Меню

Как найти дельта тока в физике

Дельта — буква, знак и его происхождение, применение в науке

В данной статье поговорим о знаке Дельта — что он из себя представляет, в каких сферах применяется и для чего вообще используется. Также вы узнаете, как выглядит знак и как его можно вставить в текст в такой программе, какой является Ворд из Майкрософт Оффис.

Знак Дельта применяется во многих сферах жизнедеятельности, к примеру, в физике, текстовых редакторах, формулах и других сферах. Чаще всего именно при печати учебной литературы, докладов и других видов документов применяют знак дельта, который имеется в разных версиях ВОРД от Виндовс и других приложениях для создания документов текстового формата на ПК.

Обозначение дельта знака

О происхождения знака

Появление символа связано с греческими языком, но сама буква появилась от стародревнего финийского языка, в котором именовалась – далет, что обозначало («вход в дверь»). Выглядела «далет» как перевернутый влево равнобедренный треугольник. В греческом алфавите, была такая буква. Позже эта буква дала начало всем известной буквы латинского набора – D , которая и поныне есть во многих алфавитных рядах разных государств мира, к примеру, английский алфавит ее содержит.

Буква, которая служит аналогом в русском алфавите – Д, а вот символ везде одинаков и изображается, как геометрическая фигура, а именно треугольник с равными сторонами (Δ). Эта версия является заглавной, прописная версия выглядит немного иначе, представляя собой кружок с хвостиком, похожий на обозначение в физике плотности (δ).

Значение буквы

Где применяется данный символ?

Кроме использования в правописании греков, символ начали активно применять в математике, геометрии, алгебре, физике, химии и географии.

Поговорим отдельно о применении дельта в каждых научных сферах:

  1. География. Дельта подразумевает в географическом смысле начальную часть реки, океана или моря, имеет смысловое, нежели символическое, буквенное понятие и восприятие. Почему именно область впадения реки принято так называть? Все просто, дело в форме данной области, если сделать снимок сверху, то отток реки будет иметь форму правильного треугольника, а символ дельта, как раз представляет собой такой геометрический объект. Ярчайшим представителем с выраженной дельтой является река Нил (Египет), которая впадает в Средиземное море, а также Амазонка с ее впадением в океан Атлантики.
  2. Применение в математике, алгебре, геометрии. Очень часто знак применяют в математической сфере для таких целей, как: 1) Приращение аргумента подразумевает под дельтой измененную переменную. К примеру, сложим 5 и 4 в итоге получим число 9. Дельтой будет являться увеличение 5 на 4. 2) Применение в теории вероятности по системе Лапласа. Такой метод преподают в ВУЗах, а не школах и в нем используют такой знак. 3) А также символ применяется при обозначении прямой и обратной матриц. 4) Дельта, буква, применяемая в написании формул (как письменным методом, так и через компьютер);
  3. Также в математике применяют прописную версию дельта. А именно, такой символ обозначает производную от числа. Обозначение выглядит следующим образом — δy/δx. 2) Используется для описания бесконечной функции-дельта. Бесконечная функция возможна, если все значения аргумента равны нулю. 3) При помощи δ еще обозначают символику Кронекера, символ равен всегда 1, при условии того, что все его индексы равны, либо нулевые при заданных условиях.
  4. Физика, астрономия, космогония. Граничащие меж собой научные дисциплины, все особо важные и по-своему интересные, в каждой из дисциплин можно встретить знак дельта. В физике связь всех производных осуществляется при помощи формул с интеграцией. К примеру, формула скорости, которая выглядит следующим образом — δS к δt , является отношением одной части к другой. В данном случае расстояние, которое преодолел объект, соотносится со временем, затраченном на преодоление. Вторая производная – это ускорение, где тоже важна взаимосвязь одной составляющей формулы к другой. В космологии и астрономии применяют формулы, расчеты с данным символом, только в прописном варианте.

Дельта знак

Как ввести в «Ворд»?

Для вставки символа заходим в верхние меню редактора и ищем колонку «Вставка», наводим на колонку курсором мыши без нажатия правой кнопки. Высвечивается несколько наименования разделов, необходимо нажать на «Символ» , где можно путем перелистывания за счет колеса мыши искать необходимый знак, либо в строке поиска выбрать категорию (статистические или математические) и найти знак. Прописной или заглавный символ высветится в рабочей области окна вставки , вам только стоит нажать правой кнопкой мыши «вставить» или «окей».

