Меню

Как подобрать измерительный трансформатор напряжения

Выбор измерительных трансформаторов

Реализуемая в Российской Федерации политика энергосбережения, а также растущая стоимость электрической энергии требуют все большей и большей эффективности ее учета. С этой целью создаются автоматизированные системы учета электроэнергии, в штат предприятий принимаются специалисты для их обслуживания. Для создания и эксплуатации таких систем требуются не только дополнительные капиталовложения, но и решение ряда технических задач, одна из которых будет рассмотрена в этой статье.

Низшим уровнем в иерархии автоматизированных систем учета является уровень информационно-измерительного комплекса (ИИК). Он включает в себя измерительные трансформаторы, счетчики электрической энергии, вторичные цепи измерительных трансформаторов. Очень важным на этапе построения ИИК является минимизация его погрешности, которая в большей мере зависит от правильного выбора измерительных трансформаторов тока (ТТ) и напряжения (ТН). Проблемы выбора ТН — отдельная тема, которая не затрагивается этим материалом. Стоит лишь отметить, что в отличие от ТТ их погрешности не зависят от изменяющейся нагрузки в контролируемой цепи. С ТТ все значительно сложнее.

Часто проектировщики и эксплуатирующие организации недостаточно серьезно относятся к выбору ТТ для учета. Выбирается ТТ с наилучшим классом точности, не заостряя внимания на других его параметрах. Так поступают будучи уверенными, что использование ТТ с наилучшим классом точности — уже экономия средств. Причиной этого является или неумение правильно выбрать ТТ, или желание сэкономить: устанавливаются трансформаторы тока имеющиеся в наличии, или выбираются ТТ, имеющие меньшую стоимость и более простые в установке, несмотря на ограниченность их метрологических характеристик. Результатом являются значительные финансовые потери, появляющиеся вследствие отсутствия точного учета.

Требования к применяемым в нашей стране трансформаторам тока регулирует ГОСТ7746-2001(1). В числе прочих характеристик этим стандартом задан ряд первичных токов и значения вторичных токов (1 и 5 А), с которыми ТТ могут быть изготовлены. Также регламентируются диапазоны измерений первичного тока, при которых должен быть сохранен класс точности: от 5–120% для классов точности 0,5 и 0,2, от 1–120% для классов 0,5S и 0,2S. Таким образом, классы точности с литерой «S» отличаются от прочих увеличенным диапазоном измерений в область минимальных значений (с 5% до 1%). Кроме того, существует требование ПУЭ (п.1.5.17) (2), согласно которому требуется выбирать коэффициент трансформации так, чтобы ток в максимальном режиме загрузки присоединения составлял не менее 40% тока счетчика, а в минимальном — не менее 5%. А ток счетчика, как правило, равняется вторичному току ТТ, поэтому, приведенное выше требование, можно смело отнести к обмотке учета измерительного трансформатора.

Стоит отметить, что требование к минимальному режиму идет вразрез с ГОСТ 7746, т.к. делает нецелесообразным применение ТТ классов точности с литерой «S». Что касается требования 40% в максимальном режиме то оно, вероятно, основано на стремлении минимизировать погрешности ТТ классов без «S» (см. рис. 1), в то время как для классов 0,2S и 0,5S целесообразнее было бы применять критерий «20%», в связи с ростом погрешностей при уменьшении первичного тока ниже этой величины (см. рис. 2).

Итак, при выборе коэффициента трансформации ТТ необходимо «убить двух зайцев»: не только «вписаться» в указанный ГОСТ7746-2001 диапазон,но и соблюсти требование ПУЭ.

