Меню

Как называется единица измерения мощности электрического тока

Единица измерения электрической мощности

Электрический ток в любом участке цепи совершает работу ($A$). Рассмотрим произвольный участок цепи к концам которого приложено напряжение $U$. В том случае, если сила тока на нашем участке равна $I$, то за промежуток времени $\Delta t$ по этому участку пройдет заряд величины $\Delta q=I\Delta t$. Следовательно, работа электрического тока на рассматриваемом участке будет равна:

Формула (1) выполняется для произвольного участка цепи, содержащего любые нагрузки, если сила тока постоянна. По определению любая мощность ($P$) — это величина, которая характеризует скорость преобразования энергии или скорость совершения работы:

Если использовать частное определение работы электрического поля (1), то получим определение электрической мощности:

Ватт — единица измерения электрической мощности в Международной системе единиц (СИ)

Исходя из общего определения мощности (1), так как работа измеряется в джоулях, время в секундах, получается $\left(\frac<Дж><с>\right)$- единица измерения электрической мощности, как и любой другой мощности:

Единица измерения мощности имеет собственное название: ватт — единица измерения электрической мощности в том числе. Обозначается ватт как Вт. Мощность электрического тока равна 1 Вт, если за одну секунду он совершает работу равную одному джоулю. Ватт — единица измерения электрической мощности в Международной системе единиц (СИ). Ватт не является основной единицей измерения в системе СИ. Свое название ватт получил в честь изобретателя Дж. Ватта. Ватт можно выразить через комбинацию основных единиц измерения системы СИ непосредственно из определения мощности (2):

Из формулы (3), следует, что ватт можно представить так же как:

где $А$ — ампер; $В$ — вольт. Отметим, что формула (3) дает определение вольту.

Для обозначения десятичных дольных и кратных единиц электрической мощности в системе СИ используют стандартные приставки. Например, кВт (киловатт): 1кВт=1000 Вт; МВт (мегаватт) 1 МВт$=<10>^6Вт$ и т.д.

Единицы измерения электрической мощности в других системах единиц

В системе СГС (система основными единицами в которой служат: сантиметр, грамм и секунда) специального названия единица измерения мощности не имеет. В этой системе:

где $эрг$ — единица измерения энергии (работы) в СГС.

Примеры задач с решением

Задание. Электрическую мощность в цепи постоянного тока можно рассчитать, используя формулу: $P=I^2R,$ где $R$ — сопротивление участка цепи по которому проходит ток силы $I$. Получите единицы измерения электрической мощности из этой формулы.

Решение. По условию задачи в качестве основы для определения единиц измерения электрической мощности примем выражение:

Сила тока измеряется в амперах (A) — это одна из семи основных единиц системы СИ. Сопротивление измеряется в омах (Ом). Ом — является производной единицей системы СИ. Он выражается через основные единицы как:

Используем заданную формулу (1.1), имеем:

Ответ. При определении электрической мощности при помощи выражения $P=I^2R$ получаем, что мощность в системе СИ имеет единицу измерения ватт.

Задание. Две лампочки имеют мощности: $P_1=40$Вт и $P_2=100$Вт и номинальное напряжение $U_1=U_2=110\ В$. Их соединяют последовательно (рис.1) и подключают к источнику постоянного напряжения, величина которого $U=220\ В$.

Какую мощность будет потреблять при таком соединении каждая из лампочек? Ответ запишите в декаваттах (даВт).

Единица измерения электрической мощности, пример 1

Решение. Исходя из рис.1 мы видим, что лампочки соединены последовательно, значит, силы тока в каждой из них одинаковы, на падение напряжения зависит от сопротивления. Мощности, которые потребляют лампочки, найдем, применяя формулу:

запишем уравнение (2.1) для каждой лампочки:

Сопротивления нитей накаливания ламп определим из номинальных параметров:

Читайте также:  Кривая намагничивания стали трансформатора тока

Силу тока определим используя закон Ома для участка цепи, учитывая, что лампы соединены последовательно:

Источник

Измерение электрической мощности

Время на чтение:

Электрическая мощность любого прибора — важный показатель, который позволяет определить возможность его работы в сетях абонента. Этот показатель применяется для расчета электрических схем и режима работы электроустановки, для обеспечения надежной работы электросетей. Чем мощность приемников будет большей, тем быстрее они выполнят нужную работу.