Источник

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Слободянюк А.И. Физика 10/12.7

§12. Постоянное магнитное поле

12.7 Расчет индукции магнитного поля.

Закон Био-Саварра-Лапласа и принцип суперпозиции позволяют рассчитать индукцию магнитного поля \(

\vec B\) , создаваемого произвольной системой электрических токов, в произвольной точке пространства. Для этого необходимо разбить все токи на бесконечно малые участки \(

(I \Delta \vec l)_k\) , записать выражения для векторов для индукции поля \(

(\Delta \vec B)_k\) , создаваемых этими элементами (пользуясь законом Био-Саварра-Лапласа) и просуммировать полученные выражения (что позволяет принцип суперпозиции) для всех участков тока

Img Slob-10-12-029.jpg

Рассмотрим еще раз участок проводника с током (Рис. 29) . Выражение для элемента тока \(

I \Delta \vec l\) записывается также в виде \(

I \Delta \vec l = \vec j S \Delta l = \vec j \Delta V\) . В том случае, когда электрические токи не являются линейными, а пространственно распределенными (то есть текут не только по тонким проводам), выражение для элемента тока \(

I \Delta \vec l\) следует заменить эквивалентным \(

Читайте также:  Схема с общим эмиттером выходной ток

\vec j \Delta V\) и провести суммирование по всем элементам объема., где протекают электрические токи.

Конечно, такое суммирование часто представляет собой громоздкую математическую задачу (в конце концов, для его выполнения можно воспользоваться компьютером), но, с физической точки зрения, изложенный метод дает полное решение задачи.

Рассмотрим несколько примеров расчета индукции магнитного поля по изложенной выше методике.

12.7.1 Магнитное поле кругового тока.

Img Slob-10-12-030.jpg

Пусть постоянный электрический ток силой I протекает по плоскому круглому контуру радиуса R. Найдем индукцию поля в центре кольца в точке O (Рис. 30). Мысленно разобьем кольцо на малые участки, которые можно считать прямолинейными, и применим закон Био-Саварра-Лапласа для определения индукции поля, создаваемого этим элементом, в центре кольца. В данном случае вектор элемента тока \(

(I \Delta \vec l)_k\) и вектор \(

\vec r_k\) , соединяющий данный элемент с точкой наблюдения (центр кольца), перпендикулярны, поэтому \(\sin \alpha = 1\) . Вектор индукции поля, созданного выделенным участком кольца, направлен вдоль оси кольца, а его модуль равен

Для любого другого элемента кольца ситуация абсолютно аналогична – вектор индукции также направлен по оси кольца, а его модуль определяется формулой (1). Поэтому суммирование этих векторов выполняется элементарно и сводится к суммированию длин участков кольца

Img Slob-10-12-031.jpg

Усложним задачу — найдем индукцию поля в точке A, находящейся на оси кольца на расстоянии z от его центра (Рис. 31). По-прежнему, выделяем малый участок кольца \(

(I \Delta \vec l)_k\) и строим вектор индукции поля \(

(\Delta \vec B)_k\) , созданным этим элементом, в рассматриваемой точке. Этот вектор перпендикулярен вектору \(

\vec r\) , соединяющему выделенный участок с точкой наблюдения. Векторы \(

(I \Delta \vec l)_k\) и \(

\vec r_k\) , как и ранее, перпендикулярны, поэтому \(\sin \alpha = 1\) . Так кольцо обладает осевой симметрией, то суммарный вектор индукции поля в точке A должен быть направлен по оси кольца. К этому же выводу о направлении суммарного вектора индукции можно прийти, если заметить, что каждому выделенному участку кольца имеется симметричный ему с противоположной стороны, а сумма двух симметричных векторов направлена вдоль оси кольца. Таким образом, для того чтобы определить модуль суммарного вектора индукции, необходимо просуммировать проекции векторов на ось кольца. Эта операция не представляет особой сложности, если учесть, расстояния от всех точек кольца до точки наблюдения одинаковы \(

r = r_k = \sqrt\) , а также одинаковы углы φ между векторами \(

(\Delta \vec B)_k\) и осью кольца. Запишем выражение для модуля искомого суммарного вектора индукции

Из рисунка следует, что \(

\cos \varphi = \frac\) , с учетом выражения для расстояния r, получим окончательное выражение для вектора индукции поля

Как и следовало ожидать, в центре кольца (при z = 0) формула (3) переходит в полученную ранее формулу (2).