Кроме того, фактическая нагрузка присоединения может быть значительно (в десятки и сотни раз) ниже его номинального тока, как часто случается в сетях распределительных компаний — сети были построены с учетом перспективы развития, которое так и не произошло. В таких случаях нужно обеспечить легитимный учет в области фактических нагрузок и предусмотреть возможность работы присоединения в режиме максимальной пропускной способности, чтобы в случае увеличения объемов транзита электрической энергии не пришлось менять ТТ. Использовать ТТ с завышенным коэффициентом экономически неэффективно, докажем это на конкретном примере. В расчет возьмем только токовую погрешность трансформатора тока, не принимая во внимание его угловую погрешность, а также погрешности других элементов измерительного комплекса — трансформаторов напряжения и счетчика. Имеем трансформатор тока класса точности 0,2S и коэффициентом трансформации обмотки учета 600/5. Используемая мощность силового трансформатора при напряжении 110 кВ равняется 10 000 кВА, cos ϕ равен 0,8. Фактический ток в первичной цепи равен 52,5 А, т.е. 8,75% от номинального первичного тока. Рассмотрим наихудший случай, когда при заданной нагрузке токовая погрешность будет равна крайнему значению — примерно 0,31% (см. рис. 2), количество неучтенной электрической энергии в год — 217 248 кВ*ч. Принимая стоимость одного киловатт-часа равной 1 руб., получаем неучтенной электроэнергии на сумму 217 248 руб. При погрешности 0,2 эта сумма составила бы 140 160 руб., т.е. в полтора раза или на 77 088 рублей меньше. В масштабах распределительных сетевых компаний такое количество неучтенной электроэнергии с каждого силового трансформатора может вылиться в кругленькую сумму. А если загрузка по первичной стороне трансформаторов тока будет еще меньше — цифры будут значительно внушительней, см. табл. 1.

Приведенная таблица применима для любого уровня напряжений, т.е. необходимо умножить используемую мощность на удельную величину, результатом будет являться годовое количество неучтенной электроэнергии в год, при заданной погрешности ТТ.

Таблица 1. Удельное количество неучтенной электрической энергии в год, в зависимости от погрешностей трансформатора тока классом точности 0,2S

Первичный ток, % номинального значения Погрешности ТТ класса 0,2S, % Удельное количество неучтенной э/э, кВт*ч в год
1 ±0,75 52,56
5 ±0,35 24,528
20
100 ±0,2 14,016
120

Задача обеспечения легитимного учета при малых и номинальных нагрузках присоединений решаема. Отечественной и зарубежной промышленностью производятся трансформаторы тока с расширенным диапазоном измерений — от 0,2 до 200% от номинального тока (увеличение диапазона измеряемых токов до 150 или 200% допускается международным стандартом IEС60044-1(3)). Зачастую такого диапазона измерений производителям удается достичь применением материалов с высокой магнитной проницаемостью — для изготовления сердечников используются нанокристаллические (аморфные) сплавы, но иногда и применения таких сплавов не требуется. Но существует проблема документального обеспечения улучшенных характеристик: производители при утверждении типа ТТ как средства измерения декларируют испытания на соответствие ГОСТ 7746, т.е. от 1 до 120%. Таким образом, расширенный диапазон номинального тока не подтверждается ничем, кроме заверений заводов-изготовителей. Поэтому, при применении таких ТТ следует убедиться, что расширенный диапазон измерений указан в описании типа и эксплуатационной документации. Следует еще раз отметить, что ГОСТ7746-2001 нерегламентирует погрешностей ТТ при токе свыше 120% номинального. О необходимости внесения в него изменений в части диапазонов первичных токов, расширения значений других параметров передовыми специалистами говорится уже несколько лет (4) и предлагается ввести новые классы точности, однако ГОСТ7746-2001 до настоящего времени применяется в неизменном виде.

Читайте также:  Что выбрать сетевой фильтр или стабилизатор напряжения

Отдельно необходимо рассмотреть вопрос замены существующих ТТ. К выше обозначенной проблеме выбора коэффициента трансформации обмотки АИИС КУЭ прибавляется проблема сохранения коэффициентов трансформации других обмоток — к ним подключены существующие измерительные приборы, устройства противоаварийной автоматики, телемеханики и релейной защиты. Это, как правило, значительные по величине коэффициенты, определяемые максимальной пропускной способностью присоединений. Таким образом, требуются трансформаторы тока с различными коэффициентами трансформации обмоток АИИС КУЭ, измерений и РЗА. Необходимая кратность Ктт этих обмоток может составлять два, три и более. Такие трансформаторы производятся для уровней напряжений от 6 кВ и выше, но их ассортимент достаточно ограничен — чаще всего это ТТ с кратностью Ктт обмоток измерений и РЗА к Ктт обмотки учета равной двум. Это направление производителями освоено недостаточно, возможно ввиду традиционного подхода проектировщиков к выбору ТТ, хотя выгода при использовании таких ТТ налицо.