Что называется мощностью электрического тока

Мощность электрического тока (EP -electric power), потребляемая электрооборудованием, равна напряжению на нем, умноженному на ток, протекающий через него.

Данная формула показывает, в каких единицах измеряется электрическая мощность — это В⋅А.

Изменение тока

Формулировка верна для сетей постоянного тока (DC — Direct Current), а в сетях переменного тока (AC -Alternating Current) ситуация более сложна для нагрузок, которые являются реактивными. Чтобы рассчитать истинную EP, потребляемую приемником, необходимо учитывать несинусоидальные формы величин, а также углы сдвига тока опережение/запаздывание, вызванных реактивными нагрузками от присутствия в сети индуктивности (L) и конденсаторов ©. В таком случае истинная EP, будет меньше, чем простое произведение: U*I.

Треугольник мощности

Важно! Определение такого показателя потребуется при выборе источников питания AC, проектировании проводки и защите электрических цепей. Это вызвано тем, что, хотя кажущаяся энергия больше, чем истинная потребляемая EP, протекающий через нагрузку ток становится большим. Под него необходимо будет выбрать размеры проводов и устройства защиты оборудования электросети.

Виды электрических мощностей

Существует энергия, генерируемая некоторыми механизмами для создания электромагнитного и электрического поля, которая им необходима для функционирования, — это реактивная составляющая нагрузки. С другой стороны, активная составляющая показывает способность агрегата преобразовать полученную энергию в механическую работу или тепло.

Этот полезный эффект называется активной мощностью и измеряется в кВтч.

Приемники, образованные чистыми резисторами: нагревательные приборы, лампы накаливания и другие, обладают исключительно этим типом нагрузки.

Обратите внимание! Коэффициент мощности относится к активному и кажущемуся энергопотреблению установки. Кажущаяся энергия в свою очередь зависит от активной и реактивной энергии. При одинаковом потреблении активной нагрузки, чем выше потребление реактивной составляющей, тем ниже коэффициент.

Активная мощность

Активная — реальная или истинная мощность (Pa) выполняет фактическую работу в нагрузке и выражается в Вт.

Для однофазной цепи:

Pa = I*U* cosφ = UI PF

  • φ= фазовый угол;
  • PF = cosφ -коэффициент нагрузки.

Pa = 3* U* I* cosφ = 1,732 *U*I* PF

Реактивная мощность

Реактивная мощность (Pr) присутствует у электродвигателей, трансформаторов и устройств с реактивными сопротивлениями и индуктивностью. Эти устройства, как правило, индуктивные, поглощают энергию из сети, создавая магнитные поля, и возвращают ее, при смене направления синусоиды. При таком обмене энергией возникает дополнительное потребление, которое не способно быть использовано некоторыми приемниками. Этот вид называется реактивной энергией и измеряется в кВАр. Она вызывает перегрузку в линиях, трансформаторах и генераторах.

Для однофазной цепи:

Реактивная мощность

Во многих отношениях реактивную мощность можно рассматривать, как пену на бокале пива. Покупатель платит бармену за полный стакан пива, но выпивает только само пиво, которое всегда меньше.

Основным преимуществом использования распределения электроэнергии переменного тока является то, что уровень напряжения питания можно изменять с помощью трансформаторов, но не все электрооборудование потребляет реактивную мощность, которая занимает часть нагрузки на линиях электропередач.

В то время, как реальная или активная мощность — это энергия, подаваемая для работы двигателя, обогрева дома или освещения электрической лампочки, реактивная мощность обеспечивает важную функцию регулирования напряжения, помогая тем самым эффективно перемещать энергию через энергосистему по линиям электропередач.

