Меню

Как найти среднюю силу тока в контуре

Расчет силы тока по мощности, напряжению, сопротивлению

Бесплатный калькулятор расчета силы тока по мощности и напряжению/сопротивлению – рассчитайте силу тока в однофазной или трехфазной сети в ОДИН КЛИК!

Если вы хотите узнать как рассчитать силу тока в цепи по мощности, напряжению или сопротивлению, то предлагаем воспользоваться данным онлайн-калькулятором. Программа выполняет расчет для сетей постоянного и переменного тока (однофазные 220 В, трехфазные 380 В) по закону Ома. Рекомендуем без необходимости не изменять значение коэффициента мощности (cos φ) и оставлять равным 0.95. Знание величины силы тока позволяет подобрать оптимальный материал и диаметр кабеля, установить надежные предохранители и автоматические выключатели, которые способны защитить квартиру от возможных перегрузок. Нажмите на кнопку, чтобы получить результат.

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Формулы расчета силы тока

Электрический ток — это направленное упорядоченное движение заряженных частиц.
Сила тока (I) — это, количество тока, прошедшего за единицу времени сквозь поперечное сечение проводника. Международная единица измерения — Ампер (А / A).

— Сила тока через мощность и напряжение (постоянный ток): I = P / U
— Сила тока через мощность и напряжение (переменный ток однофазный): I = P / (U × cosφ)
— Сила тока через мощность и напряжение (переменный ток трехфазный): I = P / (U × cosφ × √3)
— Сила тока через мощность и сопротивление: I = √(P / R)
— Сила тока через напряжение и сопротивление: I = U / R

  • P – мощность, Вт;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Коэффициент мощности cos φ – относительная скалярная величина, которая характеризует насколько эффективно расходуется электрическая энергия. У бытовых приборов данный коэффициент практически всегда находится в диапазоне от 0.90 до 1.00.

Источник

Физика

Возникновение ЭДС приводит к появлению в проводящем контуре индукционного тока , сила которого определяется по формуле

где ℰ i — ЭДС индукции, возникающая в контуре; R — сопротивление контура.

При протекании индукционного тока в контуре выделяется теплота , количество которой определяется одним из выражений:

Q i = I i 2 R t , Q i = ℰ i 2 t R , Q i = I i | ℰ i | t ,

где I i — сила индукционного тока в контуре; R — сопротивление контура; t — время; ℰ i — ЭДС индукции, возникающая в контуре.

Мощность индукционного тока вычисляется по одной из формул:

P i = I i 2 R , P i = ℰ i 2 R , P i = I i | ℰ i | ,

где I i — сила индукционного тока в контуре; R — сопротивление контура; ℰ i — ЭДС индукции, возникающая в контуре.

При протекании индукционного тока в проводящем контуре через площадь поперечного сечения проводника переносится заряд , величина которого вычисляется по формуле

где I i — сила индукционного тока в контуре; Δ t — интервал времени, в течение которого по контуру течет индукционный ток.

Пример 21. Кольцо, изготовленное из проволоки с удельным сопротивлением 50,0 ⋅ 10 −10 Ом ⋅ м, находится в однородном магнитном поле с индукцией 250 мТл. Длина проволоки равна 1,57 м, а площадь ее поперечного сечения составляет 0,100 мм 2 . Какой максимальный заряд пройдет по кольцу при выключении поля?

Решение . Появление ЭДС индукции в кольце вызвано изменением потока вектора индукции, пронизывающего плоскость кольца, при выключении магнитного поля.

Поток индукции магнитного поля через площадь кольца определяется формулами:

  • до выключения магнитного поля

Ф 1 = B 1 S cos α,

где B 1 — первоначальное значение модуля индукции магнитного поля, B 1 = 250 мТл; S — площадь кольца; α — угол между направлениями вектора магнитной индукции и вектора нормали (перпендикуляра) к плоскости кольца;

  • после выключения магнитного поля

Ф 2 = B 2 S cos α = 0,

где B 2 — значение модуля индукции после выключения магнитного поля, B 2 = 0.

Изменение потока вектора индукции магнитного поля определяется разностью

∆Ф = Ф 2 − Ф 1 = −Ф 1 ,

или, с учетом явного вида Ф 1 ,

∆Ф = − B 1 S cos α.