Производству ТТ с разными коэффициентами обмоток мешают проблемы, связанные с конструкцией ТТ: в связи с тем, что число первичных витков для всех обмоток одинаково, необходимый коэффициент каждой из обмоток достигается варьированием количества ее вторичных витков, как следствие размеры вторичных обмоток увеличиваются, и встает вопрос размещения их в габаритах корпуса трансформатора, а также достижения требуемой термической и динамической стойкости. К примеру, для трансформаторов тока напряжением 35 кВ и выше изготовление ТТ с различными коэффициентами трансформации возможно при количестве ампервитков измерительной обмотки, большем или равном 1200 (в редких случаях от 600 ампервитков).

Даже при наличии таких конструктивных сложностей, производителям удается изготавливать трансформаторы с кратными коэффициентами в широком диапазоне — от 50 до 3000 А. Сегодня предлагается в связи с появлением таких ТТ заменить термин «номинальный ток ТТ» на «номинальный первичный ток вторичной обмотки» (4).

Кроме ТТ с расширенным диапазоном и кратными коэффициентами трансформации, существуют ТТ с возможностью увеличения коэффициентов трансформации всех обмоток единовременно в два раза, путем изменения количества витков первичной обмотки. У ТТ с такой возможностью существует два первичных вывода, один из которых замыкает первичную обмотку на два витка, другой — на один. Когда замкнуты два витка, коэффициент трансформации понижен, при замыкании на один виток коэффициент трансформации увеличивается в два раза, в соответствии с известной формулой (8):

Производятся и ТТ, у которых коэффициенты трансформации обмоток изменяются по вторичной стороне, используя различное количество ампервитков вторичной обмотки — так называемые ТТ с отпайками. В настоящее время такие ТТ изготавливаются на напряжения от 10 кВ и выше, как с литой, так с масляной и элегазовой изоляцией.

Вторичные обмотки существующих ТТ очень часто перегружены. Значение мощности вторичной нагрузки может составлять 150, а то и 200–300% номинальной мощности, а разгрузка ТТ прокладкой новых вторичных цепей кабелем большего сечения не всегда решает задачу. Эта проблема актуальнее всего для обмоток измерений, так как требуется их значительная точность. Поэтому наряду с вышеописанными параметрами ТТ должны иметь достаточно большую номинальную мощность вторичных обмоток, а также возможность изготовления с несколькими измерительными обмотками — тогда мощность нагрузки, которую можно подключить к ТТ, увеличивается кратно количеству измерительных обмоток. Общее число измерительных и релейных обмоток тоже ограничивается конструктивными особенностями отдельных видов ТТ и чаще всего составляет от 1 до 6, в зависимости от уровня напряжения (но существуют и ТТ с количеством обмоток более 6). С ростом уровня напряжения увеличиваются габаритные размеры трансформатора — тем больше обмоток можно разместить внутри ТТ.

Также при замене ТТ необходимо учитывать, что коэффициент безопасности приборов должен быть как можно ниже, во избежание выхода из строя оборудования вторичных цепей при возникновении токов короткого замыкания. Это означает, что ток во вторичной цепи должен перестать расти раньше (сердечник должен насытиться), чем будут повреждены установленные во вторичных цепях приборы. Следует отметить, что несмотря на то, что зачастую производители ТТ декларируют возможность работы в классе точности даже при нулевой вторичной нагрузке, догрузка трансформаторов тока требуется, именно исходя из достижения требуемого коэффициента безопасности.

Опытным путем доказано, что при уменьшении вторичной нагрузки ТТ, его коэффициент безопасности увеличивается в несколько раз (5). Поэтому невозможно понять, на сколько же необходимо догрузить обмотку измерений ТТ для достижения требуемого коэффициента безопасности приборов. В связи с этим необходимо, чтобы изготовители ТТ на каждый производимый тип ТТ приводили кривую зависимости коэффициента безопасности от вторичной нагрузки, это требование тоже должно быть внесено в ГОСТ7746-2001. Сейчас можно рекомендовать догружать ТТ как минимум до нижнего предела загрузки, регулируемого ГОСТ7746-2001.

