограф является прибором для измерения напряжения с высоким импедансом – он не может измерять токи как таковые. Использование осциллографа для измерения токов требует преобразования тока в напряжение, и это можно сделать несколькими способами.

Во-первых, это использование шунтового резистора. Это, пожалуй, самый простой способ измерения тока. Преобразователь тока в напряжение здесь представляет собой простой резистор. Базовые знания электротехники говорят нам, что напряжение на резисторе пропорционально току, протекающему через него. Это можно выразить по закону Ома: U = IR. Где U – напряжение на резисторе, I – ток через резистор, а R – сопротивление резистора, все в соответствующих единицах.

Хитрость заключается в том, чтобы использовать значение резистора, которое не влияет на общую измеряемую цепь, поскольку падение напряжения на шунтирующем резисторе приводит к уменьшению напряжения на цепи, в которой он находится. Общее практическое правило заключается в использовании резистора, который намного меньше, чем сопротивление или импеданс измеряемой цепи (в десять раз меньше в хорошей начальной точке), чтобы предотвратить влияние шунта на измеряемый ток в цепи.

Например, трансформатор и полевой МОП-транзистор в преобразователе постоянного тока могут иметь полное (постоянное) сопротивление в несколько десятков миллиом, а установка большого (скажем) резистора 1 Ом приведет к падению большей части напряжения на шунте (помните, что для для последовательных резисторов отношение падения напряжения на резисторах является отношением их сопротивлений) и, следовательно, к большей потере мощности. Резистор просто преобразует ток в напряжение для измерения. В то же время маленький резистор (1 мОм) будет пропускать через себя только небольшое (но измеримое) напряжение, оставляя остальное напряжение для выполнения полезной работы.

Как измерить ток с помощью осциллографа

Как измерить ток с помощью осциллографа

Здесь вы можете использовать несколько изящных приемов. Предположим, что ваш шунт имеет сопротивление 100 мОм, тогда ток 1 А приведет к падению напряжения на 100 мВ, что даст нам «чувствительность» 100 мВ на усилитель. Это не должно вызывать проблем, если вы будете осторожны, но часто 100 мВ воспринимается буквально – другими словами, путается с 100 мА.

Эту проблему можно решить, установив настройку входа на 100X – датчик уже ослабляет в 10 раз, поэтому добавление еще 10X к сигналу возвращает его обратно к 1 В на усилитель, т.е. вход «умножается» на 10. Большинство осциллографов поставляются с этой возможностю выбора входной аттенюации. Однако существуют осциллографы, которые поддерживают только 1X и 10X. Еще одна полезная небольшая особенность – возможность установки вертикальных единиц, отображаемых на экране – U можно изменить на A, W и т.п.

Читайте также:  Формула напряжений при расчете фундаментов

Все усложняется, когда вы не можете разместить шунт на нижней стороне. Заземление осциллографа напрямую связано с заземлением, поэтому при условии, что ваш источник питания также заземлен, подключение зажима заземления датчика к любой случайной точке в цепи закорачивает эту точку на землю. Этого можно избежать, выполнив то, что называется дифференциальным измерением. Большинство осциллографов имеют математическую функцию, которую можно использовать для выполнения математических операций с отображаемым сигналом (формами). Обратите внимание, что это никак не меняет фактический сигнал!

Здесь мы будем использовать функцию вычитания, которая отображает разницу двух выбранных сигналов. Поскольку напряжение – это просто разность потенциалов в двух точках, мы можем подключить один датчик к каждой точке и подключить зажимы заземления к заземлению цепи, как показано на рисунке.

Как измерить ток с помощью осциллографа

Получив разницу между двумя сигналами, мы можем определить ток. Та же самая уловка с аттенюацией, использованная выше, применима и здесь, просто не забудьте изменить оба канала.

Есть несколько недостатков в использовании шунтирующего резистора. Во-первых, это допуск, который может составлять 5%. Второе – это температурный коэффициент. Сопротивление резисторов увеличивается с ростом температуры, что приводит к большему падению напряжения для данного тока. Это особенно плохо с сильноточными шунтирующими резисторами.