Читайте также:  Реле контроля тока 10а

Оборудование энергосистемы рассчитано на работу в пределах ± 5% от номинального напряжения. Колебания уровней напряжения приводят к неисправности различных приборов. Высокое напряжение повреждает изоляцию обмоток, в то время как низкое напряжение вызывает плохую работу различного оборудования, например, низкую освещенность шин или перегрев асинхронных двигателей.

Если потребляемая мощность больше, чем потребляемая с помощью передающих линий, ток, потребляемый от линий питания, увеличивается до такого высокого уровня, что вызывает резкое падение напряжения на стороне приемника. Если низкое напряжение будет продолжать падать — это приведет к отключению генераторирующих блоков, перегреву двигателей и выходу из строя другого оборудования.

Чтобы преодолеть это, реактивная мощность должна подаваться на нагрузку путем помещения реактивных катушек индуктивности или реакторов в линии электропередачи. Мощность этих реакторов зависит от количества видимой мощности, которая должна быть подана.

Полная мощность

Полная мощность — это энергия, подаваемая от поставщика в электросеть, для покрытия активной и реактивной составляющих.

Полная мощность

Она рассчитывается по формуле:

Где: S — подача питания в цепь, В⋅А.

Кажущаяся EP будет измеряться в вольт-амперах (В⋅А) — напряжение системы, умноженное на текущий ток. Это комплексное значение, равное векторной сумме активной и реактивной энергии.

Источник

Основные электрические величины

Рассмотрим основные электрические величины, которые мы изучаем сначала в школе, затем в средних и высших учебных заведениях. Все данные для удобства сведем в небольшую таблицу. После таблицы будут приведены определения отдельных величин, на случай возникновения каких-либо непониманий.

Величина Единица измерения в СИ Название электрической величины
q Кл — кулон заряд
R Ом – ом сопротивление
U В – вольт напряжение
I А – ампер Сила тока (электрический ток)
C Ф – фарад Емкость
L Гн — генри Индуктивность
sigma См — сименс Удельная электрическая проводимость
e0 8,85418781762039*10 -12 Ф/м Электрическая постоянная
φ В – вольт Потенциал точки электрического поля
P Вт – ватт Мощность активная
Q Вар – вольт-ампер-реактивный Мощность реактивная
S Ва – вольт-ампер Мощность полная
f Гц — герц Частота

Существуют десятичные приставки, которые используются в названии величины и служат для упрощения описания. Самые распространенные из них: мега, мили, кило, нано, пико. В таблице приведены и остальные приставки, кроме названных.

Десятичный множитель Произношение Обозначение (русское/международное)
10 -30 куэкто q
10 -27 ронто r
10 -24 иокто и/y
10 -21 зепто з/z
10 -18 атто a
10 -15 фемто ф/f
10 -12 пико п/p
10 -9 нано н/n
10 -6 микро мк/μ
10 -3 милли м/m
10 -2 санти c
10 -1 деци д/d
10 1 дека да/da
10 2 гекто г/h
10 3 кило к/k
10 6 мега M
10 9 гига Г/G
10 12 тера T
10 15 пета П/P
10 18 экза Э/E
10 21 зета З/Z
10 24 йотта И/Y
10 27 ронна R
10 30 куэкка Q

Сила тока в 1А – это величина, равная отношению заряда в 1 Кл, прошедшего за 1с времени через поверхность (проводник), к времени прохождения заряда через поверхность. Для протекания тока необходимо, чтобы цепь была замкнутой.

Сила тока измеряется в амперах. 1А=1Кл/1c

В практике встречаются

Электрическое напряжение – разность потенциалов между двумя точками электрического поля. Величина электрического потенциала измеряется в вольтах, следовательно, и напряжение измеряется в вольтах (В).