Номинальная предельная кратность обмоток, в свою очередь, должна быть выше кратности тока короткого замыкания и не ниже кратности существующего ТТ, для обеспечения нормальной работы существующих релейных защит. Не стоит забывать и о проверке на термическую и динамическую стойкость трансформаторов тока напряжением свыше 1 кВ, выполняемую по ГОСТ Р 52736-2007 (7) — трансформатор не должен выйти из строя при коротких замыканиях в электроустановке.

Какие же ТТ наиболее функциональны? Все зависит от задачи, которая решается при выборе измерительных трансформаторов. Если необходима организация как цепей учета, так и измерения, релейных защит, автоматики и пр. — целесообразно применять отдельно стоящие ТТ (рис. 3), так как их функционал гораздо более обширен, чем, например, у ТТ, устанавливаемых на ввод силового оборудования (встраиваемых) (рис. 4).

В частности, для уровня напряжения 110 кВ последние ограничены классами точности — для ТТ одного из ведущих отечественных производителей класс 0,2S, при вторичном токе 5 А достигается только при использовании трансформатора с номинальным первичным током от 600 А. Кроме того, если сравнить отдельно стоящий ТТ с встраиваемым по мощностям вторичных обмоток — встраиваемый также уступает. Поэтому, выгодно применять отдельно стоящие ТТ при решении комплексных задач по организации одновременно вторичных цепей учета, измерений и РЗА, а также при новом строительстве объектов, при установке ТТ только для организации учета и при условии наличия больших токов в первичной цепи — целесообразно применение встраиваемых ТТ.

Читайте также:  Напряжение как по немецки

Конечно, большую роль играет стоимость трансформаторов и их монтажа. Здесь однозначно лидирующими являются встраиваемые ТТ наружной установки. Они дешевле в изготовлении, при монтаже не требуют установки отдельных опорных конструкций, а также обслуживания в период эксплуатации, так как имеют литую изоляцию. Но стоит еще раз обратить внимание на ограниченность их применения и недостаточный функционал, по сравнению с отдельно стоящими ТТ.

Выводы

  1. При выборе ТТ необходимо учитывать соотношение номинального первичного тока обмотки учета и фактической нагрузки. Использование ТТ с большими номинальными первичными токами при значении фактических нагрузок присоединений менее 20% от номинального первичного тока ТТ экономически нецелесообразно и приводит к тому, что часть транзита электрической энергии не учитывается, это может повлечь финансовые потери.
  2. Производимые промышленностью измерительные трансформаторы могут обеспечить точный учет и в области минимальных нагрузок присоединений, и при максимальной пропускной способности линии, используя расширенный диапазон измерений от 1 до 200%, при условии документального подтверждения работы ТТ в классе точности в этом диапазоне.
  3. При замене существующих ТТ доступны ТТ с различными Ктт обмоток или ТТ с отпайками — таким образом будет обеспечиваться достаточная точность учета и сохранение существующих коэффициентов трансформации обмоток измерений и РЗА. Также можно использовать ТТ с изменяемым количеством первичных витков. При этом необходимо помнить, что при переключении изменяется Ктт всех обмоток одновременно.
  4. Номинальная мощность обмоток изготавливаемых в настоящее время трансформаторов тока достигает 50–60 ВА —этого, как правило, достаточно для работы в допустимых классах точности. Также возможно производство ТТ с увеличенным количеством обмоток измерений и/или РЗА.
  5. Необходимо выбирать ТТ с как можно более низким коэффициентом безопасности приборов. При не нужно забывать о догрузке вторичных обмоток — с уменьшением их загруженности увеличивается коэффициент безопасности. Кроме того, необходимо, чтобы производители ТТ декларировали для каждого типа зависимость коэффициента безопасности приборов от вторичной нагрузки.
  6. При замене ТТ необходимо следить за тем, чтобы номинальная предельная кратность обмоток РЗА была не менее кратности существующих ТТ и выше кратности токов КЗ. Также необходимо осуществлять проверку на термическую и динамическую стойкость.
  7. отдельно стоящие ТТ значительно функциональнее встраиваемых, поэтому их использование целесообразно при реконструкции распределительных устройств и новом строительстве. При установке ТТ только для учета и соблюдении условия наличия значительных токов в первичной цепи — возможно применение встраиваемых ТТ.