Впрочем, вместо шунтов можно использовать специальные токоизмерительные щупы. Готовые токовые пробники (называемые также «токовые клещи»; они зажимаются на проводах без прерывания цепей) доступны на рынке, но вы не увидите, чтобы многие любители использовали их из-за их непомерной стоимости. Эти щупы используют один из двух методов.

Как измерить ток с помощью осциллографа

Первый метод – использование катушки, намотанной на полукруглый ферритовый сердечник. Ток в проводе, вокруг которого зажат щуп, генерирует магнитное поле в феррите. Это в свою очередь вызывает напряжение в катушке. Напряжение пропорционально скорости изменения тока. Интегратор «интегрирует» форму сигнала и выдает выходной сигнал, пропорциональный току. Выходная шкала обычно составляет от 1 мВ до 1 В на усилитель.

Второй метод использует датчик Холла, зажатый между двумя ферритовыми полукругами. Датчик Холла выдает напряжение, пропорциональное току.

Впрочем, есть еще один быстрый и «грязный» метод. Этот метод не требует никаких дополнительных компонентов, кроме осциллографа и щупа.

Как измерить ток с помощью осциллографа

Этот метод очень похож на использование токового датчика. Обмотайте провод заземления датчика вокруг провода, несущего измеряемый ток, а затем подключите зажим заземления к наконечнику датчика. Произведенное напряжение также будет пропорционально скорости изменения тока, и вам необходимо выполнить некоторую математическую функцию для формы сигнала (а именно, интеграцию; большинство осциллографов имеют эту функцию в меню «математика»), чтобы интерпретировать сигнал как ток.

Говоря языком электриков, закороченный щуп образует проволочную петлю, которая действует как трансформатор тока, как показано на рисунке.

Как измерить ток с помощью осциллографа

Вот такие несколько методов измерения изменения формы тока с помощью осциллографа. Самый простой из них – использование токового шунта и измерение напряжения на нем.

Источник

Цифровой осциллограф для начинающих. Часть II.

Вступление

Главный вопрос, на который следует ответить: «что можно измерить с помощью осциллографа?». Э тот прибор нужен для изучения сигналов в электрических цепях. Их формы, амплитуды, частоты. По полученным данным можно сделать вывод и о других параметрах изучаемой конструкции. Значит с помощью осциллографа в основном можно (я не говорю про функции супер-современных приборов):

  • Определить форму сигнала
  • Определить частоту и период сигнала
  • Измерить амплитуду сигнала
  • Не напрямую, но измерить ток тоже можно (закон Ома в руки)
  • Определить угол сдвига фазы сигнала
  • Сравнивать сигналы между собой (если прибор позволяет)
  • Определять АЧХ
  • Забыл что-то упомянуть? Напомните в комментариях!

Все дальнейшие примеры делались с расчетом на аналоговый осциллограф. Для цифрового всё тоже самое, но больше умеет, чем аналоговый и в определённых вопросах снимает необходимость думать там, где можно просто показать цифру. Хороший инструмент таким и должен быть.

Итак, перед работой следует подготовить прибор: поставить на стол, подключить к сети =) Да ладно, шучу. Но если есть возможность, то следует его заземлить. Если есть встроенный калибратор, то по инструкции к прибору надо его откалибровать. (подсказка: инструкции есть в сети).

Читайте также:  Как проверить напряжение акб вольтметром

Подключать свой осциллограф к исследуемой цепи ты будешь с помощью щупа. Это такой коаксильный провод, на одном конце которого разъем для подключения к осциллографу, а на втором щуп и заземление для подключения к исследуемой цепи. Какой попало провод в качестве щупа использовать нельзя. Только специальные щупы. Иначе вместо реальной картины дел увидишь чушь.

Цифровой осциллограф для начинающих. Часть II.