1Вольт – напряжение, которое необходимо для выделения в проводнике энергии в 1Ватт при протекании по нему тока силой в 1Ампер.

В практике встречаются

Электрическое сопротивление – характеристика проводника препятствовать протеканию по нему электрического тока. Определяется как отношение напряжения на концах проводника к силе тока в нем. Измеряется в омах (Ом). В некоторых пределах величина постоянная.

1Ом – сопротивление проводника при протекании по нему постоянного тока силой 1А и возникающем при этом на концах напряжении в 1В.

Из школьного курса физики все мы помним формулу для однородного проводника постоянного сечения:

R=ρlS – сопротивление такого проводника зависит от сечения S и длины l

где ρ – удельное сопротивление материала проводника, табличная величина.

Между тремя вышеописанными величинами существует закон Ома для цепи постоянного тока.

Ток в цепи прямо пропорционален величине напряжения в цепи и обратно пропорционален величине сопротивления цепи – закон Ома.

Электрической емкостью называется способность проводника накапливать электрический заряд.

Емкость измеряется в фарадах (1Ф).

1Ф – это емкость конденсатора между обкладками которого возникает напряжение 1В при заряде в 1Кл.

В практике встречаются

Индуктивность – это величина, характеризующая способность контура, по которому протекает электрический ток, создавать и накапливать магнитное поле.

Индуктивность измеряется в генри.

1Гн – величина, равная ЭДС самоиндукции, возникающей при изменении величины тока в контуре на 1А в течение 1секунды.

В практике встречаются

Электрическая проводимость – величина, показывающая способность тела проводить электрический ток. Обратная величина сопротивлению.

Электропроводность измеряется в сименсах.

Сохраните в закладки или поделитесь с друзьями

Источник



Мощность электрического тока.

Мощность электрического тока

Действие тока характеризуют не только работой A, но и мощностью P. Мощность тока показывает, какую работу совершает ток за единицу времени. Бели за время t была совершена работа А, то мощность тока . Подставляя в это равенство выражение (A = IUt), получаем:

Это выражение можно переписать в разных формах, воспользовавшись законом Ома для участка цепи:

Мощность электрического тока

.

В СИ работу выражают в джоулях (Дж), мощность — в ваттах (Вт), а время — в секундах (с). При этом 1 Вт = 1 Дж/с, 1 Дж = 1 Вт · с.

Рассчитаем наибольшую допустимую мощность потребителей электроэнергии, которые могут одновременно работать в квартире. Так как в жилых зданиях сила тока в проводке не должна превышать I = 10 А, то при напряжении U = 220 В соответствующая электрическая мощность оказывается равной:

Одновременное включение в сеть приборов с большей суммарной мощностью приведет к увеличению силы тока, и потому недопустимо.

В быту работу тока (или израсходованную на совершение этой работы электроэнергию) измеряют с помощью специального прибора, называемого электрическим счетчиком (счетчиком электроэнергии). При прохождении тока через этот счетчик внутри его начинает вращаться легкий алюминиевый диск. Скорость его вращения прямо пропорциональна силе тока и на­пряжению. Поэтому по числу оборотов, сделанных им за данное время, можно судить о работе, совершенной током за это время. Работа тока при этом выражается обычно в киловатт-часах (кВт · ч).

1 кВт · ч — это работа, совершаемая электрическим током мощностью 1 кВт в течение 1 ч. Так как 1 кВт = 1000 Вт, а 1 ч = 3600 с, то

1 кВт · ч = 1000 Вт · 3600 с = 3 600 000 Дж.

Источник

Как называется единица измерения мощности электрического тока

Основные электрические величины

Рассмотрим основные электрические величины, которые мы изучаем сначала в школе, затем в средних и высших учебных заведениях. Все данные для удобства сведем в небольшую таблицу. После таблицы будут приведены определения отдельных величин, на случай возникновения каких-либо непониманий.