Задания для самостоятельной работы.

  1. Постройте график зависимости индукции поля (3) от расстояния до центра кольца.
  2. Сравните полученную зависимость (3) с выражением для модуля напряженности электрического поля, создаваемого равномерно заряженным кольцом (§9.6). Объясните возникшие принципиальные различия между этими зависимостями.

Img Slob-10-12-032.jpg

Используя общий рассматриваемый здесь метод, можно рассчитать индукцию поля в произвольной точке. Рассматриваемая система обладает осевой симметрией, поэтому достаточно найти распределение поля в плоскости, перпендикулярной плоскости кольца и проходящей через его центр. Пусть кольцо лежит в плоскости xOy (рис.32), а поле рассчитывается в плоскости yOz. Кольцо следует разбить на малые участки, видимые из центра под углом Δφ и просуммировать поля создаваемые этими участками. Можно показать (попробуйте проделать это самостоятельно), что компоненты вектора магнитной индукции поля, создаваемого одним выделенным элементом тока, в точке с координатами (y,z) рассчитываются по формулам:

Необходимое суммирование не может быть проведено аналитически, так как при переходе от одного участка кольца к другому изменяются расстояния до точки суммирования. Поэтому «простейший» способ провести такое суммирование – использовать компьютер.

Если же известно значение вектора индукции (или хотя бы имеется алгоритм его расчета) в каждой точке, то можно построить картину силовых линий магнитного поля. Очевидно, что алгоритм построения силовых линий векторного поля не зависит от его физического содержания, а такой алгоритм был кратко рассмотрен нами при изучении электростатики.

Img Slob-10-12-033.jpg

На рис. 33 картина силовых линий рассчитана при разбиении кольца на 20 частей, этого оказалось вполне достаточно, так как и при 10 интервалах разбиения получался практически тот же рисунок.

Рассмотрим выражение для индукции поля на оси кольца на расстояниях значительно больших радиуса кольца z >> R. В этом случае формула (3) упрощается и приобретает вид

где \(I \pi R^2 = IS = p_m\) — произведение силы тока на площадь контура, то есть магнитный момент кольца. Эта формула совпадает (если как обычно, заменить μ в числителе на ε в знаменателе) с выражением для напряженности электрического поля диполя на его оси.

Img Slob-10-12-034.jpg

Такое совпадение не случайно, более того, можно показать, что подобное соответствие справедливо для любой точки поля, находящейся на больших расстояниях от кольца. Фактически малый контур с током является магнитным диполем (два одинаковых малых противоположно направленных элемента тока) – поэтому его поле совпадает с полем электрического диполя. Чтобы ярче подчеркнуть этот факт, на рис. 34 приведена картина силовых линий магнитного поля кольца, на больших расстояниях от него (сравните с аналогичной картиной для поля электрического диполя).

12.7.2 Магнитное поле прямого тока.

Img Slob-10-12-035.jpg

Рассчитаем индукцию магнитного поля, создаваемого бесконечным [1] проводником, по которому протекает электрический ток силой I (Рис. 35) Методика расчет остается прежней: мысленно разбиваем проводник на малые участки \(

Читайте также:  Тока в волосах что это

I \Delta \vec l_k\). Согласно закона Био-Саварра-Лапласа в произвольной точке A, находящейся на расстоянии R от проводника, произвольный элемент тока создает магнитное поле, вектор индукции которого \(

(\Delta \vec B)_k\) направлен перпендикулярно плоскости, содержащей проводник и рассматриваемую точку (на Рис. 35 — перпендикулярно плоскости рисунка), модуль этого вектора равен

где rk — расстояние от выбранного участка проводника до точки наблюдения, αk — угол между проводником и направлением от элемента тока до точки наблюдения.

