Меню

Как определить трехфазное значение типовой мощности трансформатора

Расчет основных электрических величин трансформаторов

Расчет трансформатора начинается с определения основных электрических величин таких как, мощности на одну фазу и стержень, номинальных токов на стороне ВН и НН, фазных токов и напряжений.

Мощность одной фазы трансформатора, кВ×А,

где m – число фаз трансформатора.

Мощность на одном стержне

где с — число активных стержней трансформатора, с=3;

S — номинальная мощность трансформатора, кВ·А.

Далее определяем линейные и фазные токи, а так же фазные напряжения для двух обмоток: высокого напряжения (все рассчитываемые величины для этой обмотки должны быть с индексом 1) и низкого напряжения (все рассчитываемые величины — с индексом 2).

Номинальный (линейный) ток обмоток ВН и НН трехфазного трансформатора, А,

где S — мощность трансформатора, кВ×А;

U — номинальное линейное напряжение соответствующей обмотки, В.

Фазный ток обмотки одного стержня трехфазного трансформатора, А:

при соединении обмоток в звезду или зигзаг

при соединении обмоток в треугольник

где I- номинальный ток определяемый по формуле 3.3.

Фазное напряжение трехфазного трансформатора, В:

при соединении обмотки в звезду или зигзаг

при соединении обмотки в треугольник

здесь U-номинальное линейное напряжение соответствующей обмотки (по заданию), В.

При соединении обмотки в зигзаг результирующее фазное напряжение образуется геометрическим сложением напряжений двух частей обмотки, находящихся на разных стержнях (рис.3.1).

В силовых трансформаторах общего назначения обе части обмотки на каждом стержне имеют равное число витков. В этом случае фазное напряжение образуется суммой равных напряжений двух частей обмоток, сдвинутых на 60 о . Напряжение одной части обмотки фазы при этом может быть определено из формулы:

Общее число витков такой обмотки на одном стержне будет определяться не UФ, как при соединении обмотки в звезду, а 2 UФ/ , т.е. увеличится в 1,155 раза.

Рисунок 3.1 Схема соединения в зигзаг

Исходя из этого для обмотки НН соединенной по схеме зигзаг необходимо дополнительно рассчитать фазное напряжение по формуле:

где UФ – фазное напряжение вторичной обмотки соединенной в зигзаг, рассчитанной по формуле 3.6.

Для определения изоляционных промежутков между обмотками и другими токоведущими частями и заземленными деталями трансформатора существенное значение имеют испытательные напряжения, при которых проверяется электрическая прочность изоляции трансформатора. Эти испытательные напряжения определяются согласно заданной системе охлаждения по таблицам 3.1 и 3.2 для каждой обмотки по ее классу напряжения.

Таблица 3.1 Испытательные напряжения промышленной частоты (50 Гц) для масляных силовых трансформаторов (ГОСТ 1516.1-76)

Класс напряжения, кВ
Испытательное напряжение Uисп, кВ

Таблица 3.2 Испытательные напряжения промышленной частоты (50Гц) для сухих силовых трансформаторов (ГОСТ 1516.1-76)

Класс напряжения, кВ До 1,0
Испытательное напряжение, кВ

Потери короткого замыкания, указанные в задании, дают возможность определить активную составляющую напряжения короткого замыкания, %:

где Рк – потери короткого замыкания в Вт;

S – полная мощность трансформатора в кВ·А.

Реактивная составляющая напряжения короткого замыкания при заданном Uк определяется по формуле

Источник



Расчет трехфазного трансформатора

date image2015-10-14
views image3203

facebook icon vkontakte icon twitter icon odnoklasniki icon

Потребители электрической энергии питаются от трехфазного двухобмоточного понижающего трансформатора с номинальной мощностью S1ном при номинальных первичном и U1ном и вторичном U2ном линейных напряжениях с номинальной частотой Гц.

Технические данные трансформатора: потери мощности при холостом ходе P, потери мощности при коротком замыкании Pк, напряжение короткого замыкания при токах в обмотках I1ном и I2ном, равных номинальным. Способ соединения обмоток трансформатора «звезда».