Величина Единица измерения в СИ Название электрической величины
q Кл — кулон заряд
R Ом – ом сопротивление
U В – вольт напряжение
I А – ампер Сила тока (электрический ток)
C Ф – фарад Емкость
L Гн — генри Индуктивность
sigma См — сименс Удельная электрическая проводимость
e0 8,85418781762039*10 -12 Ф/м Электрическая постоянная
φ В – вольт Потенциал точки электрического поля
P Вт – ватт Мощность активная
Q Вар – вольт-ампер-реактивный Мощность реактивная
S Ва – вольт-ампер Мощность полная
f Гц — герц Частота

Существуют десятичные приставки, которые используются в названии величины и служат для упрощения описания. Самые распространенные из них: мега, мили, кило, нано, пико. В таблице приведены и остальные приставки, кроме названных.

Десятичный множитель Произношение Обозначение (русское/международное)
10 -30 куэкто q
10 -27 ронто r
10 -24 иокто и/y
10 -21 зепто з/z
10 -18 атто a
10 -15 фемто ф/f
10 -12 пико п/p
10 -9 нано н/n
10 -6 микро мк/μ
10 -3 милли м/m
10 -2 санти c
10 -1 деци д/d
10 1 дека да/da
10 2 гекто г/h
10 3 кило к/k
10 6 мега M
10 9 гига Г/G
10 12 тера T
10 15 пета П/P
10 18 экза Э/E
10 21 зета З/Z
10 24 йотта И/Y
10 27 ронна R
10 30 куэкка Q

Сила тока в 1А – это величина, равная отношению заряда в 1 Кл, прошедшего за 1с времени через поверхность (проводник), к времени прохождения заряда через поверхность. Для протекания тока необходимо, чтобы цепь была замкнутой.

Сила тока измеряется в амперах. 1А=1Кл/1c

В практике встречаются

Электрическое напряжение – разность потенциалов между двумя точками электрического поля. Величина электрического потенциала измеряется в вольтах, следовательно, и напряжение измеряется в вольтах (В).

1Вольт – напряжение, которое необходимо для выделения в проводнике энергии в 1Ватт при протекании по нему тока силой в 1Ампер.

В практике встречаются

Электрическое сопротивление – характеристика проводника препятствовать протеканию по нему электрического тока. Определяется как отношение напряжения на концах проводника к силе тока в нем. Измеряется в омах (Ом). В некоторых пределах величина постоянная.

1Ом – сопротивление проводника при протекании по нему постоянного тока силой 1А и возникающем при этом на концах напряжении в 1В.

Из школьного курса физики все мы помним формулу для однородного проводника постоянного сечения:

R=ρlS – сопротивление такого проводника зависит от сечения S и длины l

где ρ – удельное сопротивление материала проводника, табличная величина.

Между тремя вышеописанными величинами существует закон Ома для цепи постоянного тока.

Ток в цепи прямо пропорционален величине напряжения в цепи и обратно пропорционален величине сопротивления цепи – закон Ома.

Электрической емкостью называется способность проводника накапливать электрический заряд.

Емкость измеряется в фарадах (1Ф).

1Ф – это емкость конденсатора между обкладками которого возникает напряжение 1В при заряде в 1Кл.

В практике встречаются

Индуктивность – это величина, характеризующая способность контура, по которому протекает электрический ток, создавать и накапливать магнитное поле.

Индуктивность измеряется в генри.

1Гн – величина, равная ЭДС самоиндукции, возникающей при изменении величины тока в контуре на 1А в течение 1секунды.

В практике встречаются

Электрическая проводимость – величина, показывающая способность тела проводить электрический ток. Обратная величина сопротивлению.

Электропроводность измеряется в сименсах.

Сохраните в закладки или поделитесь с друзьями

Источник



Мощность электрического тока

При подключении нагрузок необходимо учитывать энергетические возможности сети питания. Определенные ограничения принимают во внимание, выбирая подходящую проводку. Мощность тока – важнейший параметр, который применяют для решения разных практических задач в электротехнике.