Img Slob-10-12-036.jpg

Договоримся об еще одном общепринятом соглашении. Достаточно часто приходится изображать векторы, перпендикулярные плоскости рисунка. В этом случае эти векторы изображаются в виде (рис. 36): небольшого кружка с точкой в центре, если вектор направлен «на нас» (видно «острие» вектора); кружка с перекрестием, если вектор направлен от нас (видно «оперение» вектора).

Векторы поле, созданных всеми другими участками проводника, направлены также, поэтому суммирование векторов в данном случае сводится к суммированию их модулей. Но даже вычислить сумму модулей не просто, так как для различных участков проводника расстояния rk и αk различны. Тем не менее, такое суммирование выполнимо, его результат выражается формулой, определяющей величину индукции магнитного поля бесконечного прямого тока

здесь не приведено вычисление последней суммы (которая равна \(

\sum_k \frac<\Delta l_k> \sin \alpha_k = \frac<2>\)), поверьте пока в справедливость полученного выражения, хотя бы потому, что оно имеет богатый физический смысл. Во-первых, эта формула совпадает с выражением для напряженности электрического поля, создаваемого бесконечной прямой равномерно заряженной нитью; во-вторых, оно соответствует результату опытов А.М. Ампера по изучению взаимодействия параллельных токов. Действительно, если один проводник создает магнитное поле, индукция которого обратно пропорциональна расстоянию до проводника, то на второй проводник действует сила Ампера, пропорциональная индукции поля, то есть обратно пропорциональная расстоянию между проводниками.

Дадим теперь строгий вывод формулы для суммы, фигурирующей в выражении (2). Проще всего она выводится с помощью операции интегрирования, но здесь мы дадим ее геометрический вывод. Для начала с помощью рис. 35 преобразуем каждое слагаемое этой формулы \(

\frac<\Delta l_k> \sin \alpha_k\) . Заметим, что произведение \(

\Delta l_k \sin \alpha_k\) равно длине отрезка CD, перпендикулярного вектору \(

\Delta l_k \sin \alpha_k = |CD|\) . Отношение же длины этого отрезка к расстоянию rk для малых длин элементов тока равно малому углу Δαk, под которым виден выделенный участок проводника

\frac<\Delta l_k> \sin \alpha_k = \frac<|CD|> = \Delta \alpha_k\) (3)

( точнее, это отношение равно тангенсу угла, который для малых углов равен самому углу, измеренному в радианах). Из того же рисунка следует, что отношение \(

\frac <\sin \alpha_k>= R\) равно расстоянию от точки наблюдения до проводника и не зависит от выбора участка проводника. С учетом этого соотношения и формулы (2) получим

Таким образом, вычисление суммы (2) сводится к вычислению суммы \(

\sum_k \Delta \alpha_k \sin \alpha_k\) , в которой все углы являются малыми (поэтому число слагаемых велико), пусть углы αk изменяются от нуля до некоторого предельного значения αmax.

Img Slob-10-12-037.jpg

Для вычисления этой суммы применим искусственный прием (он встретится нам и в дальнейшем). Возьмем окружность (Рис. 37) радиуса R и разобьем ее точками C, C1, C2, …, CN на малые участки, угловой размер каждого равен Δα.

Хорды, которые образованы точками разбиения будем рассматривать как векторы \(

\vec a_0 = \overrightarrow , \vec a_1 = \overrightarrow , \ldots, \vec a_k = \overrightarrow >, \ldots\) . Сумма этих векторов очевидна – это вектор \(

\vec A\) , соединяющий начальную и конечную точки разбиения окружности:

\sum_k \vec a_k = \overrightarrow = \vec A\) . (4)

Теперь, внимание, если справедливо векторное равенство, то справедливо аналогичное выражение для любой проекции этих векторов. Введем декартовую систему координат с началом в центре окружности, ось Ox которой проходит через начальную точку. Длины построенных вписанных векторов равны \(

|\vec a_k| = R \Delta \alpha_k\) (точнее, это длина дуги, но для малых углов, длина стягивающей хорды стремится к длине дуги). Из рисунка 37 следует, что проекции этого вектора на оси координат равны, соответственно,

a_ = -R \Delta \alpha_k \sin \alpha_k ; a_ = R \Delta \alpha_k \cos \alpha_k\) .

