Меню

Как найти силу тока если дана плотность

4.1. Сила тока и плотность тока в проводнике

В проводниках часть валентных электронов не связана с определенными атомами и может свободно перемещаться по всему его объему. В отсутствие приложенного к проводнику электрического поля такие свободные электроны — электроны проводимости — движутся хаотично, часто сталкиваясь с ионами и атомами, и изменяя при этом энергию и направление своего движения. Через любое сечение проводника в одну сторону проходит столько же электронов, сколько и в противоположную. Поэтому результирующего переноса электронов через такое сечение нет, и электрический ток равен нулю. Если же к концам проводника приложить разность потенциалов, то под действием сил электрического поля свободные заряды в проводнике начнут двигаться из области большего потенциала в область меньшего — возникнет электрический ток. Исторически сложилось так, что за направление тока принимают направление движение положительных зарядов, которое соответствует их переходу от большего потенциала к меньшему.

Электрический ток характеризуется силой тока I (рис. 4.1).

Сила тока есть скалярная величина, численно равная заряду переносимому через поперечное сечение проводника в единицу времени

Рис. 4.1. Сила тока в проводнике

Согласно (4.1), сила тока в проводнике равна отношению заряда , прошедшего через поперечное сечение проводника за время к этому времени.

Замечание: В общем случае сила тока через некоторую поверхность равна потоку заряда через эту поверхность.

Если сила тока с течением времени не изменяется, то есть за любые равные промежутки времени через любое сечение проводника проходят одинаковые заряды, то такой ток называется постоянным, и тогда заряд, протекший за время t, может быть найден как (рис. 4.2)

Рис. 4.2. Постоянный ток, протекающий через разные сечения проводника

Величина , численно равная заряду, проходящему через единицу площади поперечного сечения проводника за единицу времени, называется плотностью тока.

С учетом определения силы тока плотность тока через данное сечение может быть выражена через силу тока , протекающего через это сечение

При равномерном распределении потока зарядов по всей площади сечения проводника плотность тока равна

В СИ единицей измерения силы тока является ампер (А). В СИ эта единица измерения является основной.

Уравнение (4.1) связывает единицы измерения силы тока и заряда

В СИ единицей измерения плотности тока является ампер на квадратный метр (А/м 2 ):

Это очень малая величина, поэтому на практике обычно имеют дело с более крупными единицами, например

Плотность тока можно выразить через объемную плотность зарядов и скорость их движения v (рис. 4.3).

Рис. 4.3. К связи плотности тока j с объемной плотностью зарядов и дрейфовой скоростью v носителей заряда. За время dt через площадку S пройдут все заряды из объема dV = vdt S

Полный заряд, проходящий за время dt через некоторую поверхность S, перпендикулярную вектору скорости v, равен

Так как dq/(Sdt) есть модуль плотности тока j, можно записать

Поскольку скорость v есть векторная величина, то и плотность тока также удобно считать векторной величиной, следовательно

Здесь плотность заряда, скорость направленного движения носителей заряда.

Замечание: Для общности использован индекс , так как носителями заряда, способными участвовать в создании тока проводимости, могут быть не только электроны, но, например, протоны в пучке, полученном из ускорителя или многозарядные ионы в плазме, или так называемые «дырки» в полупроводниках «р» типа, короче, любые заряженные частицы, способные перемещаться под воздействием внешних силовых полей.

Кроме того, удобно выразить плотность заряда через число носителей заряда в единице объема — (концентрацию носителей заряда) . В итоге получаем:

Следует подчеркнуть, что плотность тока, в отличие от силы тока — дифференциальная векторная величина. Зная плотность тока, мы знаем распределение течения заряда по проводнику. Силу тока всегда можно вычислить по его плотности. Соотношение (4.4) может быть «обращено»: если взять бесконечно малый элемент площади , то сила тока через него определится как . Соответственно, силу тока через любую поверхность S можно найти интегрированием

Что же понимать под скоростью заряда v, если таких зарядов — множество, и они заведомо не движутся все одинаково? В отсутствие внешнего электрического поля, скорости теплового движения носителей тока распределены хаотично, подчиняясь общим закономерностям статистической физики. Среднее статистическое значение ввиду изотропии распределения по направлениям теплового движения. При наложении поля возникает некоторая дрейфовая скорость — средняя скорость направленного движения носителей заряда:

которая будет отлична от нуля. Проведем аналогию. Когда вода вырывается из шланга, и мы интересуемся, какое ее количество поступает в единицу времени на клумбу, нам надо знать скорость струи и поперечное сечение шланга. И нас совершенно не волнуют скорости отдельных молекул, хотя они и очень велики, намного больше скорости струи воды, как мы убедились в предыдущей части курса.