Работа и мощность электрического тока, основные формулы

Что такое мощность электрического тока

Классическое понятие обозначает работу по перемещению заряда из точки F1 в точку F2. Мощность – это количество использованной энергии. Данная величина определяется не только расстоянием. Определенное значение имеют параметры заряда.

Формула мощности электрического тока

Для практических расчетов неудобно пользоваться базовым определением. Ниже приведены формулы, которые помогут узнать потребление электричества с использованием стандартных параметров источника питания и паспортных данных подключенных устройств. При отсутствии этих сведений в сопроводительной документации можно получить необходимые данные на официальном сайте производителя либо с помощью специальных измерений.

Мощность электрического тока через напряжение и ток

Так как разница потенциалов (F1-F2) соответствует напряжению (U), несложно сделать вывод о допустимости применения соотношений, определенных в законе Ома. Мощность (P) дополнительно характеризуется силой тока (I) в определенном участке цепи. Итоговое выражение:

Обозначение мощности по международной системе СИ – ватты (Вт). Для маленьких и больших величин пользуются кратными приставками: «милли-», «микро-», «мега-» и другими. Несложно понять, как обозначается мощность:

5 800 Вт = 5,8 киловатт = 5,8 кВт.

Мощность электрического тока через напряжение и сопротивление

По аналогии с предыдущими рассуждениями можно выразить мощность следующим образом:

Чему равна мощность электрического тока через ток и сопротивление

Путем несложных преобразований определяют потребление энергии следующим образом:

В этом и предыдущем разделе показана зависимость мощности от номинала подключенного резистора. При рассмотрении полной цепи учитывают внутреннее сопротивление источника и проводимость соединений.

Чтобы не ошибаться при расчетах, можно скопировать эту картинку с основными формулами

От чего зависит мощность тока

В реальных цепях перемещению электронов препятствует электрическое сопротивление, которое характеризует потери в проводнике. В схемах с источником переменного тока существенное значение приобретает синусоидальное изменение электрических параметров. Следующие данные помогут выбрать оптимальный метод расчета с учетом реальных условий.

Мгновенная электрическая мощность

В соответствии с названием, величину данного параметра определяют мгновенные значения измеряемых величин. Основное определение можно рассмотреть с учетом перемещения единичного элементарного заряда (q), которое выполняется за время Δt. На выполнение работы будет затрачена мощность эл тока PF1-F2 = U/ Δt или (U/ Δt) * q = U * (q/ Δt) c учетом перемещаемого заряда. Так как ток по стандартному определению равен заряду, который переходит из F1 в F2 (I = q/ Δt), несложно вывести итоговую формулу:

Принимая бесконечно малым интервал времени, можно получить соответствующее определение мощности для участка цепи:

Аналогичные выводы делают с учетом соответствующей величины сопротивления:

P (t) = (I (t))2 * R = (U(t))2/ R.

К сведению. Из последних формул понятно, что сопротивление не зависит от времени.

Дифференциальные выражения для электрической мощности

В реальных проводниках существенное значение имеют энергетические потери на единицу объема. Такие ситуации рассматривают с учетом плотности тока (j). Мощность (удельную) определяют по выражению Pудельн = (j2) * Rудельн. Для удобства оценки часто пользуются удельной проводимостью, которая обратна соответствующему сопротивлению.

Что такое мощность постоянного тока

Приведенные выше формулы без корректирующих коэффициентов применяют для расчета схем с подключением к источнику постоянного тока. С помощью обычного мультиметра при соответствующем положении переключателя определяют сопротивление подключенной нагрузки. Последовательным подключением измерительного прибора проверяют силу тока, параллельным – напряжение. Чтобы выяснить, сколько будет потреблять такая схема, пользуются формулами:

P = I * U или P = U2/ R = I2 * R.

Так можно измерять постоянный ток мультиметром

К сведению. При подключении АКБ в режиме зарядки направления тока в источнике и нагрузке совпадают. Мощность электрическая в этом случае потребляется нагрузкой. При противоположном направлении токов энергия поглощается источником ЭДС.