Среднее значение ЭДС индукции, возникающей в кольце при выключении поля,

| ℰ i | = | Δ Ф Δ t | = | − B 1 S cos α Δ t | = B 1 S | cos α | Δ t ,

где ∆ t — интервал времени, за который происходит выключение поля.

Наличие ЭДС индукции приводит к появлению индукционного тока; сила индукционного тока определяется законом Ома:

I i = | ℰ i | R = B 1 S | cos α | R Δ t ,

где R — сопротивление кольца.

При протекании индукционного тока по кольцу переносится индукционный заряд

q i = I i Δ t = B 1 S | cos α | R .

Максимальному значению заряда соответствует максимальное значение функции косинус (cos α = 1):

q i max = I i Δ t = B 1 S R .

Полученная формула определяет максимальное значение заряда, который пройдет по кольцу при выключении поля.

Однако для расчета заряда необходимо получить выражения, которые позволят найти площадь кольца и его сопротивление.

Площадь кольца — площадь круга радиусом r , периметр которого определяется формулой длины окружности и совпадает с длиной проволоки, из которой изготовлено кольцо:

где l — длина проволоки, l = 1,57 м.

Отсюда следует, что радиус кольца определяется отношением

S = π r 2 = π l 2 4 π 2 = l 2 4 π .

Сопротивление кольца задается формулой

где ρ — удельное сопротивление материала проволоки, ρ = 50,0 × × 10 −10 Ом ⋅ м; S 0 — площадь поперечного сечения проволоки, S 0 = = 0,100 мм 2 .

Подставим полученные выражения для площади кольца и его сопротивления в формулу, определяющую искомый заряд:

q i max = B 1 l 2 S 0 4 π ρ l = B 1 l S 0 4 π ρ .

q i max = 250 ⋅ 10 − 3 ⋅ 1,57 ⋅ 0,100 ⋅ 10 − 6 4 ⋅ 3,14 ⋅ 50,0 ⋅ 10 − 10 = 0,625 Кл = 625 мКл .

При выключении поля по кольцу проходит заряд, равный 625 мКл.

Пример 22. Контур площадью 2,0 м 2 и сопротивлением 15 мОм находится в однородном магнитном поле, индукция которого возрастает на 0,30 мТл в секунду. Найти максимально возможную мощность индукционного тока в контуре.

Решение . Появление ЭДС индукции в контуре вызвано изменением потока вектора индукции, пронизывающего плоскость контура, при изменении индукции магнитного поля с течением времени.

Изменение потока вектора индукции магнитного поля определяется разностью

где ∆ B — изменение модуля индукции магнитного поля за выбранный интервал времени; S — площадь, ограниченная контуром, S = 2,0 м 2 ; α — угол между направлениями вектора магнитной индукции и вектора нормали (перпендикуляра) к плоскости контура.

Среднее значение ЭДС индукции, возникающей в контуре, при изменении индукции магнитного поля:

| ℰ i | = | Δ Ф Δ t | = | Δ B S cos α Δ t | = Δ B S | cos α | Δ t ,

где ∆ B /∆ t — скорость изменения модуля вектора индукции магнитного поля с течением времени, ∆ B /∆ t = 0,30 мТл/с.

Появление ЭДС индукции приводит к появлению индукционного тока; сила индукционного тока определяется законом Ома:

I i = | ℰ i | R = Δ B S | cos α | R Δ t ,

где R — сопротивление контура.

Мощность индукционного тока

P i = I i 2 R = ( Δ B Δ t ) 2 S 2 R cos 2 α R 2 = ( Δ B Δ t ) 2 S 2 cos 2 α R .

Максимальному значению мощности индукционного тока соответствует максимальное значение функции косинус (cos α = 1):

P i max = ( Δ B Δ t ) 2 S 2 R .

P i max = ( 0,30 ⋅ 10 − 3 ) 2 ( 2,0 ) 2 15 ⋅ 10 − 3 = 24 ⋅ 10 − 6 Вт = 24 мкВт .

Максимальная мощность индукционного тока в данном контуре равна 24 мкВт.

Источник

Как найти силу тока?

Расчет электрических параметров необходим для правильных построений цепей. Поскольку целью использования электричества в электротехнике является задача по выполнению током работы, то встает вопрос о том, как найти силу тока. Данный параметр используют при вычислениях мощности и в расчетах потребления электрической энергии.