Таким образом, скорость в выражении (4.7) — это дрейфовая скорость носителей тока в присутствии внешнего электрического поля или любого другого силового поля, обуславливающего направленное (упорядоченное) движение носители заряда. Если в веществе возможно движение зарядов разного знака, то полная плотность тока определяется векторной суммой плотностей потоков заряда каждого знака.

Как уже указывалось, в отсутствие электрического поля движение носителей заряда хаотично и не создает результирующего тока. Если, приложив электрическое поле, сообщить носителям заряда даже малую (по сравнению с их тепловой скоростью) скорость дрейфа, то, из-за наличия в проводниках огромного количества свободных электронов, возникнет значительный ток.

Поскольку дрейфовая скорость носителей тока создается электрическим полем, логично предположить пропорциональность

так что и плотность тока будет пропорциональна вектору напряженности (рис. 4.4)

Более подробно этот вопрос обсуждается в Дополнении

Входящий в соотношение (4.9)

Коэффициент пропорциональности называется проводимостью вещества проводника.

Проводимость связывает напряженность поля в данной точке с установившейся скоростью «течения» носителей заряда. Поэтому она может зависеть от локальных свойств проводника вблизи этой точки (то есть от строения вещества), но не зависит от формы и размеров проводника в целом. Соотношение (4.9) носит название закона Ома для плотности тока в проводнике (его называют также законом Ома в дифференциальной форме).

Рис. 4.4. Силовые линии электрического поля совпадают с линиями тока

Чтобы понять порядки величин, оценим дрейфовую скорость носителей заряда в одном из наиболее распространенных материалов — меди. Возьмем для примера силу тока I = 1 А, и пусть площадь поперечного сечения провода составляет
1 мм 2 = 10 –6 м 2 . Тогда плотность тока равна j = 10 6 А/м 2 . Теперь воспользуемся соотношением (4.7)

Носителями зарядов в меди являются электроны (е = 1.6·10 -19 Кл), и нам осталось оценить их концентрацию . В таблице Менделеева медь помещается в первой группе элементов, у нее один валентный электрон, который может быть отдан в зону проводимости. Поэтому число свободных электронов примерно совпадает с числом атомов. Берем из справочника плотность меди — r Cu=8,9·10 3 кг/м3. Молярная масса меди указана в таблице Менделеева — MCu = 63,5·10 –3 кг/моль. Отношение

Читайте также:  Почему переменный ток называется синусоидальным

— это число молей в 1 м 3 . Умножая на число Авогадро Na = 6,02·10 23 моль –1 , получаем число атомов в единице объема, то есть концентрацию электронов

Теперь получаем искомую оценку дрейфовой скорости электронов

Для сравнения: скорости хаотического теплового движения электронов при 20°С в меди по порядку величины составляют 10 6 м/с, то есть на одиннадцать порядков величины больше.

Возьмем произвольную воображаемую замкнутую поверхность S, которую в разных направлениях пересекают движущиеся заряды. Мы видели, что полный ток через поверхность равен

где dq — заряд, пересекающий поверхность за время dt. Обозначим через q ‘ заряд, находящийся внутри поверхности. Его можно выразить через плотность заряда , проинтегрированную по всему объему, ограниченному поверхностью

Из фундаментального закона природы — закона сохранения заряда — следует, что заряд dq, вышедший через поверхность за время dt, уменьшит заряд q ‘ внутри поверхности точно на эту же величину, то есть dq ‘ = –dq или

Подставляя сюда написанные выше выражения для скоростей изменения заряда внутри поверхности , получаем математическое соотношение, выражающее закон сохранения заряда в интегральной форме

Напомним, что интегрирования ведутся по произвольной поверхности S и ограниченному ею объему V.