Мощность переменного тока

В таких цепях применять формулы для мгновенных величин нельзя, так как итоговое значение будет изменяться от минимума до максимума с частотой сети. В стандартной однофазной сети 220 V поддерживается синусоидальная форма сигнала 50 Гц.

Однако допустимо использование рассмотренных выше простых соотношений (P = U * I и других) при подключении нагрузки с резистивными характеристиками:

  • ТЭНов стиральных машин;
  • нагревательных спиралей инфракрасных излучателей;
  • лампочек с вольфрамовой нитью накаливания.

С помощью этого выражения выясняют, какая мощность будет выделяться в нагрузке.

Активная мощность

Ситуация меняется радикальным образом, если включается мощный электродвигатель или конденсатор. Подобные нагрузки формируют колебательный контур, который обменивается энергией с источником питания. Полезные функции в данном случае выполняются только активной компонентой (Pакт). Ее вычисляют следующим образом:

  • U * I – постоянный ток (переменный при резистивной нагрузке);
  • U * I * cos ϕ – для

220V, одна фаза;
U * √3 * cos ϕ = U * 1,7321 * cos ϕ – три фазы, U * √3 *

Реактивная мощность

Этот параметр, несмотря на отсутствие полезной работы, следует учитывать для корректной оценки важных параметров сети. Дело в том, что проводники нагреваются при пропускании тока в любом направлении. Циклические энергетические воздействия при достаточно большой интенсивности:

  • разрушают жилы и защитные оболочки кабелей;
  • провоцируют короткое замыкание;
  • повреждают обмотки электроприводов и трансформаторы.

Реактивная составляющая определяется формулой:

Pреакт = U * I * sin ϕ.

Она принимает отрицательное (положительное) значение при подключении нагрузки с емкостными (индукционными) характеристиками, соответственно.

В чем измеряется мощность тока для подобных ситуаций, понятно из определения. Так как речь идет об изменении параметров электрического (магнитного) поля, итоговый результат обозначают вольт-амперами реактивными (единица измерения сокр. – вар).

Полная мощность

Если рассматриваемые величины выразить векторами, образуется треугольник. Длина сторон будет соответствовать потреблению энергии определенной составляющей. Угол между полной (Pполн) и активной мощностью (ϕ) используется в расчетах для вычислений. Общая формула:

Pполн = √((Pакт)2 + (Pреакт)2).

Комплексная мощность

Потребление энергии можно выразить при необходимости комплексными величинами. Используют базовые соотношения. Вместо сопротивления применяют импеданс.

Измерения

Как показано выше, некоторые исходные данные можно получить в ходе практических измерений. Ниже отмечены особенности типовых специализированных приборов.

Прямые замеры

Ваттметры выпускают в разных модификациях для сетей

380V. Соответствующие коррекции делают в процессе выполнения рабочих операций. Следует подключать щупы с учетом инструкций производителя и соответствующего расположения проводников. Как правило, в конструкциях приборов применяют две катушки с параллельным и последовательным подсоединением к нагрузке. Для повышенной точности пользуются профессиональными приборами «лабораторной» категории.

Косвенные замеры

Эти операции выполняют с применением мультиметров. Измеряют сопротивление, ток и напряжение, после чего вычисляют мощность.

Фазометры

С помощью этих приборов измеряют фазовый сдвиг между несколькими электрическими параметрами. Таким аппаратом можно определить cos ϕ, если паспортное значение отсутствует в сопроводительных документах к оборудованию.

Регулирование cos

Отмеченное выше негативное влияние реактивных составляющих компенсируют специальными дополнениями в общую электрическую схему. Расчеты выполняют с применением представленных формул.