Используемая литература

  1. ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».
  2. Правила устройства электроустановок,7-еизд.
  3. IEС60044-1 «INTERNATIONAL STANDARD. Instrument transformers — Part 1: Current transformers».
  4. М. Зихерман «Стандарты по измерительным трансформаторам. Новые требования».
  5. Легостов В.В., Легостов В.В. «Измерительные трансформаторы тока», ИЗМЕРЕНИЕ.RU № 12 2’06.
  6. Афанасьев В.В., «Высоковольтные ТТ».
  7. ГОСТ Р 52736-2007 «Методы расчета термического и динамического действия тока короткого замыкания».
  8. Барзилович В.М., «Высоковольтные трансформаторы тока».

А. А. СЕРЯКОВ,
главный инженер проекта
Управления технического сопровождения
ООО «Инженерный центр «ЭНЕРГОАУДИТКОНТРОЛЬ»

Источник



Выбор трансформаторов тока и трансформаторов напряжения

Для контроля за режимом работы электроприемников, а также для производства денежного расчета с энергоснабжающей организацией на подстанциях используют контрольно-измерительные приборы, присоединяемые к цепям высокого напряжения через измерительные трансформаторы тока и напряжения.

Трансформаторы тока выбирают по номинальному напряжению, номинальному первичному току и проверяют по электродинамической и термической стойкости к токам короткого замыкания. Особенностью выбора трансформаторов тока является выбор по классу точности и проверка на допустимую нагрузку вторичной цепи. Трансформаторы тока для присоединения счетчиков, по которым ведутся денежные расчеты, должны иметь класс точности 0,5. Для технического учета допускается применение трансформаторов тока класса точности 1, для включения указывающих электроизмерительных приборов – не ниже 3, для релейной защиты – класса 10(Р). Чтобы погрешность трансформатора тока не превысила допустимую для данного класса точности, вторичная нагрузка Z2p не должна превышать номинальную Z2HOM, задаваемую в каталогах.

Индуктивное сопротивление токовых цепей невелико, поэтому принимают Z2p = r2p. Вторичная нагрузка состоит из сопротивления приборов rприб, соединительных проводов rпр и переходного сопротивления контактов rк:

Условия выбора трансформатора тока приведены в табл. 10.4. Дополнительно могут быть заданы: Kдин = Iт дин / √2Iном – кратность тока динамической стойкости трансформатора тока; Kт = Iт/Iном – кратность тока термической стойкости; Iном – номинальный ток первичной обмотки трансформатора тока.

Трансформаторы напряжения, предназначенные для питания катушек напряжения измерительных приборов и реле, устанавливают на каждой секции сборных шин. Их выбирают по форме исполнения, конструкции и схеме соединения обмоток, номинальному напряжению; Uс ном = U1ном (где Uc ном – номинальное напряжение сети, к которой присоединяется трансформатор напряжения, кВ; U1ном – номинальное напряжение первичной обмотки трансформатора, кВ); классу точности; вторичной нагрузке S2pасч

Дата добавления: 2016-02-11 ; просмотров: 2519 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Выбор и проверка трансформатора напряжения

Трансформаторы напряжения предназначены для снижения высокого напряжения до величины 100 или 100/ В для питания измерительных приборов, счетчиков активной и реактивной энергии, устройств релейной защиты. Трансформатор напряжения работает в режиме, близком к холостому ходу, так как большое сопротивление подключаемых приборов одновременно изолирует цепи низкого напряжения от цепей высокого напряжения.

Измерительные трансформаторы напряжения применяют в установках переменного тока напряжением 380В и выше для питания обмоток напряжения измерительных приборов и реле защиты, расширения пределов измерения приборов, изоляции их и реле от высокого первичного напряжения.

Трансформаторы понижают напряжение, приложенное к первичной обмотке, до величины 100 В, что позволяет унифицировать конструкции измерительных приборов и реле, а шкалы приборов градуировать с учетом коэффициента трансформации в соответствии с измеряемым первичным напряжением. Такие приборы и реле имеют простую конструкцию, дешевы, надежны и могут обладать высокой точностью измерения.