Источник

Физика

Электрический ток является:

  • постоянным , если его сила не изменяется с течением времени;
  • непостоянным , если его сила изменяется с течением времени.

Средняя сила непостоянного тока определяется формулой

где Q — заряд, перенесенный носителями тока через поперечное сечение проводника, расположенное перпендикулярно скорости носителей тока, за промежуток времени Δ t .

При равномерном изменении силы тока среднюю силу тока рассчитывают по формуле

где I 1 — значение силы тока в начальный момент времени; I 2 — значение силы тока в конечный момент времени.

Сила постоянного тока в любой момент времени имеет одинаковую величину:

где Q — заряд, перенесенный носителями тока через поперечное сечение проводника, расположенное перпендикулярно скорости носителей тока, за промежуток времени Δ t .

Сила тока является скалярной величиной .

За направление тока условно принято направление движения положительных зарядов .

В Международной системе единиц сила тока измеряется в амперах (1 А).

Заряд , перенесенный носителями тока через поперечное сечение проводника, расположенное перпендикулярно скорости носителей тока, за некоторый промежуток времени, представляет собой произведение

где N — число носителей тока, прошедших через поперечное сечение проводника за указанное время; q — модуль заряда носителя тока (если носителями тока являются электроны, то q = 1,6 ⋅ 10 −19 Кл).

Заряд, перенесенный носителями тока через поперечное сечение проводника, расположенное перпендикулярно скорости носителей тока, за некоторый промежуток времени Δ t , может быть рассчитан следующим образом:

  • для постоянного тока —

где I — сила постоянного тока;

  • для непостоянного тока — двумя способами:

где 〈 I 〉 — средняя сила тока;

2) графически — как площадь криволинейной трапеции (рис. 8.1).

В Международной системе единиц заряд измеряется в кулонах (1 Кл).

Сила тока определяется скоростью, концентрацией и зарядом носителей тока, а также площадью поперечного сечения проводника:

где q — модуль заряда носителя тока (если носителями тока являются электроны, то q = 1,6 ⋅ 10 −19 Кл); n — концентрация носителей тока, n = = N / V ; N — число носителей тока, прошедших через поперечное сечение проводника (расположенное перпендикулярно скорости движения носителей тока) за время Δ t , или число носителей тока в объеме V = Sv Δ t (рис. 8.2); S — площадь поперечного сечения проводника; v — модуль скорости движения носителей тока.

Плотность тока определяется силой тока, проходящего через единицу площади поперечного сечения проводника, расположенного перпендикулярно направлению тока:

где I — сила тока; S — площадь поперечного сечения проводника (расположенного перпендикулярно скорости движения носителей тока).

Плотность тока является векторной величиной .

Направление плотности тока j → совпадает с направлением скорости движения положительных носителей тока:

где q — модуль заряда носителя тока (если носителями тока являются электроны, то q = 1,6 ⋅ 10 −19 Кл); v → — скорость движения носителей тока; n — концентрация носителей тока, n = N / V ; N — число носителей тока, прошедших через поперечное сечение проводника (расположенное перпендикулярно скорости движения носителей тока) за время Δ t , или число носителей тока в объеме V = Sv Δ t (рис. 8.2); v — модуль скорости движения носителей тока; S — площадь поперечного сечения проводника.

В Международной системе единиц плотность тока измеряется в амперах, деленных на квадратный метр (1 А/м 2 ).

Сила тока в газах (электрический ток в газах вызывается движением ионов) определяется формулой

где N / t — число ионов, которые проходят через поперечное сечение сосуда каждую секунду (ежесекундно); | q | — модуль заряда иона:

  • для однозарядного иона —

| q | = 1,6 ⋅ 10 −19 Кл,

  • для двухзарядного иона —

| q | = 3,2 ⋅ 10 −19 Кл

Пример 1. Число свободных электронов в 1,0 м 3 меди равно 1,0 ⋅ 10 28 . Найти величину скорости направленного движения электронов в медном проводе с площадью поперечного сечения 4,0 мм 2 , по которому протекает ток 32 А.