Проецируя равенство (4) на оси координат получим

\begin (\vec A)_x = (\overrightarrow )_x = -|C_0 B| = \sum_k a_ = -\sum_k R \Delta \alpha_k \sin \alpha_k \\ (\vec A)_y = (\overrightarrow )_y = -|C_N B| = \sum_k a_ = \sum_k R \Delta \alpha_k \cos \alpha_k \end \) . (5)

Проекции суммарного вектора \(

\vec A\) на оси координат находятся просто

\begin (\vec A)_x = (\overrightarrow )_x = -|C_0 B| = -(R + R \cos (\pi — \alpha_)) = R(1 — \cos \alpha_) \\ (\vec A)_y = (\overrightarrow )_y = -|C_N B| = R \sin (\pi — \alpha_) = R \sin \alpha_ \end \) . (6)

Сравнивая выражения (5) и (6) получим искомые формулы

\sum_k \sin \alpha_k \Delta \alpha_k = 1 — \cos \alpha_; \sum_k \cos \alpha_k \Delta \alpha_k = \sin \alpha_\) . (7)

Еще раз подчеркнем, что суммирование в этих формулах проводится в пределах изменения угла от нуля до предельного значения αmax.

Осталось принять во внимание, что бесконечный прямой проводник виден из любой точки вне его под углом αmax = π, поэтому искомая сумма выражается формулой

что и требовалось доказать.

Оценим длину «бесконечного» в данном случае проводника – во сколько раз длина проводника должна быть больше расстояния до точки наблюдения, что бы погрешность расчета индукции поля по формуле (2), примененной к проводнику конечной длины, была пренебрежимо малой.

Читайте также:  Градуировка вольтметров переменного тока

Img Slob-10-12-038.jpg

Пусть длина прямого проводника равна l, а индукция поля рассчитывается в точке A, находящейся на расстоянии r (считаем, что r [2]

Такая ошибка будет допущена, если отношение длины проводника к расстоянию до точки наблюдения равно \(

\frac = \frac<2><\varepsilon>\). Так для относительной ошибки ε = 1% искомое отношение равно \(

\frac \approx 15\). Итак, в рассмотренном случае «бесконечность» равна 15.

Примечания

  1. ↑ Конечно, «бесконечно длинный» значит, что его длина значительно превышает расстояние до той точки, где измеряется поле.
  2. ↑ Используя известную приближенную формулу \(

(1 + x)^\beta \approx 1 + \beta x\) (в данном случае \(\beta = \frac<1><2>\)).

Источник

Формула ЭДС

Для поддержания электрического тока в проводнике длительное время, необходимо чтобы от конца проводника, имеющего меньший потенциал (учтем, что носители тока предполагаются положительными зарядами) постоянно убирались доставляемые током заряды, при этом к концу с большим потенциалом заряды постоянно подводились. То есть следует обеспечить круговорот зарядов. В этом круговороте заряды должны перемещаться по замкнутому пути. Движение носителей тока при этом реализуется при помощи сил неэлектростатического происхождения. Такие силы именуются сторонними. Получается, что для поддержания тока нужны сторонние силы, которые действуют на всем протяжении цепи или на отдельных участках цепи.

Определение и формула ЭДС

Скалярная физическая величина, которая равна работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС), действующей в цепи или на участке цепи. ЭДС обозначается $\varepsilon$ . Математически определение ЭДС запишем как:

где A – работа сторонних сил, q – заряд, над которым производится работа.

Электродвижущая сила источника численно равна разности потенциалов на концах элемента, если он разомкнут, что дает возможность измерить ЭДС по напряжению.

ЭДС, которая действует в замкнутой цепи, может бытьопределена как циркуляция вектора напряжённости сторонних сил:

где $\bar^<*>$ — напряженность поля сторонних сил. Если напряженность поля сторонних сил не равна нулю только в части цепи, например, на отрезке 1-2, тогда интегрирование в выражении (2) можно вести только по данному участку. Соответственно, ЭДС, действующая на участке цепи 1-2 определяется как:

Формула (2) дает самое общее определение ЭДС, которое можно использовать для любых случаев.

