Меню

Как ограничивается сила максимального тока в генераторах

Генераторы независимого возбуждения

Дата публикации: 29 января 2013 .
Категория: Статьи.

Свойства генераторов анализируются с помощью характеристик, которые устанавливают зависимости между основными величинами, определяющими работу генераторов. Такими основными величинами являются: 1) напряжение на зажимах U, 2) ток возбуждения iв, 3) ток якоря Iа или ток нагрузки I, 4) скорость вращения n.

Обычно генераторы работают при n = const. Поэтому основные характеристики генераторов определяются при n = nн = const.

Существуют пять основных характеристик генераторов: 1) холостого хода, 2) короткого замыкания, 3) внешняя, 4) регулировочная, 5) нагрузочная.

Все характеристики могут быть определены как экспериментальным, так и расчетным путем.

Рассмотрим основные характеристики генератора независимого возбуждения.

Характеристика холостого хода

Характеристика холостого хода (х. х. х.) U = f (iв) при I = 0 и n = const определяет зависимость напряжения или электродвижущей силы (э. д. с.) якоря Eа от тока возбуждения при холостом ходе (I = 0, P2 = 0). Характеристика снимается экспериментально по схеме рисунка 1, а при отключенном рубильнике.

Рисунок 1. Схемы генераторов и двигателей независимого (а), параллельного (б), последовательного (в), смешанного (г) возбуждения (сплошные стрелки – направления токов в режиме генератора, штриховые – в режиме двигателя)

Рисунок 2. Характеристика холостого хода генератора независимого возбуждения

Снятие характеристики целесообразно начинать с максимального значения тока возбуждения и максимального напряжения U = (1,15 – 1,25) Uн (точка а кривой на рисунке 2). При уменьшении iв напряжение уменьшается по нисходящей ветви аб характеристики сначала медленно ввиду насыщения магнитной цепи, а затем быстрее. При iв = 0 генератор развивает некоторое напряжение U00 = Об (рисунок 2), обычно равное 2 – 3% от Uн, вследствие остаточной намагниченности полюсов и ярма индуктора. Если затем изменить полярность возбуждения и увеличить iв в обратном направлении, начиная с iв = 0, то при некотором iв div > .uk-panel’>» data-uk-grid-margin>

Источник

Регулирование активной и реактивной мощности синхронных генераторов при параллельной работе

Рассмотрим способы регулирования мощности на примере неявнополюсного генератора.

Если пренебречь активным сопротивлением R1, ток якоря можно определить из уравнения напряжения:

Т.к U1=Uс=const, то силу тока I1 можно изменить только изменяя ЭДС Еf по фазе или по вел-не.

Регулирования активной мощности. Если к валу генератора приложить внешний момент, больший необходимого для компенсации магнитных и механических потерь, то ротор приобретает ускорение. Вектор Еf. смещается относительно вектора U1 на угол Θ в направлении вращения векторов (рис.1, б), т. е. меняет фазу. Возникает небалансная ЭДС Е=ЕfU1=jI1х1, приводящая к появлению тока I1. Вектор I1 отстает от вектора Еf на 90°, так как его величина и направление определяются индуктивным сопротивлением х1.

При этом генератор отдает в сеть активную мощность
Р=m1U1I1cosφ1. На его вал действует электромагнитный тормозной момент, который уравновешивает вращающий момент первичного двигателя, и частота вращения ротора остается неизменной. Чем больше внешний момент, приложенный к валу генератора, тем больше угол Θ, а следовательно, ток и мощность, отдаваемые генератором в сеть. Для увеличения активной мощности генератора необходимо увеличивать приложенный к его валу внешний вращающий момент, а для уменьшения нагрузки — уменьшать этот момент.

Рисунок 1 – Упрощенные вект. диагр. неявнополюсного генераторапри парал работе с сетью.

Если к валу ротора приложить внешний тормозной момент, то вектор Еf будет отставать от вектора напряжения U1 на угол Θ (рис.1, в). При этом возникают небалансная ЭДС Е и ток I1, вектор которого отстает от вектора Еf на 90°. Так как угол φ1>90°, активная составляющая тока находится в про-тивофазе с напряжением генератора. Следовательно активная мощность Р=m1U1I1cosφ1 забирается из сети. Машина переходит из генераторного в двигательный режим, создавая электромагнитный вращающий момент, который уравновешивает внешний тормозной момент. Частота вращения ротора при этом остается неизменной.