Решение . Скорость направленного движения носителей тока (электронов) связана с силой тока в проводнике формулой

где q — модуль заряда носителя тока (электрона); n — концентрация носителей тока; S — площадь поперечного сечения проводника; v — модуль скорости направленного движения носителей тока в проводнике.

Выразим из данной формулы искомую величину — скорость носителей тока —

Для вычисления скорости воспользуемся следующими значениями входящих в формулу величин:

  • величина силы тока и площадь поперечного сечения проводника заданы в условии задачи: I = 32 А, S = 4,0 мм 2 = 4,0 ⋅ 10 −6 м 2 ;
  • значение элементарного заряда (равного модулю заряда электрона) является фундаментальной константой (постоянной величиной): q = 1,6 ⋅ 10 −19 Кл;
  • концентрация носителей тока — число носителей тока в единице объема проводника —

n = N V = 1,0 ⋅ 10 28 1 = 1,0 ⋅ 10 28 м −3 .

v = 32 1,6 ⋅ 10 − 19 ⋅ 1,0 ⋅ 10 28 ⋅ 4,0 ⋅ 10 − 6 = 5,0 ⋅ 10 − 3 м/с = 5,0 мм/с .

Скорость направленного движения электронов в указанном проводнике составляет 5,0 мм/с.

Пример 2. Сила тока в проводнике равномерно возрастает от 10 до 12 А за 12 с. Какой заряд проходит через поперечное сечение проводника за указанный интервал времени?

Решение . Сила тока в проводнике изменяется с течением времени. Поэтому заряд, перенесенный носителями тока через поперечное сечение проводника, расположенное перпендикулярно скорости носителей тока, за некоторый промежуток времени, можно рассчитать двумя способами.

Читайте также:  Лампа работает от источника постоянного тока

1. Искомый заряд можно вычислить, используя формулу

где 〈 I 〉 — средняя сила тока; ∆ t — интервал времени, ∆ t = 12 с.

Сила тока возрастает в проводнике равномерно; следовательно, средняя сила тока определяется выражением

где I 1 — значение силы тока в начальный момент времени, I 1 = 10 А; I 2 — значение силы тока в конечный момент времени, I 2 = 12 А.

Подставив выражение средней силы тока в формулу для вычисления заряда, получим

Q = ( I 1 + I 2 ) Δ t 2 .

Расчет дает значение

Q = ( 10 + 12 ) ⋅ 12 2 = 132 Кл = 0,13 кКл.

2. Искомый заряд можно рассчитать графически по графику зависимости силы тока от времени.

На рисунке представлена заданная в условии задачи зависимость I ( t ).

Заряд, перенесенный носителями тока через поперечное сечение проводника, расположенное перпендикулярно скорости носителей тока, за указанный промежуток времени, численно равен площади трапеции, ограниченной четырьмя линиями:

  • прямой линией I ( t );
  • перпендикуляром к оси времени, восстановленным из точки t 1 ;
  • перпендикуляром к оси времени, восстановленным из точки t 2 ;
  • осью времени t .

Вычисление произведем по формуле площади трапеции:

Q = 12 + 10 2 ⋅ 12 = 132 Кл = 0,13 кКл.

Оба способа расчета заряда, перенесенного носителями тока за указанный промежуток времени, дают одинаковый результат.

Источник

Что такое плотность тока

Электрические провода, находящиеся под напряжением, постоянно испытывают определенную нагрузку. Поэтому очень часто возникает вопрос, что такое плотность тока и каким образом она влияет на качество электроснабжения. Фактически данная величина характеризует степень электрической нагрузки проводников. Она позволяет предотвратить излишние потери при прокладке кабельных линий. Во время использования устройств с высокой частотой, следует учитывать наличие дополнительных электродинамических эффектов.

Плотность электрического тока

Под действием электрического поля начинается упорядоченное перемещение зарядов, известное всем, как электрический ток. Обычно для движения зарядов используется какая-либо среда, которая называется проводником и является носителем тока.

Что такое плотность тока

Плотность тока совместно с другими факторами характеризует движение зарядов. Формула плотности тока дает описание электрического заряда, переносимого в течение 1 секунды через определенное сечение проводника, направленного перпендикулярно этому току.