Закон Ома для произвольного участка цепи

Участок цепи, на котором действуют сторонние силы, называют неоднородным. Для него выполняется равенство:

где U12=IR21 – падение напряжения (или напряжение) на участке цепи 1-2 (I-сила тока); $\varphi_<1>-\varphi_<2>$ – разность потенциалов концов участка; $\varepsilon_12$ – электродвижущая сила, которую содержит участок цепи. $\varepsilon_12$ равна алгебраической сумме ЭДС всех источников, которые находятся на данном участке.

Следует учитывать, что ЭДС может быть положительной и отрицательной. ЭДС называют положительной, если она увеличивает потенциал в направлении тока (ток течет от минуса к плюсу источника).

Единицы измерения

Размерность ЭДС совпадает с размерностью потенциала. Основной единицей измерения ЭДС в системе СИ является: [$\varepsilon$]=В

Примеры решения задач

Задание. Электродвижущая сила элемента равна 10 В. Он создает в цепи силу тока равную 0,4 А. Какова работа, которую совершают сторонние силы за 1 мин?

Решение. В качество основы для решения задачи используем формулу для вычисления ЭДС:

Заряд, который проходит в рассматриваемой цепи за 1 мин. можно найти как:

Выразим из (1.1) работу, используем (1.2) для вычисления заряда, получим:

$$A=\varepsilon I \Delta t$$

Переведем время, данной в условиях задачи в секунды ($\Delta t$ мин=60 с), проведем вычисления:

$A=10 \cdot 0,4 \cdot 60=240$ (Дж)

Ответ. A=240 Дж

Формула ЭДС не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Металлический диск, имеющий радиус a, вращается с угловой скоростью $\omega$, включен в электрическую цепь при помощи скользящих контактов, которые касаются оси диска и его окружности (рис.1). Какой будет ЭДС, которая появится между осью диска и его наружным краем?

Решение. В условиях, которые описаны в задаче, на каждый электрон проводника действует центробежная сила (F) которая является сторонней. Вследствие ее действия, в диске возникает ЭДС и между осью диска и его наружным краем появляется напряжение. Формулу для вычисления центробежной силы запишем как:

где m – масса электрона, r – расстояние от оси диска.Fдействует на заряженную частицу (электрон), следовательноучитывая (2.1), имеем:

где q – заряд электрона.

В соответствии с формулой, определяющей ЭДС участка цепи, получаем:

Ответ. $\varepsilon=\frac a^<2>><2 q>$

Источник



Как рассчитать дельту

Как рассчитать дельту

  • Как рассчитать дельту
  • Как найти разность потенциалов
  • Что такое дельта
  • Справочник по математике для средних учебных заведений, А.Г. Цыпкин, 1983
  • Как найти цену деления шкалыКак найти цену деления шкалы
  • Как определить цену деления шкалыКак определить цену деления шкалы
  • Как посчитать определитель матрицыКак посчитать определитель матрицы
  • Как определить абсолютную погрешность измеренияКак определить абсолютную погрешность измерения
  • Как найти абсолютную погрешностьКак найти абсолютную погрешность
  • Как вычислить погрешности измеренийКак вычислить погрешности измерений
  • Как рассчитать погрешность измеренияКак рассчитать погрешность измерения
  • Как вычислить лгунаКак вычислить лгуна
  • Что такое банковский мультипликаторЧто такое банковский мультипликатор
  • Как посчитать проценты на калькулятореКак посчитать проценты на калькуляторе
  • Как посчитать доли от чего-тоКак посчитать доли от чего-то
  • Как рассчитать среднюю величинуКак рассчитать среднюю величину
  • Как найти лямбдуКак найти лямбду
  • Как рассчитать динамику показателейКак рассчитать динамику показателей
  • Как рассчитать протяженность материкаКак рассчитать протяженность материка
  • Как на калькуляторе посчитать степеньКак на калькуляторе посчитать степень
  • Как вычислить погрешностьКак вычислить погрешность
  • Что такое петля ТихельманаЧто такое петля Тихельмана
  • Как посчитать логарифм на калькулятореКак посчитать логарифм на калькуляторе
  • Как рассчитать мультипликаторКак рассчитать мультипликатор
  • Как рассчитать долю продажКак рассчитать долю продаж

Источник