Читайте также:  Принцип наложения с источником тока

Существуют разные способы определения этого важного параметра, которые мы рассмотрим в данной статье.

Формулами

Параметры электрического тока всегда взаимосвязаны. Например, изменение величины нагрузки отображается на показателях других величин. Причем эти изменения подчиняются соответствующим законам, которые выражаются через формулы. Поэтому на практике для нахождения силы тока часто используют соответствующие формулы.

Через заряд и время

Вспомним определение (рис.1): электричество – это величина заряда, движимого силами электрического поля, преодолевающего за единицу времени условную плоскость проводника, называемую поперечным сечением проводника.

Определение понятия сила тока

Рис. 1. Определение понятия сила тока

Таким образом, если известен электрический заряд, прошедший через проводник за определенное время, то не трудно найти величину этого заряда прошедшего за единицу времени, то есть: I = q/t

Через мощность и напряжение

В паспорте электроприбора обычно указывается его номинальная мощность и параметры электрической сети, для работы с которой он предназначен. Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U.

Данное выражение вытекает из формулы для расчета мощности: P = IU.

Через напряжение или мощность и сопротивление

Силу электричества на участке цепи определяют по закону Ома. Для этого необходимо знать следующие параметры: сопротивление и напряжение на этом участке. Тогда I = U/R. Если известна мощность нагрузки, то ее можно выразить через квадрат силы тока умноженной на сопротивление участка: P = I 2 R, откуда

Ток через мощность и сопротивление

Для полной цепи эту величину вычисляют по закону Ома, но с учетом параметров источника питания.

Через ЭДС, внутреннее сопротивление и нагрузку R

Применяя закон Ома, адаптированный для полной цепи, вы можете вычислить максимальный ток по формуле I = ε / (R+r′), если известны параметры:

  • внешнее сопротивление проводников (R);
  • ЭДС источника питания (ε);
  • внутреннее сопротивление источника, обладающего ЭДС (r′).

Закон Джоуля-Ленца

Казалось бы, что расчет силы тока по количеству тепла, выделяющегося в результате нагревания проводника, не имеет практического применения. Однако это не так. Рассмотрим это на примере.

Пусть требуется найти силу тока во время работы электрочайника. Для этого доведите до кипения 1 кг воды и засеките время в секундах. Предположим, начальная температура составляла 10 ºС. Тогда Q = Cm(τ – τ) = 4200 Дж/кг× 1 кг (100 – 10) = 378 000 Дж.

Закон Джоуля-Ленца

Рис. 2. Закон Джоуля-Ленца

Из закона Джоуля-Ленца (изображение на рис. 2) вытекает формула:

Ток из закона джоуля ленца

Измерив сопротивление электроприбора и подставив значения в формулу, получим величину потребляемого тока.

Измерительными приборами

Если под руками имеются измерительные приборы, то с их помощью довольно просто найти силу тока. Необходимо лишь соблюдать правила измерений и не забывать о правилах безопасности.

Амперметром

Пользуясь приборами для измерения ампеража, следует помнить, что они подключаются в цепи последовательно. Внутреннее сопротивление амперметра очень маленькое, поэтому прибор легко выводится из строя, если проводить измерения пределами значений, для которых он рассчитан.

Схема подключения амперметра показана на рисунке 3. Обратите внимание на то, что на участке измеряемой электрической цепи обязательно должна быть нагрузка.

Схема подключения амперметра

Рис. 3. Схема подключения амперметра

Большинство аналоговых амперметров, например, таких, как на рисунке 4, предназначены для измерений параметров в цепях с постоянными токами.

Рис. 4. Аналоговый амперметр

Обратите внимание распределение шкалы амперметра. Цена первого деления 50 А, а всех последующих – 10 А. Максимальная величина, которую можно измерить данным амперметром не должна превышать 300 А. Для измерений электрической величины в меньших либо в больших пределах следует применять соответствующие приборы, предназначенные для таких диапазонов. В этом смысле универсальность амперметра ограничена.

При измерениях постоянных токов необходимо соблюдать полярность щупов при подключении амперметра. Для подключения прибора требуется разрывать цепь. Это не всегда удобно. Иногда вычисление силы тока по формуле является предпочтительней, особенно если приходится проводить измерения в сложных электротехнических схемах.