Включение приборов и реле через трансформаторы напряжения обеспечивает безопасность их обслуживания и позволяют устанавливать их на значительном расстоянии от цепей высокого напряжения.

Важнейшим требованием, предъявляемым к трансформаторам напряжения является требование точности измерения, т.е. необходимость возможно меньшей погрешности, вносимой в измерения.

Погрешность трансформатора напряжения в величине напряжения вносит ошибку в показания всех измерительных приборов. По ее величине в процентах трансформаторы напряжения делятся на четыре класса точности. Класс точности — погрешность, выраженная в процентах.

Читайте также:  Wester msw1300 преобразователь напряжения

Трансформаторы напряжения класса точности 0,2 применяют в качестве образцовых, а также для точных измерений в лабораториях. Для подключения счетчиков денежного расчета используются трансформаторы класса точности 0,5. Для присоединения щитовых измерительных приборов используют трансформаторы классов 1 и 3.

По конструкции и области применения трансформаторы напряжения классифицируются:

— по роду установки — для внутренних и наружных электроустановок;

— по способу изоляции – с сухой и масляной изоляцией;

— по числу фаз – одно- и трехфазные (трехстержневые и пятистержневые);

— по числу вторичных обмоток – с одной и двумя обмотками;

— по количеству высоковольтных вводов однофазных трансформаторов – с одним вводом для подключение на фазное напряжение и двумя вводами для подключения на линейное напряжение.

При выборе трансформаторов напряжения необходимо помнить, что их конструкция и схема соединения обмоток должны соответствовать назначению трансформаторов, которые могут быть одно и трехфазными. Однофазные применяют при любых напряжениях, а трехфазные при напряжениях 6 (10) кВ. Так как на подстанциях имеется необходимость обеспечения контроля изоляции электроустановки распределительного устройства, то необходимо применять трехобмоточные трансформаторы напряжения. Их третья обмотка соединена по схеме «разомкнутый треугольник», к которой подключается реле контроля изоляции.

Трансформаторы напряжения выбирают последующим условиям:

— в зависимости от конструкции и места установки;

— по номинальному напряжению

гдеU — первичное напряжение трансформатора напряжения, кВ;

Uраб — напряжение на шинах распределительного устройства, к которым подключают первичную обмотку трансформатора, кВ.

В качестве трансформаторов напряжения рекомендуются следующие типы, приведенные в таблице 4.8.7 методических указаний, а также в таблице 5.32 [2].

Таблица 4.8.7 — Электрические характеристики трансформаторов напряжения

Тип трансформатора напряжения Номинальная мощность, ВА, в классе точности Схема и группа соединения обмоток
0,5
НТМК-10 Y/Y*-0
НТМИ-10-66 Y/Y*-0
НАМИ-10 Y/Y*-0
ЗНОМ-35-65 1/1-0
НКФ-110 1/1-0
НКФ-220 1/1-0

Выбранный трансформатор напряжения должен быть проверен по нагрузке вторичной цепи по условию

где S– номинальная мощность трансформатора в выбранном классе точности при использовании однофазных трансформаторов, соединенных в трехфазную группу звездой, ВА;

S2расч – мощность, потребляемая приборами и реле, ВА.

Для проверки трансформатора напряжения составляется расчетная схема, пример которой изображен на рисунке 4.8.1, где указываются все приборы и аппараты, подключаемые к его вторичной обмотке.

Рисунок 4.8.1 — Расчетная схема для проверки трансформатора напряжения

на соответствие классу точности

На схеме изображаются обмотки трансформатора напряжения, к вторичной обмотке которого подключаются все необходимые в данном распределительном устройстве измерительные приборы и устройства защиты: вольтметры, счетчики активной и реактивной энергии, реле напряжения. Расчетная схема необходима для определения самой загруженной фазы. Вольтметрами контролируется фазное и линейное напряжение на сборных шинах (можно использовать один вольтметр с переключателем), количество счетчиков определяется теми цепями, где осуществляется контроль расхода электроэнергии, количество реле определяется принятыми релейными защитами.

