Меню

Как найти комплексное значение тока

Как найти комплексное значение тока

Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.

Переменным током (напряжением, ЭДС и т.д.) называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, — периодом Т. Для периодического тока имеем

Величина, обратная периоду, есть частота, измеряемая в герцах (Гц):

Диапазон частот, применяемых в технике: от сверхнизких частот (0.01 ¸ 10 Гц – в системах автоматического регулирования, в аналоговой вычислительной технике) – до сверхвысоких (3000 ¸ 300000 МГц – миллиметровые волны: радиолокация, радиоастрономия). В РФ промышленная частота f = 50Гц .

Мгновенное значение переменной величины есть функция времени. Ее принято обозначать строчной буквой:

i — мгновенное значение тока ;

u – мгновенное значение напряжения ;

е — мгновенное значение ЭДС ;

р — мгновенное значение мощности .

Наибольшее мгновенное значение переменной величины за период называется амплитудой (ее принято обозначать заглавной буквой с индексом m ) .

— амплитуда тока;

— амплитуда напряжения;

— амплитуда ЭДС.

Действующее значение переменного тока

Значение периодического тока, равное такому значению постоянного тока, который за время одного периода произведет тот же самый тепловой или электродинамический эффект, что и периодический ток, называют действующим значением периодического тока:

Аналогично определяются действующие значения ЭДС и напряжения.

Синусоидально изменяющийся ток

Из всех возможных форм периодических токов наибольшее распространение получил синусоидальный ток. По сравнению с другими видами тока синусоидальный ток имеет то преимущество, что позволяет в общем случае наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. Только при использовании синусоидального тока удается сохранить неизменными формы кривых напряжений и токов на всех участках сложной линейной цепи. Теория синусоидального тока является ключом к пониманию теории других цепей.

Изображение синусоидальных ЭДС, напряжений
и токов на плоскости декартовых координат

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями, представить в виде векторов на декартовой плоскости или комплексными числами.

Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е1 и е2 соответствуют уравнения:

Значения аргументов синусоидальных функций и называются фазами синусоид, а значение фазы в начальный момент времени ( t =0): и начальной фазой ( ).

Величину , характеризующую скорость изменения фазового угла, называют угловой частотой. Так как фазовый угол синусоиды за время одного периода Т изменяется на рад., то угловая частота есть , где f– частота.

При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз.

Для синусоидальных ЭДС е1 и е2 угол сдвига фаз:

Векторное изображение синусоидально
изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное) с угловой частотой, равной w . Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е1 и е2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени ( t =0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w . Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

Читайте также:  Выпрямитель тока для электролиза

Пусть, например, в точке разветвления цепи (рис. 5) общий ток равен сумме токов и двух ветвей:

Каждый из этих токов синусоидален и может быть представлен уравнением

Результирующий ток также будет синусоидален:

Определение амплитуды и начальной фазы этого тока путем соответствующих тригонометрических преобразований получается довольно громоздким и мало наглядным, особенно, если суммируется большое число синусоидальных величин. Значительно проще это осуществляется с помощью векторной диаграммы.

На рис. 6 изображены начальные положения векторов токов, проекции которых на ось ординат дают мгновенные значения токов для t =0. При вращении этих векторов с одинаковой угловой скоростью w их взаимное расположение не меняется, и угол сдвига фаз между ними остается равным .

Так как алгебраическая сумма проекций векторов на ось ординат равна мгновенному значению общего тока, вектор общего тока равен геометрической сумме векторов токов:

Построение векторной диаграммы в масштабе позволяет определить значения и из диаграммы, после чего может быть записано решение для мгновенного значения путем формального учета угловой частоты: .

Представление синусоидальных ЭДС, напряжений
и токов комплексными числами

Геометрические операции с векторами можно заменить алгебраическими операциями с комплексными числами, что существенно повышает точность получаемых результатов.

Каждому вектору на комплексной плоскости соответствует определенное комплексное число, которое может быть записано в :

тригонометрической или

алгебраической формах.

Например, ЭДС , изображенной на рис. 7 вращающимся вектором, соответствует комплексное число

Фазовый угол определяется по проекциям вектора на оси “+1” и “+j” системы координат, как

В соответствии с тригонометрической формой записи мнимая составляющая комплексного числа определяет мгновенное значение синусоидально изменяющейся ЭДС:

Комплексное число удобно представить в виде произведения двух комплексных чисел:

Параметр , соответствующий положению вектора для t =0 (или на вращающейся со скоростью w комплексной плоскости), называют комплексной амплитудой: , а параметр комплексом мгновенного значения.