Мультиметром

Преимущество мультиметра в том, что этот прибор многофункциональный. Современные мультиметры цифровые. У них есть режимы для измерений в цепях постоянных и переменных токов. В режиме измерения силы тока этот измерительный прибор подключается в цепь аналогично амперметру.

Перед включением мультиметра в цепь, всегда проверяйте режим измерений, а пределы измерения выбирайте заведомо большие предполагаемой силы тока. После первого измерения можно перейти в режим с меньшим диапазоном.

Для работы с переменным напряжением переводите прибор в соответствующий режим. Считывайте значения с дисплея после того, как цифры перестанут мелькать.

Примеры

Покажем на простых примерах, как решать задачи на вычисление силы тока по формуле.

Задача 1.

Пример 1

Рис. 5. Пример 1

Решение: При параллельном соединении нагрузочных элементов U = const, то есть, напряжение одинаково на всех резисторах и составляет 100 В. Тогда, по закону Ома I = U/R

Для вычисления искомого параметра на всем участке цепи, нам необходимо знать общее сопротивление этого участка. Учитывая тот факт, что при параллельном соединении нагрузочных элементов в цепи их общее сопротивление равно:

Паралельное соединение резисторов

Имеем: 1/R= 1/5 + 1/25 + 1/50 = 13/50; R = 50/13 ≈ 3.85 (Ом)

Тогда: I = U/R = 100 В/3,85 Ом ≈26 А.

Ответ:

  • Сила тока на сопротивлениях: I1 =20 А; I2 = 4А; I3 = 2 А.
  • Сила тока, поступающего на рассматриваемый участок цепи равна 26 А.

Задача 2.

Решение:

Воспользуемся формулой для нахождения силы тока, включающей напряжение и мощность: I = P/U.

  • 2 кВт преобразим в ватты: 2 кВт = 2000 Вт.
  • Подставляем данные: I = 2 000 Вт/ 220 В ≈ 9 А
  • Ответ: Нагревательный элемент электрочайника рассчитан на 9 А.

Задача 3.

Решение.

Применяя закон Ома для полной цепи, запишем: I = ε / (R+r′)

I = 6 В / (5 Ом + 1 Ом) = 1 А.

Ответ: сила тока 1 А.

Задача 4.

Решение:

За время t электричество выполнит работу A = U*I*t.

Напряжение сети известно – оно составляет 220 В.Силу тока находим по формуле: I = U/R, тогда A = (U 2 /R)*t или

A = ((220 В) 2 / 40 Ом) * 2 ч = 2420 Втч = 2,42 кВтч

Ответ: За 2 часа работы электроплита потребляет 2,42 кВт часов электроэнергии.

Применяя формулы для вычисления параметров электричества, пользуясь фундаментальными законами физики можно находить неизвестные данные для составных элементов цепей и электроприборов с целью оценки их состояния. В каждом отдельном случае необходимо определить известные параметры тока, которые можно использовать в дальнейших вычислениях. Обычно, это напряжение, мощность или сопротивление нагрузки.

Если можно обойтись без измерений амперметром – лучше прибегнуть к вычислениям, даже если при этом потребуется измерить напряжение. Такое измерение можно проводить без разрыва электрической цепи, чего нельзя сделать при помощи амперметра.

Источник



Как определить силу тока в цепи?

Как определить силу тока в цепи?

Электрический ток

По проводам течет электрический ток. Причем он именно «течет», практически как вода. Представим, что вы — счастливый фермер, который решил полить свой огород из шланга. Вы чуть-чуть приоткрыли кран, и вода сразу же побежала по шлангу. Медленно, но все-таки побежала.
Сила струи очень слабая. Потом вы решили, что напор нужен побольше и открыли кран на полную катушку. В результате струя хлынет с такой силой, что ни один помидор не останется без внимания, хотя в обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете два ведра из двух шлангов. У одного из них напор сильнее, у другого слабее. Быстрее наполнится то ведро, в которое льется вода из шланга с сильным напором. Все дело в том, что объем воды за равный промежуток времени из двух разных шлангов тоже разный. Иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Читайте также:  Сила тока обозначение формула единица измерения физический смысл

Если мы возьмем проводник с током, то будет происходить то же самое: заряженные частицы будут двигаться по проводнику, как и молекулы воды. Если больше заряженных частиц будет двигаться по проводнику, то «напор» тоже увеличится.