Регулирование реактивной мощности. Если в машине, подключенной к сети и работающей в режиме холостого хода (рис. 2, а), увеличить ток возбуждения If, то возрастет ЭДС Еf (рис. 2, б). Возникнет небалансная ЭДС Е=-jI1х1. По обмотке якоря будет проходить реактивный ток I1, который определяется только индуктивным сопротивлением х1 машины. Ток I1 отстает по фазе от напряжения генератора U1 на угол 90° и опережает на угол 90°напряжение сети Uс. При уменьшении тока возбуждения ток I1 изменяет свое направление: он опережает на 90° генератора U1 (рис. 2, в) и отстает на 90° от напряжения Uс.

При изменении тока возбуждения изменяется лишь реактивная составляющая тока I1 и реактивная мощность машины Q. Активная составляющая тока I1 и активная мощность в режиме холостого хода равны нулю.

Рисунок 2 – Упрощ. вект. диагр. неявнополюсного ген-ра при парал-ной работе с сетью при отсутствии активной нагрузки

При работе машины под нагрузкой при изменении тока возбуждения также изменяется только реактивная составляющая тока I1 и реактивная мощность машины Q.

При работе машины на сеть бесконечно большой мощности:U1 = Еf + Еа + Е = — Uс = const.

Суммарный магнитный поток, сцепленный с каждой из фаз, ΣФ = Фf + Фа + Ф

не зависит от тока возбуждения и при всех условиях остается неизменным.

Режим возбуждения синхронной машины с током Ifн, при котором реактивная составляющая тока I1 равна нулю, а cosφ1=1,0, называют режимом полного нормального возбуждения.

Если ток возбуждения If >Ifн , такой режим называют режимом перевозбуждения. Ток якоря I1 содержит отстающую от U1 реактивную составляющую, что соответствует активно-индуктивной нагрузке генератора. Реактивная составляющая тока I1 создает размагничивающий поток реакции якоря. Реактивная составляющая тока направлена от генератора в сеть, так как . Генератор отдает реактивную мощность в сеть.

Если ток возбуждения If

С уменьшением тока возбуждения наступает такой момент, при котором магнитный поток оказывается настолько ослабленным, что нагрузочный угол Θ превышает критическое значение, и генератор выпадает из синхронизма. Пунктирной линией отмечен предел статической устойчивости генератора при недовозбуждении.

Минимумы токов всего семейства U-образных характеристик лежат на линии, которая представляет собой регулировочную If=f(I1) при cosφ1=1.

Читайте также:  Какая сила тока проходит через нихромовую спираль обогревателя если ее длина 40 м а площадь

Форма U-образных кривых зависит от величины x1(xd): при большем значении x1 получаются пологие (тупые) кривые, при малом значении x1 — острые.

Наиболее выгодным для генератора является его работа с нормальным током возбуждения, когда cosφ1=1. Но так как нагрузка энергосистемы имеет индуктивный характер (асинхронные двигатели, люминесцентные лампы и др.) для уменьшения потерь энергии в линиях электропередачи генераторы работают в режиме перевозбуждения.

Источник

Источники электрического тока в автомобилях

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно .

Генераторы переменного тока обладают свойством самоограничения максимальной силы тока при увеличении числа подключенных потребителей и возрастании частоты вращения ротора. Это происходит следующим образом. При возрастании числа потребителей увеличивается ток обмотки статора, а это приводит к усилению магнитного поля статора. Магнитное поле статора направлено против магнитного поля ротора, поэто

му суммарный магнитный поток уменьшается. В катушках статора наводится меньшая э.д.с., поэтому максимальная сила тока, отдаваемая генератором, ограничивается.

При возрастании частоты вращения ротора увеличивается частота переменного тока в обмотке статора. Вследствие этого возрастает индуктивное сопротивление обмотки статора, что также ведет к ограничению максимальной силы тока генератора.

1.2. Устройство аккумуляторной батареи

На автомобилях и автобусах применяются стартерные свинцово-кислотные аккумуляторные батареи. Батареи служат для питания всех потребителей электрической энергии систем зажигания, пуска, освещения, сигнализации и т. д. при неработающем двигателе, а также для питания потребителей совместно с генератором, когда потребляемая ими сила тока превышает максимальную для генератора величину.

Аккумуляторные батареи при малых габаритах, массе и стоимости должны обладать большой емкостью, малыми сопротивлением и саморазрядом, большими сроком службы и прочностью, быть надежными в эксплуатации. При пуске холодного двигателя стартером аккумуляторные батареи должны обеспечивать отдачу большой силы тока при малом падении напряжения.