Параметр является оператором поворота вектора на угол w t относительно начального положения вектора.

Вообще говоря, умножение вектора на оператор поворота есть его поворот относительно первоначального положения на угол ± a .

Следовательно, мгновенное значение синусоидальной величины равно мнимой части без знака “j” произведения комплекса амплитуды и оператора поворота :

Переход от одной формы записи синусоидальной величины к другой осуществляется с помощью формулы Эйлера:

Если, например, комплексная амплитуда напряжения задана в виде комплексного числа в алгебраической форме:

— то для записи ее в показательной форме, необходимо найти начальную фазу , т.е. угол, который образует вектор с положительной полуосью +1:

Тогда мгновенное значение напряжения:

При записи выражения для определенности было принято, что , т.е. что изображающий вектор находится в первом или четвертом квадрантах. Если , то при (второй квадрант)

а при (третий квадрант)

Если задано мгновенное значение тока в виде , то комплексную амплитуду записывают сначала в показательной форме, а затем (при необходимости) по формуле Эйлера переходят к алгебраической форме:

Следует указать, что при сложении и вычитании комплексов следует пользоваться алгебраической формой их записи, а при умножении и делении удобна показательная форма.

Итак, применение комплексных чисел позволяет перейти от геометрических операций над векторами к алгебраическим над комплексами. Так при определении комплексной амплитуды результирующего тока по рис. 5 получим:

Действующее значение синусоидальных ЭДС, напряжений и токов

В соответствии с выражением (3) для действующего значения синусоидального тока запишем:

Аналогичный результат можно получить для синусоидальных ЭДС и напряжений. Таким образом, действующие значения синусоидальных тока, ЭДС и напряжения меньше своих амплитудных значений в раз:

Поскольку, как будет показано далее, энергетический расчет цепей переменного тока обычно проводится с использованием действующих значений величин, по аналогии с предыдущим введем понятие комплекса действующего значения

1. Основы теории цепей: Учеб. для вузов /Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

Читайте также:  Что такое электрический ток что такое сила тока в каких единицах оно измеряется

2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

1. Какой практический смысл имеет изображение синусоидальных величин с помощью векторов?

2. Какой практический смысл имеет представление синусоидальных величин с использованием комплексных чисел?

3. В чем заключаются преимущества изображения синусоидальных величин с помощью комплексов по сравнению с их векторным представлением?

4. Для заданных синусоидальных функций ЭДС и тока записать соответствующие им комплексы амплитуд и действующих значений, а также комплексы мгновенных значений.

Источник

Комплексные амплитуды, комплексные действующие значения, комплексы действующих значений

Комплексные амплитуды напряжения

U ˙ m = U m e j α u

I ˙ m = I m e j α i

при анализе установившегося синусоидального режима соответствуют сигналам синусоидальной формы напряжения

u(t) = Umcos(ωt + αu)

i(t) = Imcos(ωt + αi).

Комплексные амплитуды представляют векторами на комплексной плоскости, как комплексное число (рис. 21)

A ˙ = A e j γ = A cos γ + j A sin γ = a + j b ,

где модуль (длина вектора)

A = | A ˙ | = a 2 + b 2 ,

γ = a r c t g b a ,

действительная часть комплексного числа

Re A ˙ = A cos γ = a ,

мнимая часть комплексного числа

Im A ˙ = A sin γ = b ,

j 2 = − 1, j ⋅ ( − j ) = − j 2 = − ( − 1 ) = 1, 1 j = j j 2 = j − 1 = − j .

Сопряженное комплексное число

A * = A e − j γ = A cos ( − γ ) + j A sin ( − γ ) = A cos γ − j A sin γ = a − j b ,

где положительный отсчет угла γ производят против часовой стрелки от «правого горизонта».