  • Электрический ток — это направленное движение заряженных частиц.

В Skysmart ученики погружаются в мир физических законов без стресса и с удовольствием. Обучение проходит в интерактивном формате, с захватывающими примерами из жизни, интересной домашкой и личным трекером прогресса. Все это помогает подружиться с физикой, подтянуть оценки и сдать экзамены.

Приходите на бесплатное вводное занятие — покажем, как проходит обучение и вдохновим на учебу!

Сила тока – что это

Рассматривая количество электроэнергии, которое протекает через определенный проводник за различные временные интервалы, станет ясно, что за малый промежуток ток протечет более интенсивно, поэтому нужно ввести еще одно определение. Оно означает силу тока, протекающую в проводнике за секунду времени.

Если сформулировать определение на основе всего вышеперечисленного, то сила электротока – это количество электроэнергии, проходящее через поперечное сечение проводника за секунду. Маркируется величина латинской буквой «I».

Важно! Специалисты определяют силу электротока, равную одному амперу, когда через поперечное сечение проводника проходит один кулон электричества за одну секунду.

Часто в электротехнике можно увидеть другие единицы измерения силы электротока: миллиамперы, микроамперы и так далее. Связано это с тем, что для питания современных схем таких величин будет вполне достаточно. 1 ампер – это очень большое значение, так как человека может убить ток в 100 миллиампер, и потому электророзетка для человека ничуть не менее опасна, чем, к примеру, несущийся на скорости автомобиль.

Если известно количество электроэнергии, которое прошло через проводник за конкретный промежуток времени, то силу (не мощность) можно вычислить по формуле, изображенной на картинке.

Когда электросеть замкнута и не имеет никаких ответвлений, через каждое поперечное сечение за секунду протекает одно и то же количество электричества. Теоретически это обосновывается так: заряд не может накапливаться в определенном месте, и сила электротока везде одинакова.

Сила тока

Сразу возникает потребность в величине, которой мы будем «напор» электрического тока измерять. Такая, чтобы она зависела от количества частиц, которые протекают по проводнику.

Сила тока — это физическая величина, которая показывает, какой заряд прошел через проводник.

I = q/t

Сила тока измеряется в Амперах. Единица измерения выбрана не просто так.

Во-первых, она названа в честь физика Андре-Мари Ампера, который занимался изучением электрических явлений. А во-вторых, единица этой величины выбрана на основе явления взаимодействия двух проводников.

Андре-Мари Ампер

Здесь аналогии с водопроводом провести, увы, не получится. Шланги с водой не притягиваются и не отталкиваются вблизи друг друга (а жаль, было бы забавно).

Когда ток проходит по двум параллельным проводникам в одном направлении, проводники притягиваются. А когда в противоположном направлении (по этим же проводникам) — отталкиваются.

два проводника

За единицу силы тока 1 А принимают силу тока, при которой два параллельных проводника длиной 1 м, расположенные на расстоянии 1 м друг от друга в вакууме, взаимодействуют с силой 0,0000002 Н.

Задача

Найти силу тока в цепи, если за 2 секунды в ней проходит заряд, равный 300 мКл.

Решение:

Возьмем формулу силы тока

I = 300 мКл / 2 с = 150 мА

Ответ: сила тока в цепи равна 150 мА

Определение единицы силы тока в СИ

Сила тока ( I )- скалярная величина, равная отношению заряда q , прошедшего через поперечное сечение проводника, к промежутку времени t , в течение которого шел ток.

Сила тока показывает, какой заряд проходит через поперечное сечение проводника за единицу времени.

Единица измерения силы тока в системе СИ:

4. Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу в магнитном поле.

Fл = q υ B sin α.

Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции

Сила Лоренца перпендикулярна векторам В и v , и её направление определяется с помощью того же правила левой руки, что и направление силы Ампера: если левую руку расположить так, чтобы составляющая магнитной индукции В, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца F л.

Обратите внимание, что сила Лоренца перпендикулярна скорости и поэтому она не совершает работы, не изменяет модуль скорости заряда и его кинетической энергии. Но направление скорости изменяется непрерывно

Движение заряженных частиц в электрическом и магнитном полях.

5. Явление электромагнитной индукции.