На автомобилях ЗИЛ – 130 устанавливают аккумуляторные батареи 6-СТ – 78 ЭМСЗ, на ГАЗ – 53 А – 6-СТ-68-ЭМ. Марки аккумуляторных батарей расшифровываются так: первая цифра обозначает количество аккумуляторов в батарее; буквы СТ – стартерная; число после букв – ёмкость батареи в ампер-часах. Последние буквы обозначают материал бака, сепараторов и в каком состоянии батареи поступают в автотранспортное предприятие: Э – эбонит; П – пластмасса;

Д – дерево; М – мипласт; С – стекло — войлок; З – аккумуляторная батарея сухозаряженная.

Свинцовая аккумуляторная батарея состоит из бака, который изготавливают из эбонита, полиэтилена или асфальтопековой пластмассы. Внутрь бака из асфальтопековой пластмассы запрессовывают кислостойкие вставки.

На дне бака выполнены четыре ребра, на которые ножками опирается каждая положительная и отрицательная пластины. Во избежание замыкания ножки положительных и отрицательных пластин опираются на разные ребра.

В пространстве между ребрами скапливается осыпающая с течением времени активная масса пластин(шлам),что на некоторое время предупреждает замыкание разноименных пластин. В батареях типа 6СТ-60 и других в крышках баков, изготавливаемых из эбонита или полиэтилена, имеются четыре отверстия: два крайних, для полюсных выводов полубаков пластин, одно заливное, закрываемое резьбовой пробкой и вентиляционной. В два крайних отверстия для надежного уплотнения полюсных выводов при изготовлении крышек заливают свинцовые втулки. Для надежного крепления наконечников стартерных проводов плюсовой и минусовой вывод- -конусные. В зависимости от полярности выводы обозначаются знаками и .Плюсовой вывод имеет больший диаметр. Сообщение внутренней полости бака с атмосферой осуществляется через отверстие. К выводам приваривают межаккумуляторные перемычки и верхнюю часть свинцовых втулок, установленных в крышках при изготовлении их. Выводы являются продолжением мостиков. Герметичность стыка крышек со стенками баков обеспечивается кислотоупорной мастикой, которая состоит примерно из 75% нефтяного битума№5 и 25% машинного масла.

Рис 3. Аккумуляторная батарея

1 — корпус; 2 — крышка; 3 — «плюсовая» клемма; 4 — один из шести аккумуляторов; 5 — «минусовая» клемма; 6 — пробка;

7 — заливное отверстие; 8 — пластины аккумулятора

Внутрь каждого отсека бака устанавливается блок разноименных пластин с сепараторами.

Решетки пластин отливают из антикоррозионного сплава, содержащего 92-93% свинца и 7-8% сурьмы. В сплав для решеток положительных пластин, кроме сурьмы, добавляют 0,1-0,2% мышьяка. Сурьму и мышьяка добавляют для увеличения механической прочности и уменьшения коррозии решетки, а также улучшения литейных свойств сплава.

Для увеличения емкости аккумулятора в ячейки решеток вмазывают активную массу, изготовленную из свинцового порошка и раствора серной кислоты для отрицательных и положительных пластин. Активная масса пластин обладает большой пористостью, а поэтому площадь рабочей поверхности, соприкасающейся с электролитом, увеличивается, и в результате возрастает емкость аккумулятора.

Для увеличения срока службы положительных пластин активную массу упрочняют добавки в нее полипропиленового волокна. При такой технологии изготовления положительных пластин сепараторы из стекловолокна не устанавливают.

В активную массу отрицательных пластин при ее изготовлении добавляют до 2% расширителей (сернокислый барий и дубитель БНФ), предотвращающих усадку и быстрое затвердение активной массы Вследствие этого ограничивается уменьшение проходного сечения пор в активной массе при эксплуатации аккумуляторной батареи и связанное с этим преждевременное уменьшение емкости и снижение срока службы пластин.

Активная масса пластин вмазывается в решетки с обеих сторон, после чего пластины прессуют для получения большей пористости, подвергают специальной обработке, заряда называется формированием.

В конце формирования большая часть активной массы положительных пластин превращается в перекись свинца PbO2 (темно-коричневого цвета),а отрицательных – в губчатый свинец Pb(серого цвета), вследствие чего емкость аккумулятора увеличивается до номинальной величины .Заводы выпускают аккумуляторные батарей с сухими заряженными пластинами.