Читайте также:  Мощность насоса джамбо 70 50

Принимая во внимание паспортные данные трансформатора, приведенные для соответствующего варианта задания в табл. 8.1, определить коэффициент трансформации K, коэффициент полезного действия при номинальной нагрузке, , токи в первичной I1ном и во вторичной I2ном обмотках, фазные первичное U10 и вторичное U20 напряжения на холостом ходе, сопротивления короткого замыкания и , активные R1 и R2 и реактивные X1 и X2 сопротивления обмоток, активное и индуктивное падения напряжения при коротком замыкании. Построить зависимость при . Схему включения трансформатора представить в соответствии с ГОСТ на условные обозначения элементов цепи.

Исходные данные к задаче № 8

Вариант Технические данные трансформатора
Тип трансформатора , кВА , кВ , кВ , кВт , кВт , %
ТМ–25/6–10 0,23 0,13 0,60 4,5
ТМ–40/6–10 0,23 0,175 0,88 4,5
ТМ–63/6–10 0,23 0,24 1,28 4,5
ТМ–100/6–10 0,23 0,33 1,97 6,5
ТМ–160/6–10 0,23 0,51 2,65 4,5
ТМ–250/6–10 0,23 0,74 3,70 4,5
ТМ–400/6–10 0,23 0,93 5,50 4,5
ТМ–630/6–10 0,23 1,31 7,60 5,5
ТМ–25/6–10 0,40 0,13 0,60 4,5
ТМ–40/6–10 0,40 0,175 0,88 4,5
ТМ–63/6–10 0,40 0,24 1,28 4,5
ТМ–100/6–10 0,40 0,33 1,97 6,5
ТМ–160/6–10 0,40 0,51 2,65 4,5
ТМ–250/6–10 0,40 0,74 3,70 4,5
ТМ–400/6–10 0,40 0,93 5,50 4,5
ТМ–630/6–10 0,40 1,31 7,60 5,5
ТМ–1000/6–10 0,23 2,450 12,20 5,5
ТМ–1600/6–10 0,40 3,300 18,00 5,5
ТСЗ–160/10 0,23 0,700 2,70 5,5
ТСЗ–250/10 0,40 1,000 3,80 5,5
ТСЗ–400/10 0,40 1,300 5,40 5,5
ТСЗ–630/10 0,40 2,000 7,30 5,5
ТСЗ–1000/10 0,40 3,000 11,20 5,5
ТМ–20/6–10 0,40 0,22 0,6 6,5
ТМ–30/6 0,40 0,25 0,85 5,5

По техническим данным трансформаторов, приведенным в табл.8.1 и 8.2 определить КПД трансформатора при коэффициентах нагрузки и сosφ2, а также ток нагрузки I2, при которой КПД имеет наибольшее значение, определить среднегодовой КПД трансформатора при активной нагрузке ( ), КПД трансформатора при номинальной нагрузке ( ), построить зависимость изменения КПД от полезной мощности P2, отдаваемой трансформатором, при коэффициентах нагрузки и .

Исходные данные дополнительному заданию задачи № 8

Источник

Способы расчёта различных конфигураций трансформаторов

Как бы ни развивалась электроника, но всё же отказаться от такого устройства, как трансформатор пока не удаётся. Каждый надёжный блок питания и преобразователь напряжения содержит этот электромагнитный аппарат с гальванической развязкой обмоток. Они применяются широко и на производстве, и в быту, и представляют собой статическое электромагнитное устройство, работающее по принципу взаимоиндукции. Состоят такие устройства из двух основных элементов:

  1. замкнутого магнитопровода;
  2. двух и более обмоток.

Обмотки трансформаторов не имеют между собой никакой связи, кроме индуктивной. Предназначен он для преобразования только переменного напряжения, частота которого, после передачи по магнитопроводу, будет неизменна.

Расчет параметров трансформатора необходим для того, чтобы на вход этого устройства было подано одно напряжение, а на выходе генерировалось пониженное или повышенное напряжение другой заданной величины. При этом нужно учесть токи, протекающие во всех обмотках, а также мощность устройства, которая зависит от подключаемой нагрузки и от назначения.