Мощность некоторых электрических приборов

При оснащении современной квартиры часто приходится решать задачи по согласованию нагрузок в отдельных линиях. Необходимо правильно встраивать защитный автомат, чтобы предотвратить аварийные ситуации. Начинают с уточнения параметров проводки. Далее проверяют группы подсоединенной бытовой техники. Типичные параметры потребляемой мощности (Вт):

  • персональный компьютер – 170-1 250;
  • ноутбук – 40-280;
  • ЖКИ телевизор – 120-265;
  • утюг – 450-1850;
  • кондиционер – 1 200 – 2 500.

Какой автомат подойдет, определяют с учетом всех значимых факторов. Особое внимание уделяют нагрузкам с высокими значениями реактивной составляющей мощности.

Видео

Источник

Мощность электрического тока

Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие. Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это разные понятия.

Что такое мощность электрического тока

Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с). Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.

Мощность электрического тока

Мощность тока связана сразу с несколькими физическими величинами. Напряжение (U) представляет собой работу, затрачиваемую на перемещение 1 кулона. Сила тока (I) соответствует количеству кулонов, проходящих за 1 секунду. Таким образом, ток, умноженный на напряжение (I x U), соответствует полной работе, выполненной за 1 секунду. Полученное значение и будет мощностью электрического тока.

Приведенная формула мощности тока показывает, что мощность находится в одинаковой зависимости от силы тока и напряжения. Отсюда следует, что одно и то же значение этого параметра можно получить за счет большого тока и малого напряжения и, наоборот, при высоком напряжении и малом токе. Это свойство позволяет передавать электроэнергию на дальние расстояния от источника к потребителям. В процессе передачи ток преобразуется с помощью трансформаторов, установленных на повышающих и понижающих подстанциях.

Существует два основных вида электрической мощности – активная и реактивная. В первом случае происходит безвозвратное превращение мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Для нее применяется единица измерения – ватт. 1Вт = 1В х 1А. На производстве и в быту используются более крупные значения – киловатты и мегаватты.

К реактивной мощности относится такая электрическая нагрузка, которая создается в устройствах за счет индуктивных и емкостных колебаний энергии электромагнитного поля. В переменном токе эта величина представляет собой произведение, выраженное следующей формулой: Q = U х I х sin(угла). Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q является реактивной мощностью, измеряемой в Вар – вольт-ампер реактивный. Данные расчеты помогают эффективно решить вопрос, как найти мощность электрического тока, а формула, существующая для этого, позволяет быстро выполнить вычисления.

Обе мощности можно наглядно рассмотреть на простом примере. Какое-либо электротехническое устройство оборудовано нагревательными элементами – ТЭНами и электродвигателем. Для изготовления ТЭНов используется материал, обладающий высоким сопротивлением, поэтому при прохождении по нему тока, вся электрическая энергия преобразуется в тепловую. Данный пример очень точно характеризует активную электрическую мощность.

Что касается электродвигателя, то внутри него расположена медная обмотка, обладающая индуктивностью, которая, в свою очередь, обладает эффектом самоиндукции. Благодаря этому эффекту, происходит частичный возврат электричества обратно в сеть. Возвращаемая энергия характеризуется небольшим смещением в параметрах напряжения и тока, оказывая негативное влияние на электрическую сеть в виде дополнительных перегрузок.

Такие же свойства имеют и конденсаторы из-за своей электрической емкости, когда накопленный заряд отдается обратно. Здесь также смещаются значения тока и напряжения, только в противоположном направлении. Данная энергия индуктивности и емкости, со смещением по фазе относительно значений действующей электросети, как раз и есть реактивная электрическая мощность. Благодаря противоположному эффекту индуктивности и емкости в отношении сдвига фазы, становится возможным выполнить компенсацию реактивной мощности, повышая, тем самым, эффективность и качество электроснабжения.

По какой формуле вычисляется мощность электрического тока

Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.

Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.

Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.

При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.

Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.

От чего зависит мощность тока

Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.

Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.

Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.

Формула электрической мощности

В чем измеряется мощность электрического тока

Источник

Читайте также:  Кривая намагничивания стали трансформатора тока