Читайте также:  Схема генератора переменного тока ротор

Для увеличения срока службы аккумулятора решетки положительных пластин, прочность которых в результате окисления при заряде уменьшается, имеют большую толщину, чем отрицательные пластины.

Для уменьшения коробления крайней положительной пластины, ввиду значительного изменения объема ее активной массы при разряде аккумулятора у большинства батарей положительных пластин, в блоке устанавливают на одну меньше, чем отрицательных. Благодаря этому обе стороны подвергаются одинаковому изменению объема активной массы, и она меньше коробится.

Для увеличения емкости и уменьшения внутреннего сопротивления в каждом аккумуляторе устанавливают по несколько штук пластин. К мостикам с выводами приваривают ушки одноименных пластин. Полу блоки отрицательных и положительных пластин собирают в блок, при этом соприкосновение разноименных пластин предотвращается сепараторами.

Сепараторы изготавливают из кислотостойких материалов-микропористой пластмассы (мипласта), микропористого эбонита (мипора), стекловолокна и др.

Одна сторона сепараторов, изготовленных из мипора или мипласта, имеет ребра, которые обращены к положительным пластинам. При такой установке сепараторов обеспечивается лучший доступ электролита в поры активной массы положительных пластин, что способствует повышению емкости аккумулятора.

Источник



Электр. машины. / Электрические машины — книги / Электрические машины — Лекции

(o.к.з.) к о.к.з называется отношение установившегося тока короткого замыкания I K 0 при токе возбуждения, который при холостом ходе и n = n H дает E =U H , к номинальному току якоря I H [ 11 ]

В соответствии с рис. 3.12 и изложенным выше

где x d — насыщенное значение продольного синхронного сопротивления, соответствующее E δ = U H . На основании этих выражений

т.е. о.к.з. равно обратному значению x d *

У многих машин x d * > 1, и тогда k окз f0 и i fK — соответственно токи возбуждения на холостом ходу, когда U = U H , и при установившемся коротком замыкании, когда I = I H , то на основании подобия треугольников ОАА ` и ОВВ ` (рис.3.12)

k окз = i f 0 . (3.43)

Величина о.к.з. , как и величина x d , определяет предельную величину нагрузки, которую способен нести генератор при установившемся режиме работы, причем, чем больше о.к.з., тем больше предельная нагрузка.

У гидрогенераторов обычно к окз = 0,8. 1,8, а турбогенераторов к окз = 0,4. 1,0 [12]. Величина о.к.з тем больше, чем больше величина

зазора δ между статором и ротором. Поэтому машины с большим о.к.з. дороже.

Внешняя характеристика U = f (I) при i f = const, cos ϕ = const.

Внешняя характеристика показывает как изменяется напряжение U при изменении нагрузки и неизменном токе возбуждения.

Рис.3.13. Внешние характеристики

Рис. 3.14. Регулировочные характеристики

Вид внешней характеристики (рис.3. 13) определяется характером нагрузки и действием реакции якоря. Следует отметить, что значение i f для характеристик рис.3.13 различно, наибольшее i f соответствует характеристике 1.

Величина i f при номинальной нагрузке называется номинальным током возбуждения.

Номинальное изменение напряжения синхронного генератора ∆U H — это изменение напряжения на зажимах генератора при изменении

нагрузки от номинального значения до нуля и при неизменном

возбуждения. Синхронные генераторы обычно рассчитываются

работы с номинальной нагрузкой при отстающем токе и cos ϕ=0,8 [12]

при этом ∆U H = 25. 35%.

Регулировочная характеристика i f = f (I) при U = const, cos ϕ = const.

Регулировочная характеристика показывает, как нужно регулировать ток возбуждения, чтобы при изменении нагрузки напряжение оставалось неизменным. Вид регулировочных характеристик (рис.3.14) зависит от влияния тока якоря, т. е. от характера нагрузки. При номинальной нагрузке и cos = 0, 8 увеличение тока возбуждения по сравнению с режимом х.х. составляет 1.7. 2.2 раза .

Нагрузочная характеристика Наибольший интерес представляет чисто индуктивная нагрузка (индукционная нагрузочная характеристика ) при номинальном токе (рис. 3.15). В данном случае существует чисто продольная размагничивающая реакция якоря. Поэтому индукционная характеристика (кривая 2) идет ниже х.х.х. (кривая 1). Точка А соответствует режиму к.з. (I = I Н и U = 0).