Таким образом, с физической точки зрения плотность тока — это заряды, в определенном количестве протекающие через установленную единицу площади в период единицы времени. Данный параметр является векторной величиной и представляется в виде соотношения силы тока и площади поперечного сечения проводника, по которому и протекает этот ток. Модульное значение плотности тока будет равно: j = I/S. В этой формуле j является модулем вектора, I – силой тока, S – площадью поперечного сечения.

Векторы плотности тока и скорости движения токообразующих зарядов имеют одинаковое направление, если заряды обладают положительным значением и противоположное – когда они отрицательные.

В чем измеряется плотность тока? В качестве единицы измерения используется А/мм2. Данная величина применяется на практике, в основном, для принятия решения о выборе того или иного проводника в соответствии с его способностями выдерживать те или иные нагрузки. плотность играет важную роль, поскольку каждый проводник обладает сопротивлением. В результате потерь тока происходит нагрев проводника. Чрезмерные потери приводят к критическому нагреванию, вплоть до расплавления жил.

Для предотвращения подобных ситуаций, каждый потребитель рассчитывается на определенную плотность, по которой подбирается и оптимальное сечение проводника. Во время проектирования, помимо расчетных формул, используются уже готовые таблицы, содержащие все необходимые исходные данные, на основе которых можно получить конечный результат.

Следует помнить, что у разных проводников неодинаковая плотность электрического тока. В современных условиях практикуется использование преимущественно медных проводов, где это значение не превышает 6-10 А/мм2. Это приобретает особую актуальность в условиях длительной эксплуатации, когда проводка должна работать в облегченном режиме. Повышенные нагрузки допускаются, но лишь на короткий период времени.

Сила тока и плотность

Для того чтобы понять, как работает та или иная электрическая величина, необходимо знать условия и степень их взаимодействия между собой. Большое значение имеет зависимость силы и плотности тока в проводнике. Перед тем как рассматривать эту зависимость следует более подробно остановиться на понятии электрического тока.

Под действием определенных факторов в металлах, выступающих в роли основных проводников, образуется направленное движение заряженных частиц. Как правило, это электроны, обладающие отрицательным зарядом. Существуют и другие проводники, называемые электролитами, в которых направленное движение создается ионами, которые могут быть положительными или отрицательными. Третий вид проводников представляет собой различные газы, где электрический ток создается не только электронами, но и с помощью положительных и отрицательных ионов. Величину плотности тока можно определить в любом проводнике, но более наглядно это будет на примере металлов.

Условно электрический ток имеет направление, совпадающее с направлением движения положительно заряженных частиц. Для его создания и существования необходимо соблюдение двух основных условий. В первую очередь, это сами заряженные частицы, которые могут свободно перемещаться в проводнике под действием сил электрического поля. Соответственно, необходимо само электрическое поле, способное существовать в проводнике в течение длительного времени под действием источника тока.

Сила (I) и плотность (j) электрического тока являются его основными характеристиками. Сила тока считается скалярной физической величиной, определяемой как отношение заряда ∆q, проходящего через поперечное сечение проводника в течение некоторого времени ∆t, к данному временному промежутку. В виде формулы это будет выглядеть следующим образом: I = ∆q/∆t. Единицей измерения силы тока служит ампер. Это позволит в дальнейшем решить вопрос, как найти плотность тока.

Существует связь силы тока со скоростью свободных зарядов, находящихся в упорядоченном движении. Определить эту зависимость можно на примере участка проводника, имеющего площадь сечения S и длину ∆l. Заряд каждой частицы принимается за q0, а объем проводника ограничивается сечениями № 1 и № 2. В этом объеме количество частиц составляет nS∆l, где n является концентрацией частиц. Величина их общего заряда составляет: ∆q = q0nS∆l. Упорядоченное движение свободных зарядов осуществляется со средней скоростью hvi. Следовательно за установленный промежуток времени ∆t = ∆I/ hvi все частицы, находящиеся в этом объеме, пройдут через сечение № 2. В результате, сила тока составит I = ∆q/∆t, как уже и было отмечено.