Комплексные амплитуды используют при обосновании метода комплексных амплитуд для расчета установившегося синусоидального режима

u ( t ) = Re U ˙ m e j ω t = Re U m e j α u e j ω t = Re U m e j ( ω t + α u ) = U m cos ( ω t + α u ) ; i ( t ) = Re I ˙ m e j ω t = Re I m e j α i e j ω t = Re I m e j ( ω t + α i ) = I m cos ( ω t + α i ) ,

где e j ω t – оператор вращения, U ˙ m e j ω t , I ˙ m e j ω t – вращающиеся векторы, поскольку их суммарная фаза γ = ωt + α равномерно увеличивается с увеличением времени t.

Комплексные действующие значения или комплексы действующих значений:

комплексное действующее напряжение или комплекс действующего напряжения

U ˙ = U e j α u = U ˙ m 2 = U m 2 e j α u ,

комплексный действующий ток или комплекс действующего тока

I ˙ = I e j α i = I ˙ m 2 = I m 2 e j α i .

Источник

Комплексный метод расчета цепей синусоидального тока

Широкое распространение на практике получил метод расчета цепей синусои­дального тока, который принято называть комплексным. Сущность ме­тода состоит в том, что синусоидальные токи, напряжения и ЭДС изображаются комплексными числами, а геометрические операции над векторами заменяются алгебраическими операциями над комплексными числами. Этот метод позволяет рассчитывать цепи синусоидального тока алгебраически аналогично цепям посто­янного тока.

2.4.1. Векторное представление синусоидальных величин

Вращающийся вектор, который изображает синусоидальную функцию, можно поместить на комплексную плоскость, в систему перпендикулярных осей: – действительных чисел, – мнимых чисел. Положительные направления осей на комплексной плоскости обозначаются индексами: +1 – ось действительных чи­сел; + – ось мнимых чисел, где = – мнимая единица (рис. 2.17).

Известно, что координаты точки на комплексной плоскости определяются радиусом–вектором этой точки, т.е. вектором, начало которого совпадает с нача­лом координат, а конец находится в точке, соответствующей заданному ком­плексному числу (рис. 2.17 а).

Показательная форма записи

где – модуль; – аргумент или фаза, отсчитываемая от оси +1 против часовой стрелки.

Применив формулу Эйлера, можно получить тригонометрическую и соответ­ственно алгебраическую форму записи комплексного числа:

Заменим в уравнении для показательной формы записи на , а на . Получим комплекс тока

который является символическим (комплексным) изображением функции и называется комплекс мгновенного значения тока.

Комплексы обозначаются теми же буквами, что и их действительные ориги­налы, только с чертой внизу. Модуль комплекса мгновенного значения равен амплитуде синусоидального тока , а его переменный аргумент ( ) явля­ется аргументом изображаемой синусоиды (рис. 2.17 б). Из формулы (2.39) можно записать комплекс тока в тригонометрической форме

а также получить изображение функции (оригинала)

т.е. мгновенное значение тока равно мнимой части комплекса мгновенного значе­ния тока. Ток (2.39) можно представить в виде

где является другим символом, называемым комплексом амплитуд­ного значения. Это аналитическое представление неподвижного вектора, длина которого равна амплитуде тока, а угол между направлениями вектора и осью «+1» на комплексной плоскости равен начальной фазе (рис. 2.17 в). Комплексом дейст­вующего значения называют изображение

Пример 2.2. Записать комплексы действующих значений напряже­ния и тока, если их мгновенные значения представлены уравнениями

Решение. Действующее значение напряжения =200 В, начальная фаза = –120°. В соответствии с определением комплекс действующего значе­ния напряжения

Читайте также:  Как стабилизировать ток в нагрузке

Аналогично для тока = 14,1 А, начальная фаза тока = –60°, а ком­плекс тока

Пример 2.3. Для комплекса действующего значения напряжения

записать мгновенное значение.

Решение. От алгебраической формы переходим к показательной

Комплекс находится во второй четверти комплексной плоскости.

Мгновенное значение напряжения

В заключение рассматриваемого вопроса рекомендуем усвоить следующие очевидные равенства

Отметим, что умножение на оператор означает поворот вектора на 90° про­тив часовой стрелки, а умножение на означает поворот вектора на 90° по часовой стрелке.