Рис.3.15. Индукционная нагрузочная характеристика и реактивный треугольник синхронного генератора

Треугольник Потье Треугольником Потье (реактивным треугольником) называется ∆АВС (рис. 3.15). Вертикальный катет ВС равен падению напряжения в сопротивлении рассеяния якоря x σ a I H , а горизонтальный

катет АС равен МДС обмотки якоря k id I H в масштабе тока

Реактивный треугольник АВС можно построить, если известны: -ток возбуждения i fK = OA при к.з. и I = I H ,

-сопротивление x σ a ,

— начальная прямолинейная часть х.х.х.

Составляющая ОС тока возбуждения ОА при к.з. индуктирует ЭДС

E σ a = x σ a I H ,

а другая составляющая этого тока СА компенсирует размагничивающее действие МДС обмотки якоря

Индукционную характеристику 2 (рис.3.15) можно построить с помощью х.х.х. (кривая 1) и реактивного ∆АВС, передвигая его так, чтобы вершина В скользила по х.х.х.

Если x σ a и k id неизвестны, то ∆АВС можно построить с помощью характеристик 1 и 2. Отложив из некоторой точки А ` характеристики 2

параллельно ОВ и находим

точку пересечения B

с кривой 1. Отрезок

— величину МДС реакции якоря.

. Индуктивное сопротивление Потье. Опытная индукционная характеристика в действительности отклоняется вправо от характеристики, построенной с помощью х.х.х. и реактивного треугольника (штриховая кривая рис. 3.15). Причина заключается в том, что хотя для точки В ` х.х.х. и точки A ′ индукционной характеристики величины ЭДС Е δ и потока Ф δ одинаковы, соответствующие токи

возбуждения ОД и ОК различны. Т.к. ОК > ОД, то в режиме индукционной характеристики поток рассеяния обмотки возбуждения больше, что вызывает увеличение насыщения полюсов и ярма индуктора. Если произвести построение реактивного треугольника от точки A ′′, то получим отрезок C ′′ B ′′ > C ′ B ′ .

Поэтому вместо x σ a получим сопротивление

которое называется индуктивным сопротивлением Потье или расчетным индуктивным сопротивлением рассеяния обмотки якоря. У неявнополюсных машин х Р ≈(1,05. 1,1) x σ a , у явнополюсных х Р ≈(1,1. 1,3) x σ a , причем

величина х Р зависит от места расположения точки A ′′.

3 .3.3. Диаграмма Потье

Для неявнополюсных генераторов пользуются диаграммой Потье (рис.3.16), которая строится следующим образом.

При заданных U, I, cosϕ

стоят векторы U & и

зазора Ф & δ и определяет

х.х.х. находят необходимую

для создания E & δ МДС F fc или

ток возбуждения i fc . Вектор

Рис. 3.16. Диаграмма Потье

опережает вектор E &

90°. Полная МДС возбуждения

приведенной МДС якоря F a ′ = k d F a ( I ′ = k id I & ) .

Читайте также:  Разветвленная линейная электрическая цепь постоянного тока гуап

Диаграмма Потье состоит ,

таким образом, из двух частей: диаграммы ЭДС или напряжений и диаграммы МДС. Последнюю следует рассматривать как пространственную диаграмму МДС.

При практическом пользовании диаграммой Потье её совмещают с х.х.х. При этом вектор U & направляют по оси ординат, величину E & δ сносят на эту же ось, затем на х.х.х., в результате чего находят ток i fe .

К этому току под углом (90° + ϕ + δ) прибавляют I & ′ = k id I & , в результате чего находят ток i f . Если ток i f снести на ось абсцисс, то по х.х.х.

можно найти напряжение U 0 , которое получится после сброса нагрузки при неизменной величине i f , а также изменение напряжения ∆U.

Активным сопротивлением r a обычно пренебрегают.

Диаграмма (рис.3.16) построена в относительных единицах для номинальной нагрузки U * =1, I * =1, cosϕ = 0,8 (инд.), причем использована нормальная х.х.х. турбогенератора и принято, что r a =0.

В диаграмме Потье МДС реакции якоря не раскладывается на составляющие по осям d и q, и поэтому диаграмма Потье действительна только для неявнополюсных машин. Тем не менее ею пользуются также для явнополюсных машин, так как ошибка в определении тока i f

в случае cosϕ = 0,8 обычно не превышает 5. 10%.

Приведение полного тока I или МДС якоря F a к обмотке возбуждения производится так же, как приведение продольного тока МДС якоря.

При построении диаграммы Потье обычно вместо x σ a I откладывают x P I , что дает более точные результаты, т.к. при этом учитывается

повышенное насыщение магнитной цепи от потока рассеяния возбуждения.