Сила тока имеет непосредственную связь с плотностью тока j представляющей собой векторную физическую величину. Ее модуль определяется как отношение силы тока I и площади поперечного сечения проводника. Плотность формула отражает как j = I/S. Вектор плотности тока совпадает с вектором скорости упорядоченно движущихся положительно заряженных частиц. Постоянный ток обладает плотностью, имеющей стабильное значение на всем поперечном сечении проводника. Таким образом, плотность и сила тока самым тесным образом связаны между собой.

Источник



Как найти силу тока?

Расчет электрических параметров необходим для правильных построений цепей. Поскольку целью использования электричества в электротехнике является задача по выполнению током работы, то встает вопрос о том, как найти силу тока. Данный параметр используют при вычислениях мощности и в расчетах потребления электрической энергии.

Читайте также:  Плоский воздушный конденсатор емкостью c 1 мкф заряжен от источника постоянного тока напряжением 27в

Существуют разные способы определения этого важного параметра, которые мы рассмотрим в данной статье.

Формулами

Параметры электрического тока всегда взаимосвязаны. Например, изменение величины нагрузки отображается на показателях других величин. Причем эти изменения подчиняются соответствующим законам, которые выражаются через формулы. Поэтому на практике для нахождения силы тока часто используют соответствующие формулы.

Через заряд и время

Вспомним определение (рис.1): электричество – это величина заряда, движимого силами электрического поля, преодолевающего за единицу времени условную плоскость проводника, называемую поперечным сечением проводника.

Определение понятия сила тока

Рис. 1. Определение понятия сила тока

Таким образом, если известен электрический заряд, прошедший через проводник за определенное время, то не трудно найти величину этого заряда прошедшего за единицу времени, то есть: I = q/t

Через мощность и напряжение

В паспорте электроприбора обычно указывается его номинальная мощность и параметры электрической сети, для работы с которой он предназначен. Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U.

Данное выражение вытекает из формулы для расчета мощности: P = IU.

Через напряжение или мощность и сопротивление

Силу электричества на участке цепи определяют по закону Ома. Для этого необходимо знать следующие параметры: сопротивление и напряжение на этом участке. Тогда I = U/R. Если известна мощность нагрузки, то ее можно выразить через квадрат силы тока умноженной на сопротивление участка: P = I 2 R, откуда

Ток через мощность и сопротивление

Для полной цепи эту величину вычисляют по закону Ома, но с учетом параметров источника питания.

Через ЭДС, внутреннее сопротивление и нагрузку R

Применяя закон Ома, адаптированный для полной цепи, вы можете вычислить максимальный ток по формуле I = ε / (R+r′), если известны параметры:

  • внешнее сопротивление проводников (R);
  • ЭДС источника питания (ε);
  • внутреннее сопротивление источника, обладающего ЭДС (r′).

Закон Джоуля-Ленца

Казалось бы, что расчет силы тока по количеству тепла, выделяющегося в результате нагревания проводника, не имеет практического применения. Однако это не так. Рассмотрим это на примере.

Пусть требуется найти силу тока во время работы электрочайника. Для этого доведите до кипения 1 кг воды и засеките время в секундах. Предположим, начальная температура составляла 10 ºС. Тогда Q = Cm(τ – τ) = 4200 Дж/кг× 1 кг (100 – 10) = 378 000 Дж.

Закон Джоуля-Ленца

Рис. 2. Закон Джоуля-Ленца

Из закона Джоуля-Ленца (изображение на рис. 2) вытекает формула:

Ток из закона джоуля ленца

Измерив сопротивление электроприбора и подставив значения в формулу, получим величину потребляемого тока.

Измерительными приборами

Если под руками имеются измерительные приборы, то с их помощью довольно просто найти силу тока. Необходимо лишь соблюдать правила измерений и не забывать о правилах безопасности.

Амперметром

Пользуясь приборами для измерения ампеража, следует помнить, что они подключаются в цепи последовательно. Внутреннее сопротивление амперметра очень маленькое, поэтому прибор легко выводится из строя, если проводить измерения пределами значений, для которых он рассчитан.

Схема подключения амперметра показана на рисунке 3. Обратите внимание на то, что на участке измеряемой электрической цепи обязательно должна быть нагрузка.