Электрические токи создают вокруг себя магнитное поле. Связь магнитного поля с током привела к многочисленным попыткам возбудить ток в контуре с помощью магнитного поля. Эта фундаментальная задача была блестяще решена в 1831 г. английским физиком М. Фарадеем, открывшим явление электромагнитной индукции. Оно заключается в том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает электрический ток, получивший название индукционного.

Закон Фарадея

Закон Фарадея электромагнитной индукции записывают в виде следующей формулы:

– это электродвижущая сила, которая действует вдоль любого контура;

Фв – это магнитный поток, проходящий через поверхность, натянутую на контур.

Для катушки, которая помещена в переменное магнитное поле, закон Фарадея выглядит несколько иначе:

— это электродвижущая сила;

N – это число витков катушки;

Фв – это магнитный поток, проходящий через один виток.

Правило Ленца

Индукционный ток имеет такое направление, что приращение созданного им магнитного потока через площадь, ограниченную контуро, и приращение потока магнитной индукции внешнего поля противоположны по знаку.

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которое вызвало этот ток.

Проводники и диэлектрики

Некоторые делят мир на черное и белое, а мы — на проводники и диэлектрики.

  • Проводники — это материалы, через которые электрический ток проходит. Самыми лучшими проводниками являются металлы.
  • Диэлектрики — материалы, через которые ток не проходит. Изи!
Проводники Диэлектрики
Медь, железо, алюминий, олово, свинец, золото, серебро, хром, никель, вольфрам Воздух, дистиллированная вода, поливинилхлорид, янтарь, стекло, резина, полиэтилен, полипропилен, полиамид, сухое дерево, каучук

То, что диэлектрик не проводит электрический ток, не значит, что он не может накапливать заряд. Накопление заряда не зависит от возможности его передавать.

Зачем нужно измерять силу тока

Силу тока в проводнике или на участке электрической цепи измеряют для того, чтобы иметь понятие о характеристиках данного проводника или цепи. Так как сила тока – один из основных параметров электричества, он неразрывно связан с другими значениями по типу напряжения и сопротивления. Более того, как уже стало понятно, три этих величины могут пропорционально определять друг друга.

Читайте также:  Простой плавный регулятор тока

Расчеты силы электротока делаются в разных случаях:

  • При прокладке электрических сетей.
  • При создании приборов.
  • В образовательных целях.
  • При выборе подходящих деталей для совершения тех или иных действий.

Направление тока

Раньше в учебниках по физике писали так: когда-то давно решили, что ток направлен от плюса к минуса, а потом узнали, что по проводам текут электроны. Но электроны эти — отрицательные, а значит к минусу идти не могут. Но раз уже условились о направлении, поэтому оставим, как есть. Вопрос тогда возникал у всех: почему нельзя поменять направление тока? Но ответ так никто и не получил.

Сейчас пишут немного иначе: положительные частицы текут по проводнику от плюса к минусу, туда и направлен ток. Здесь вопросов ни у кого не возникает.

На самом деле, обе. Носители заряда в каждом типе материала разные. В металлах — это электроны, в электролитах — ионы. У каждого типа частиц свои знаки и потребность в том, чтобы бежать к противоположно заряженному полюса источника тока.

Не будем же мы для каждого типа материала выбирать направление тока, чтобы решить задачу! Поэтому принято направлять ток от плюса к минусу. В большинстве задач школьного курса направление тока роли не играет, но есть то самое коварное меньшинство, где этот момент будет очень важным. Поэтому запомните — направляем ток от плюса к минусу.

Направление тока

Сила тока – чему равна, в каких единицах она измеряется, как найти силу тока по формуле

Как уже стало понятно, сила электротока – это физическая величина, показывающая заряд, который проходит через проводник за единицу времени. Основная формула для ее вычисления выглядит так: I = q/t, где q – это заряд, который идет по проводнику в кулонах, а t – это временной интервал в секундах.

Рассчитать силу электротока можно и с помощью закона Ома. Он гласит, что эта величина равна напряжению сети в вольтах, деленному на ее сопротивление в омах. В связи с этим имеет место формула такого рода — I = U/R. Этот закон применим для расчета значений постоянного тока.

Чтобы вычислить переменные параметры электричества, нужно разделить найденные величины на квадратный корень из двух.

К сведению! Это более практичный метод измерения, и им приходится пользоваться часто, так как все приборы в доме или в офисе работают от розеток, которые подают переменный ток. Делается это из-за того, что с ним легче работать, его удобнее трансформировать.