3 .4. Параллельная работа синхронных машин 3.4.1.. Включение синхронных генераторов на параллельную работу

Условия синхронизации При включении генераторов на параллельную работу необходимо избегать чрезмерно большого броска тока и соответственно ударных электромагнитных моментов и сил. Поэтому предварительно необходимо выполнить ряд операций, называемых синхронизацией. Условия синхронизации заключаются в следующем :

— напряжение включаемого генератора U Г должно быть равно напряжению сети U c или уже работающего генератора;

— частота генератора f г должна равняться частоте сети f с;

— чередование фаз генератора и сети должно быть одинаково;

— напряжения U Г и U С должны быть в фазе.

Равенство напряжений достигается путем регулирования тока возбуждения и контролируется вольтметром. Изменение частоты и фазы напряжения генератора достигается изменение частоты вращения генератора. Правильность чередования фаз проверяют только при

первом включении генератора после сборки схемы. Совпадение напряжений по фазе контролируется с помощью ламп, нулевых вольтметров или специальных синхроноскопов. Неправильная синхронизация может вызвать серьезную аварию. Например, если напряжения генератора и сети будут в противофазе, то ток при включении будет равен двойному току к.з., а ударные электромагнитные силы возрастут в 4 раза .

Синхронизация с помощью лампового синхроноскопа Такая синхронизация осуществляется по схеме включения лампового синхроноскопа либо на одновременное погасание света ламп, либо на вращение света [1].

В схеме «на погасание огня» каждая из ламп включается между контактами сети и генератора одной и той же фазы. Напряжения на всех лампах одновременно равны нулю и перед включением генератора лампы не должны светиться. Достичь точного равенства частот практически невозможно, поэтому напряжения на лампах пульсируют с разностью частот (f Г — f С ). Регулированием частоты генератора необходимо добиться, чтобы частота загорания и погасания ламп была минимальной (период 3. 5 с). Включение производят в момент, когда лампы не горят. Так как лампы погасают раньше, чем напряжение станет равным нулю, то трудно выбрать правильный момент включения. В этом отношении лучшей является схема «на вращение огня», в которой одна из ламп включается между контактами сети и генератора одной и той же фазы, а две лампы — на разные фазы. Отметим, что если при осуществлении схемы «на погасание огня» вместо одновременного погасания и загорания всех трех ламп получится вращение света, а при схеме «на вращение огня» — одновременное погасание погасание и загорание ламп, то это будет указывать на неправильность чередования фаз генератора и сети. При этом необходимо поменять местами начала двух фаз обмотки статора генератора Для более точного выбора момента включения параллельно одной из ламп включают вольтметр, имеющий растянутую шкалу в области нуля (нулевой вольтметр).

Другие методы синхронизации. Синхронизация с помощью ламп применяется только для генераторов малой мощности. Для мощных генераторов пользуются электромагнитным синхроскопом, к которому подаются напряжения генератора и сети. Этот прибор работает на принципе вращающегося магнитного поля, и при f Г ≠ f C стрелка вращается с частотой (f Г — f С ) в ту или иную сторону в зависимости от того, какая частота больше. При правильном моменте включения стрелка синхроскопа обращена вертикально вверх.

Синхронизация генераторов является весьма ответственной операцией и требует от персонала большого внимания. В особенности

это важно в случае различных аварий, когда персонал работает в напряженной обстановке. В этих случаях применяется метод грубой синхронизации, или самосинхронизации. Генератор включается в сеть в невозбужденном состоянии (U Г = 0) при скорости вращения, близкой к синхронной (допускается отклонение до 2%). При этом отпадает необходимость в точном выравнивании частот, величины и фазы напряжений, благодаря чему процесс синхронизации предельно упрощается и возможность ошибочных действий исключается. После включения генератора в сеть подается возбуждение.

Метод самосинхронизации можно применять в случаях, когда толчок тока не будет превышать 3,5 I H . В большинстве случаев это условие выполняется.

3. 4.2. Синхронные режимы параллельной работы синхронных машин

Режим работы синхронной машины параллельно с сетью называется синхронным. Предположим, что сеть является бесконечно мощной, т.е. в ней U = const и f = const. Это означает, что изменение режима работы машины не влияет на напряжение и частоту сети.

Напряжение параллельно работающего генератора равно напряжению сети. Для простоты предположим , что включаемая машина является неявнополюсной и сопротивления якоря r a = 0. Тогда, согласно диаграмме рис.3.10 ток якоря машины определяется зависимостью

Источник