Схема подключения амперметра

Рис. 3. Схема подключения амперметра

Большинство аналоговых амперметров, например, таких, как на рисунке 4, предназначены для измерений параметров в цепях с постоянными токами.

Рис. 4. Аналоговый амперметр

Обратите внимание распределение шкалы амперметра. Цена первого деления 50 А, а всех последующих – 10 А. Максимальная величина, которую можно измерить данным амперметром не должна превышать 300 А. Для измерений электрической величины в меньших либо в больших пределах следует применять соответствующие приборы, предназначенные для таких диапазонов. В этом смысле универсальность амперметра ограничена.

При измерениях постоянных токов необходимо соблюдать полярность щупов при подключении амперметра. Для подключения прибора требуется разрывать цепь. Это не всегда удобно. Иногда вычисление силы тока по формуле является предпочтительней, особенно если приходится проводить измерения в сложных электротехнических схемах.

Мультиметром

Преимущество мультиметра в том, что этот прибор многофункциональный. Современные мультиметры цифровые. У них есть режимы для измерений в цепях постоянных и переменных токов. В режиме измерения силы тока этот измерительный прибор подключается в цепь аналогично амперметру.

Перед включением мультиметра в цепь, всегда проверяйте режим измерений, а пределы измерения выбирайте заведомо большие предполагаемой силы тока. После первого измерения можно перейти в режим с меньшим диапазоном.

Для работы с переменным напряжением переводите прибор в соответствующий режим. Считывайте значения с дисплея после того, как цифры перестанут мелькать.

Примеры

Покажем на простых примерах, как решать задачи на вычисление силы тока по формуле.

Задача 1.

Пример 1

Рис. 5. Пример 1

Решение: При параллельном соединении нагрузочных элементов U = const, то есть, напряжение одинаково на всех резисторах и составляет 100 В. Тогда, по закону Ома I = U/R

Для вычисления искомого параметра на всем участке цепи, нам необходимо знать общее сопротивление этого участка. Учитывая тот факт, что при параллельном соединении нагрузочных элементов в цепи их общее сопротивление равно:

Паралельное соединение резисторов

Имеем: 1/R= 1/5 + 1/25 + 1/50 = 13/50; R = 50/13 ≈ 3.85 (Ом)

Тогда: I = U/R = 100 В/3,85 Ом ≈26 А.

Ответ:

  • Сила тока на сопротивлениях: I1 =20 А; I2 = 4А; I3 = 2 А.
  • Сила тока, поступающего на рассматриваемый участок цепи равна 26 А.

Задача 2.

Решение:

Воспользуемся формулой для нахождения силы тока, включающей напряжение и мощность: I = P/U.

  • 2 кВт преобразим в ватты: 2 кВт = 2000 Вт.
  • Подставляем данные: I = 2 000 Вт/ 220 В ≈ 9 А
  • Ответ: Нагревательный элемент электрочайника рассчитан на 9 А.

Задача 3.

Решение.

Применяя закон Ома для полной цепи, запишем: I = ε / (R+r′)

I = 6 В / (5 Ом + 1 Ом) = 1 А.

Ответ: сила тока 1 А.

Задача 4.

Решение:

За время t электричество выполнит работу A = U*I*t.

Напряжение сети известно – оно составляет 220 В.Силу тока находим по формуле: I = U/R, тогда A = (U 2 /R)*t или

A = ((220 В) 2 / 40 Ом) * 2 ч = 2420 Втч = 2,42 кВтч

Ответ: За 2 часа работы электроплита потребляет 2,42 кВт часов электроэнергии.

Применяя формулы для вычисления параметров электричества, пользуясь фундаментальными законами физики можно находить неизвестные данные для составных элементов цепей и электроприборов с целью оценки их состояния. В каждом отдельном случае необходимо определить известные параметры тока, которые можно использовать в дальнейших вычислениях. Обычно, это напряжение, мощность или сопротивление нагрузки.

Если можно обойтись без измерений амперметром – лучше прибегнуть к вычислениям, даже если при этом потребуется измерить напряжение. Такое измерение можно проводить без разрыва электрической цепи, чего нельзя сделать при помощи амперметра.

Источник