Любой даже простейший расчет трансформатора состоит из электрической и конструктивной составляющей. Электрическая часть включает в себя:

  • Определение напряжений и токов, протекающих по обмоткам;
  • Определение коэффициента трансформации.

К конструктивным относятся:

  • Размеры сердечника и тип устройства;
  • Выбор материала сердечника трансформатора;
  • Возможные варианты закрывающего корпуса и вентиляции.

типы трансформаторов

Через один квадратный сантиметр сечения магнитопровода протекает магнитная индукция, единица измерения её — Тесла. Тесла, в свою очередь, выдающийся физик, в честь которого и она и названа. Это значение напрямую зависит от частоты тока. И так при частоте 50 Гц и, допустим, 400 Гц величины индукция (тесла) будет разной, а значит и габариты устройства с увеличением частоты снижаются.

Читайте также:  Мощность двигателя машинки автомат индезит

После этого определяют падение напряжения и потери в магнитопроводе, на этапе электрического расчёта все эти величины определяются лишь примерно. Расчет нагрузки в трансформаторе является ключевым в его исполнении. В сварочном, например, нагрузочную особенность выражают из режима короткого замыкания. Большое значение тока короткого замыкания, связано с малым значением сопротивления трансформатора в данных условиях работы.

Важнейшим элементом всех формул данного расчёта является коэффициент трансформации, который определяется как соотношение числа намотанных витков в первичной обмотке, к количеству витков во вторичной обмотке. Если обмоток не две, а больше, значит и соответственно таких коэффициентов тоже будет несколько. Если известны напряжения обмоток, то можно его рассчитать как отношение напряжений первичной обмотки, ко вторичной.

Расчет силового трансформатора

Расчет силового трансформатора напрямую зависит от количества фаз в питающей сети, то есть однофазной или же трехфазной. Прежде всего в силовом трансформаторе основную роль играет его мощность. Упрощенный расчет трансформаторов малой мощности и большой можно выполнить и в домашних условиях. Расчёт потерь неизбежен, как и для любых электромагнитных устройств, здесь же он состоит из двух основных магнитных составляющих:

  1. вихревые токи;
  2. намагничивание.

Расчет однофазного трансформатора

Рассчитывая понижающие трансформаторы однофазного тока, как самые распространенные в быту, для начала нужно выяснить его мощность. Конечно, понизить напряжение можно и другими способами, но этот самый эффективный и даёт ещё вдобавок гальваническую развязку, а значит возможность подключения силовой нагрузки.

Например, если напряжение первичной обмотки 220 Вольт, что свойственно для стандартных сетей однофазного тока, то вторичное напряжение нужно определить по нагрузке, которая будет подключаться к нему. Это может быть как низшее, так и высшее напряжение. Например, для зарядки автомобильных аккумуляторов необходимо напряжение 12-14 Вольт. То есть вторичное напряжение и ток тоже должно быть заранее известно.

Примерная мощность будет равна произведению тока на напряжение. Стоит учесть также и КПД. Для силовых аппаратов он составляет примерно 0,8–0,85. Тогда с учётом этого коэффициента полезного действия расчётная мощность будет составлять:

Именно эта мощность и ложится в основу расчёта поперечного сечения сердечника, на котором будут произведены намотки обмоток. Кстати, видов этих сердечников магнитопровода может быть несколько, как показано на рисунке снизу.

виды сердечников магнитопровода

Далее, по этой формуле определяем сечение

Коэффициент 1–1,3 зависит от качества электротехнической стали. К электротехнической стали относится чистое железо в виде листов или ленты толщиной 0,1–8 мм либо в виде сортового проката (круг или квадрат) различных размеров.набор сердечника из электротехнической стали

После чего определяется количество витков, на один вольт напряжения.

Берем среднюю величину коэффициента 60.

Теперь зная количество витков на один вольт есть возможность подсчитать количество витков в каждой обмотке. Осталось всего лишь найти сечение провода, которым выполнится намотка обмоток. Медь, для этого лучший материал, так как обладает высокой токопроводимостью и быстро остывает в случае нагрева. Тип провода ПЭЛ или ПЭВ. Кстати, нагрев даже самого идеального электромагнитного устройства неизбежен, поэтому при изготовлении сетевого трансформатора актуален и вопрос вентиляции. Для этого хотя бы предусмотреть на корпусе естественную вентилируемую конструкцию путём вырезания отверстий.