Я не буду рассматривать каждый регулятор осциллографа подробно. В сети есть море таких обзоров. Давай лучше учиться как проводить любительские измерения: будем определять амплитуду, частоту и период сигнала, форму, полосу пропускания усилителя, частоту среза фильтра, уровень пульсаций источника питания и т.д. Остальные хитрости и приёмы придут с практикой. Тебе понадобится осциллограф и генератор сигнала.

Виды сигналов

Буду говорить без барских штучек, по-мужицки. На экране осциллографа ты будешь видеть либо синусоидальный сигнал, либо пилу, либо прямоугольнички, либо треугольный сигнал, либо просто какой-нибудь безымянный график.

Цифровой осциллограф для начинающих. Часть II.

Все виды сигналов не перечесть. Да и сами сигналы не знают, что относятся к какому-то там виду. Так что твоя задача не названия запоминать, а смотреть на экран и быстро соображать, что означает увиденное на нём, какой процесс идёт в цепи.

Амплитуда, частота, период

Осциллограф умеет измерять как постоянное, так и переменное напряжение. У всех приборов для этого есть два режима: измерение только переменного сигнала, измерение постоянного и переменного одновременно.

Это значит, что если ты выберешь измерение переменного сигнала и подключишь щуп к батарейке, то на экране прибора ничего не изменится. А если выберешь второй режим и проделаешь тоже самое, то линия на экране прибора сместится приблизительно на 1.6В вверх (величина ЭДС пальчиковой батарейки). Зачем это нужно? Для разделения постоянной и переменной составляющей сигнала!

Пример. Решил ты измерить пульсации в только что собранном источнике постоянного напряжения на 30В. Подключаешь к осциллографу, а луч убежал далеко вверх. Для того, чтобы удобно наблюдать сигнал придется выбрать максимальное значение В/дел на клетку. Но тогда ты пульсаций точно не увидишь. Они слишком малы. Что делать? Переключаешь режим входа на измерение переменного напряжения и крутишь ручку В/Дел на масштаб в разы поменьше. Постоянная составляющая сигнала не пройдет и на экране будут показываться только только пульсации источника питания.

Амплитуду переменного напряжения легко определить зная цену деления В/дел и просто посчитать число клеток по оси ординат, которые занимает этот сигнал от нулевого значения (среднего), до максимального.

Цифровой осциллограф для начинающих. Часть II.

Если посмотреть на экран осциллографа на картинке выше и предположить, что В/дел = 1В, тогда амплитуда синусоиды будет 1.3В.

А если предположить, что Время/дел (развертка) установлено в 1 миллисекунду, тогда период этой синусоиды будет занимать 4 клетки, а зачит период T = 4 мс. Легко? Давай теперь вычислим частоту этой синусоиды. Частота и период связаны формулой: F = 1/T (Т в секундах). Следовательно F = 1/ (4*10-3) и равняется 250 Гц.

Конечно, это очень грубая прикидка, которая годится только для вот таких чистеньких и красивых сигналов. А если подать вместо чистой синусоиды какую-нибудь музыкальную композицию, то в ней будет множество разных частот и на глазок уже не прикинешь. Чтобы определить какие частоты входят в эту композицию потребуется анализатор спектра. А это уже другой прибор.

Измерение частоты

Как я уже писал выше, с помощью осциллографа можно измерять и частоту. А ещё можно не просто измерить частоту какого-нибудь синусоидального сигнала, а даже сравнить частоты двух сигналов, к примеру, с помощью фигур Лиссажу.

Это очень удобно, когда хочется, например, откалибровать собранный своими руками генератор сигналов, а частотомера под руками нет. Тогда и приходят на помощь фигуры Лиссажу. Жаль не все аналоговые осциллографы могут их показывать.

Сдвиг фаз

Частенько бывает так, что фаза тока и фаза напряжения расходятся. Например, после прохождения через конденсатор, индуктивность или целую цепь. И если у тебя есть двухканальный осциллограф, то легко можно посмотреть как сильно отличаются фазы тока и напряжения (А если есть современный цифровой, то там есть даже специальная функция для измерения сдвига фаз. Круто!). Для этого следует подключить осциллограф вот таким образом:

Источник