2.4.2. Комплекс полного сопротивления и комплекс полной
проводимости. Законы Кирхгофа в комплексной форме

Отношение комплекса напряжения к комплексу тока называется комплек­сом полного сопротивления цепи

Модуль комплексного сопротивления равен полному сопротивлению , его аргумент – углу сдвига фаз . Комплексное сопротивление в алгебраи­ческой форме выглядит следующим образом

Следовательно, активное сопротивление есть вещественная часть, а реактив­ное – мнимая часть комплекса полного сопротивления цепи. Частные слу­чаи формулы (2.42) приведены в таблице 2.1

Участок электрической цепи Комплексное сопротивление

Величина, обратная комплексу полного сопротивления, называется комплек­сом полной проводимости

где , , – полная, активная, реактивная проводимости цепи соответственно.

Для цепей синусоидального тока законы Кирхгофа формулируются так же, как и для цепей постоянного тока, но только для комплексных значений токов и напряжений. Первый закон Кирхгофа: «алгебраическая сумма комплексов тока в узле электрической цепи равна нулю»

Второй закон Кирхгофа: «в любом замкнутом контуре электрической цепи алгебраическая сумма комплексных ЭДС равна алгебраической сумме комплекс­ных напряжений на всех пассивных элементах этого контура»

Таким образом, при комплексном представлении всех параметров методы расчета сложных цепей постоянного тока, основанные на законах Ома и Кирхгофа (контурных токов, узловых потенциалов, эквивалентного генератора, преобразо­вания и др.), можно применять для расчета цепей синусоидального тока.

Дата добавления: 2017-01-16 ; просмотров: 15058 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник



Комплексное напряжение

date image2020-04-07
views image1873

facebook icon vkontakte icon twitter icon odnoklasniki icon

Символический метод расчета

Электрических цепей переменного

Синусоидального тока

КОМПЛЕКСНЫЕ ТОКИ И НАПРЯЖЕНИЯ

Математическое введение (формула Эйлера)

Между синусоидальными и экспоненциальными (показательными) функциями существует простая зависимость, которая получила название формулы Эйлера,

,

где — мнимая единица. В частности, если ,

.

Формула Эйлера применяется для перевода комплексных чисел из показательной формы в алгебраическую. В показательной форме комплексное число содержит модуль z и аргумент :

.

В алгебраической форме комплексное число имеет действительную часть x и мнимую часть y:

.

, . (4.1)

Решив эти уравнения относительно и , получаем формулы для перевода комплексных чисел из алгебраической формы в показательную

, . (4.2)

В задачах электротехники пределы изменения обычно выбирают в пределах от до и вычисляют по формуле

Для запоминания формул (4.1) и (4.2), предназначенных для перевода комплексных чисел из одной формы записи в другую, можно использовать треугольник, похожий на треугольник сопротивлений (рис. 4.1).

Рис. 4.1. Треугольник, иллюстрирующий зависимости между действительной и мнимой частями комплексного числа, с одной стороны, и его модулем и аргументом, с другой стороны

Комплексный ток

В электрической цепи с источником синусоидального напряжения протекают синусоидальные токи. Пусть один из них равен

,

где I — действующее значение тока. Запишем соответствующую косинусоидальную функцию

.

Затем с помощью формулы Эйлера составим комплексную функцию

.

Множитель одинаков для всех токов цепи. Комплексное число характеризует ток рассматриваемой ветви.

И 4.1 Определение. Комплексное число называют комплексным током. Модуль комплексного тока равен действующему значению синусоидального тока, аргумент комплексного тока – начальной фазе синусоидального тока.

Комплексное напряжение

Синусоидальному напряжению можно сопоставить комплексное напряжение аналогично тому, как синусоидальному току был поставлен в соответствие комплексный ток:

.

Здесь U – действующее значение напряжения; — его начальная фаза.

И 4.2 Определение. Комплексное число называют комплексным напряжением. Модуль комплексного напряжения равен действующему значению синусоидального напряжения, аргумент комплексного напряжения – начальной фазе синусоидального напряжения.

Преобразование синусоидальных токов и напряжений в комплексные числа (комплексные токи и напряжения) позволяет преобразовать тригонометрические уравнения, составленные по законам Кирхгофа для синусоидальных токов и напряжений, в алгебраические уравнения для комплексных токов и напряжений. Благодаря тому, что в уравнениях для комплексных токов можно опустить множитель , общий для всех токов, решение алгебраических уравнений оказывается не столь громоздким, как решение тригонометрических уравнений. Решив систему уравнений Кирхгофа относительно комплексных токов, можно затем по комплексным токам определить синусоидальные токи.

Источник