По расчетной схеме определяется количество всех приборов, необходимое для расчета суммарной активной и реактивной мощности подключенных приборов.

Мощность, потребляемая измерительными приборами и реле, подключенными к вторичной обмотке, ВА

где — сумма активных и реактивных мощностей приборов и реле, подключаемых к наиболее загруженной фазе, которая определяется по расчетной схеме, Вт и вар.

Для каждого прибора в паспорте задаются значения полной мощности, потребляемой параллельной обмоткой, и значения коэффициента мощности прибора. Активная и реактивная мощности каждого прибора, изображенного на расчетной схеме и подключенного к вторичной обмотке измерительного трансформатора тока, определяются:

где Sпр – полная мощность, потребляемая прибором, ВА;

cos φпр – коэффициент мощности прибора;

Расчет вторичной нагрузки трансформатора напряжения следует производить в табличной форме (таблица 4.8.8) на основании расчетной схемы. При выборе типа приборов и их полной мощности можно воспользоваться данными таблицы 5.28 [2].

После определения по таблице результирующих значений и производится расчет нагрузки всех приборов, присоединенных к трансформатору напряжения.

Если вторичная нагрузка превысит номинальную мощность трансформатора напряжения в выбранном классе точности, то устанавливают дополнительный трансформатор напряжения и часть приборов присоединяют к нему, добиваясь выполнения условия .

Таблица 4.8.8 – Нагрузка трансформатора напряжения

Приборы, подключаемые к трансформатору напряжения Тип прибора Число катушек напряжения в приборе на одну фазу Число приборов на одну фазу Потребляемая мощность, ВА cos φпр sin φпр Суммарная мощность, ВА
одного прибора всех приборов Вт ,вар
Итого

Нагрузку однофазных трансформаторов напряжения, соединенных в трехфазную группу, можно вычислить, не разделяя ее по фазам, так же как для трехфазных трансформаторов.

Сечение жил проводов и кабелей, соединяющих трансформаторы напряжения с приборами, определяется по допустимой потере напряжения. Согласно правилам устройств электроустановок, потерянапряжения от трансформаторов напряжения до счетчиков должна быть не более 0,5 % от номинального напряжения, а до щитовых измерительных приборов — не более 1,5 % при нормальной нагрузке. При этом, по условию механической прочности, сечение жил проводов и кабелей должно быть не менее 1,5 мм 2 для медных жили не менее 2,5 мм 2 для алюминиевых жил.

Измерительные трансформаторы напряжения и подключенные к их вторичным обмоткам приборы на действие токов короткого замыкания не проверяются.

Пример

Выбрать и проверить измерительный трансформатор напряжения в РУ-10 кВ.

На рисунке 4.8.2 приведена расчетная схема для проверки трансформатора напряжения НТМИ-10 для РУ-10 кВ на соответствие классу точности. К трансформатору напряжения подключаются вольтметр с переключателем, четыре комплекта счетчиков активной и реактивной энергии линий нетяговых потребителей и три реле напряжения.

Рисунок 4.8.2 — Расчетная схема для проверки трансформатора напряжения НТМИ-10

По расчетной схеме и данным таблицы 5.28 [2] определяется нагрузка трансформатора напряжения НТМИ-10 и заносится в таблицу 4.8.9.

Таблица 4.8.9 – Нагрузка трансформатора напряжения НТМИ-10

Прибор Тип прибора Число катушек напряжения Число приборов Потребляемая мощность, ВА cos φпр sin φпр Общая потребляемая мощность, ВА
одного прибора всех приборов ,Вт ,вар
Счётчик активной энергии СА3У 0,38 0,93 12,15 29,75
Счетчик реактивной энергии СР4У 7,5 0,38 0,93 34,2 83,7
Вольтметр Э-378
Реле напряжения РУ-54
Итого 51,35 113,45

Полная мощность, потребляемая от трансформатора напряжения НТМИ-10

Результат проверки можно считать удовлетворительным, так как

Расчетная схема для проверки трансформатора напряжения ЗНОМ – 35 для РУ-35 кВ на соответствие классу точности приведена на рисунке 5.5 [2].

Источник

Adblock
detector