Читайте также:  Что такое мощность койки

Ток в обмотке равен

Диаметр сечения проводника для обмотки определяется по формуле:

где 0,7-0,9 это коэффициент плотности тока в проводнике. Чем больше его значение, тем меньше будет греться провод при работе.

Существует множество методов расчёта характеристик и параметров, этот же самый простой, но и примерный (неточный). Более точный расчет обмоток трансформатора применяется для производственных и промышленных нужд.

Расчёт трехфазного трансформатора

схемы подключения обмоток тнасформтаора

Изготовление трехфазного трансформатора и его точный расчёт процесс более сложный, так как здесь первичная и вторичная обмотка состоят уже из трёх катушек. Это разновидность силового трансформатора, магнитопровод которого выполнен чаще всего стержневым способом. Здесь уже появляются такие понятие, как фазные и линейные напряжения. Линейные измеряются между двумя фазами, а фазные между фазой и землёй. Если трансформатор трехфазный рассчитан на 0,4 кВ, то линейное напряжение будет 380В, а фазное 220 В. Обмотки могут быть соединены в звезду или треугольник, что даёт разные величины токов и напряжений.

Обмотки трехфазного трансформатора расположены на стержнях так же, как и в однофазном, т. е. обмотки низшего напряжения НН размещаются ближе к стержню, а обмотки высшего напряжения ВН — на обмотках низшего напряжения.

Высоковольтные трансформаторы трёхфазного тока рассчитываются и изготавливаются исключительно в промышленных условиях. Кстати, любой понижающий трансформатор при обратном включении, выполняет роль повышающего напряжение устройства.

Расчет тороидального трансформатора

тороидальный трансформатор

Такая конструкция трансформаторов используется в радиоэлектронной аппаратуре, они обладают меньшими габаритами, весом, а также повышенным значением КПД. За счёт применения ферритового стержня помехи практически отсутствует, это даёт возможность не экранировать данные устройства.

Простой расчет тороидального трансформатора состоит из 5 пунктов:

  • Определение мощность вторичной обмотки P=Uн*Iн;
  • Определение габаритной мощности трансформатора Рг=Р/КПД. Величина его КПД примерно 90-95%;
  • Площадь сечения сердечника и его размеры

формула 1

  • Определение количества витков на вольт и соответственно количества витков для необходимой величины напряжения.

формула 3

  • Расчёт тока в каждой обмотке и выбор диаметра проводника делается аналогично, как и в силовых однофазных трансформаторах, описанных выше.

Расчет трансформатора для сварочного полуавтомата

Сварочный полуавтомат предназначен для сварки с механической подачей специальной сварочной проволоки вместо электрода. Источник питания такого устройства также имеет в своей основе мощный трансформатор. Расчёт основан на принципе его работы, на выходе которого должно быть 60 Вольт при холостом ходу. Работает он в короткозамкнутом режиме поэтому и нагрев его обмоток явление нормальное. Расчёт в принципе тоже аналогичен, только в этом случае ещё стоит учесть мощность при продолжительной сварке

Pдл = U2I2 (ПР/100)0.5 *0.001.

Напряжение и силу одного витка измеряют в вольтах и оно будет равно E=Pдл0.095+0.55. Зная эти величины можно приступить и к полному расчёту.

Расчет импульсного трансформатора двухтактного преобразователя

Преимуществом двухтактных преобразователей является их простота и возможность наращивания мощности. В правильно сконструированном двухтактном преобразователе через обмотку проходит неизменный ток, поэтому сильное подмагничивание сердечника отсутствует. Это позволяет использовать полный цикл перемагничивания и получить максимальную мощность. Так как он выполняется на ферритовом сердечнике то и расчет выходного напряжения трансформатора аналогичен обычному тороидальному.

Упростить варианты расчета трансформатора можно применяя специальные калькуляторы расчета, которые предлагают некоторые интернет-ресурсы. Стоит только внести желаемые данные, и автомат выдаст нужные параметры планируемого электромагнитного устройства.

Видео с расчетом трансформатора

Источник