Важно! Наглядный пример работы переменного электротока можно наблюдать при включении люминесцентных ламп. Пока они полностью не загорятся, они будут моргать, потому что ток двигается в них то туда, то сюда.

Источник тока

Вода в шланге берется из водопровода, ключа с водой в земле — в общем, не из ниоткуда. Электрический ток тоже имеет свой источник.

В качестве источника может выступить, например, гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения. По сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».

Напряжение тока

Сила тока, это больше количественный показатель. Для того что бы частицы перемещались, необходима энергия (работа). Напряжение тока (электрическое напряжение) – это энергия расходуемая при перемещение заряда. Простыми словами, это сила (давление) которое передвигает заряды по проводнику. Таким образом мы ответили на второй вопрос. Единицы измерения напряжения тока – это Вольт (В). Условное обозначение: U

напряжение тока, cила тока

наведите или кликните мышкой, для анимации

Мы теперь знаем что такое сила тока, напряжение тока и их условные обозначения. Еще хочу добавить, часто для объяснения этих процессов приводят пример с водой в трубе. Труба в данном случае это проводник, давление которое толкает воду это напряжение и количество воды (через поперечное сечение) это сила тока.

Амперметр

Мы знаем, куда ток направлен, в чем измеряется сила тока, как ее вычислить, зная заряд и время, за которое этот заряд прошел. Осталось только измерить.

Прибор для измерения силы тока называется амперметр. Его включают в электрическую цепь последовательно с тем проводником, в котором ток измеряют.

что такое амперметр

Амперметры бывают очень разными по принципу действия: электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные — и это только самые распространенные.

Мы рассмотрим только принцип действия теплового амперметра, потому что для понимания принципа действия других устройств необходимо знать, что такое магнитное поле и катушки.

Тепловой амперметр основан на свойстве тока нагревать провода. Устроен так: к двум неподвижным зажимам присоединена тонкая проволока. Эта тонкая проволока оттянута вниз шелковой нитью, связанной с пружиной. По пути эта нить петлей охватывает неподвижную ось, на которой закреплена стрелка. Измеряемый ток подводится к неподвижным зажимам и проходит через проволоку (на рисунке стрелками показан путь тока).

Под действием тока проволока немного нагреется, из-за чего удлинится, вследствие этого шелковая нить, прикрепленная к проволоке, оттянется пружиной. Движение нити повернет ось, а значит и стрелку. Стрелка покажет величину измерения.

Разобраться во всех видах амперметров и не только в них помогут внимательные учителя детской школы Skysmart. Приходите на бесплатный вводный урок и начните заниматься в удовольствие уже завтра!

Нелинеые и линейные цепи

В первых присутствует минимум один элемент, у которого существует зависимость параметров от тока, текущего по ним, и прикладываемого напряжения.

Во втором случае, ни одна характеристика составляющих цепь элементов, от вида тока, текущего по ним, и его величины не зависит. Кроме этого, в самих цепях различают внешние части и внутренние.

К первой принадлежит источник электроэнергии, а к внешней – провода, включатели и выключатели, измерительные приборы, т.е. все подсоединенное к источнику при помощи зажимов. Ток может течь исключительно по замкнутой цепи. Если же в каком-либо месте возникает разрыв, он прекращается.

Цепи еще бывают постоянного тока, т.е. в для которых не свойственно изменение направления тока (полярность источников ЭДС постоянна), и переменного, для которых характерно изменение во времени протекающего тока.

В цепях выступать источниками питания могут быть: аккумуляторы, электромеханические генераторы и термоэлектрические, фотоэлементы и гальванические. У них сопротивление внутреннее настолько мало, по отношению к другим нагрузкам, что им можно пренебречь.

Приемниками постоянного тока служат осветительные приборы, электромоторы, преобразующие в механическую электрическую энергию, и др.

К оборудованию вспомогательному относят:

  • рубильник;
  • приборы для измерения различных параметров (вольтметры и амперметры);
  • элементы защиты типа плавких предохранителей.

Для всех электроприемников важны два параметра – напряжение на их зажимах и мощность. Элементы, составляющие электрическую цепь, могут быть активными, т.е. индуцирующими ЭДС (моторы, аккумуляторные батареи) и пассивными (провода, резисторы, конденсаторы, катушки индуктивности).

Источник