Меню

Как посчитать геометрическую сумму токов

Расчёт трёхфазного потребителя по схеме «треугольник»

Соединение приемников треугольником. При соединении трехфазного по-

требителя по схеме «треугольник» начало одной фазы потребителя соединяют

с концом другой.

При соединении приемника треугольником фазные напряжения равны линей-

ным UЛ =UФ , а линейные токи определяют по первому закону Кирхгофа:

Фазные токи рассчитывают по за закону Ома:

Топографическая диаграмма фазных и линейных напряжений представляет со-

бой замкнутый треугольник. Векторную диаграмму токов совмещают с топо-

графической диаграммой напряжений.

При симметричной нагрузке токи во всех фазах одинаковы и связаны с линейными токами по формуле:

3) Работа и мощность электрического тока. Энергетический баланс в электрических цепях. В электротехнике существует понятие мощности источника и мощности потребителя. Мощность источника – это скорость, с которой неэлектрическая энергия в источнике преобразуется в электрическую Рист. = А/t = ЕIt/t = EI

Мощность потребителя (приемника) – это скорость, с которой в приемнике

электрическая энергия переходит в неэлектрическую.

Рпот.= А/t = U I t/t =U I = I 2 R В любой электрической цепи должен соблюдаться энергетический баланс – алгебраическая сумма мощностей всех источников должна быть равна арифметической сумме мощностей всех потребителей энергии: Это равенство называют балансом мощности электрической цепи:

Если направление ЭДС источника совпадает с направлением тока, то он работает в режиме генератора, т.е. поставляет электрическую энергию в цепь. Его ЭДС имеет знак плюс. Если направление ЭДС противоположно направлению тока, то он работает в режиме потребителя, т.е. потребляет электрическую энергию. Его ЭДС имеет знак минус. В

уравнении баланса мощности нужно учитывать знак ЭДС источника.

2) Режимы работы источников питания. Различают четыре режима работы источников питания.

Режим холостого хода.хх.В режиме холостого хода выводы источника разомкнуты: (Rх= ∞). Этот режим используют для измерения ЭДС источника. Параметры

режима холостого хода:

Iхх = 0; Rхх = ∞; Uхх = E ; (Uхх =E-Ir; r = 0; Uхх = E )

Режим короткого замыкания. К.з. В режиме короткого замыкания выводы источника замкнуты сами на себя: ( Rк.з= 0). ;

Номинальный режим. Это режим работы источника питания при номинальных значениях тока и напряжения. Номинальные значения тока и напряжения

приводятся в паспорте источника питания.

Согласованный режим. Это режим работы источника питания с максимальной мощностью Р=Р mах. При условии R=R Формула мощности для согласованного режима: Pmax= I 2 R = E 2 / 4R.

9) Рассмотрим цепь с последовательно соединенными активным сопротивлением — R , индуктивностью –L и емко-

стью – С. Для векторов действующих напряжений .

запишем второй закон Кирхгофа:

Складывая эти вектора графически и, учитывая, что вектор напряжения на

ŪR совпадает по фазе с вектором тока, вектор на-

пряжения на индуктивности — ŪL опережает ток на угол π/2, а вектор напряжения на емкости — ŪC отстает от вектора тока на угол π/2, получим прямоугольный треугольник напряжений, гипотенуза которого равна полному напряжению — U , а катеты равны активному напряжению — ŪR и реактивному

Из треугольника напряжений видно, что:

U = Если разделить все стороны прямоугольного треугольника напряжений на общий ток I , то получим подобный ему треугольник сопротивлений, гипотенуза

которого равна полному сопротивлению цепи — Z , а катеты — активному и ре-

активному сопротивлению цепи — R и ( XL — XC) :

Из этого треугольника можно найти полное сопротивление цепи

и записать закон Ома для цепи переменного синусоидального тока:

1)Эквивалентные преобразования электрических цепей.

Последовательное соединение элементов. При последовательном соединении

элементов через все элементы протекает один и тот же ток; напряжение на

входе цепи равно сумме напряжений на элементах. Последовательное соединение элементов можно заменить одним эквивалентным сопротивлением.

Напряжение на сопротивлениях распределяется прямо пропорционально этим

Параллельное соединение. При параллельном соединении все участки цепи соединяются к одной паре узлов и находятся под воздействием одного и того

же напряжения. Ток на входе цепи равен сумме токов на параллельных участках цепи. Параллельное соединение элементов можно заменить одним эквивалентным

При параллельном соединении элементов токи в них распределяются обратно

пропорционально их сопротивлениям:

Смешанное соединение. Это сочетание последовательного и параллельного

Эквивалентное сопротивление для последовательно-параллельного соединения

Сложное соединение. Это соединение, имеющее три и более узлов. В сложных цепях встречаются соединения сопротивлений в виде звезды и треугольника.

Формулы преобразования треугольника сопротивлений в эквивалентную трех-

лучевую звезду имеют вид:

Формулы обратного преобразования ветвей трехлучевой звезды в эквивалент-

Источник

Символический (комплексный) метод расчета цепей переменного тока

ads

Одним из способов расчета цепей переменного тока является комплексный, или еще как говорят, символический метод расчета. Этот метод применяется при анализе схем с гармоническими ЭДС, напряжениями и токами. В результате решения получают комплексное значение токов и напряжений, используя для решения любые методы (эквивалентных преобразований, контурных токов, узловых потенциалов и т.п.). Но для начала необходимо иметь понятие, в каких именно формах может представляться синусоидальная величина. 1. Одна из форм представления – это вращающийся вектор (см. рис.1):

Рис.1. Вращающийся вектор

С помощью рисунка ясно видно, как с течением времени меняется значение синусоидальной величины. В нашем случае – это величина а на графике, которая может быть, например, входным напряжением. Величина имеет некоторое начальное значение при t = 0 при начальной фазе φ

имеет положительное максимальное значение при угле ωt3, когда при времени t3 сумма ωt3 + φ = 90° и соответственно,

имеет отрицательное максимальное значение при угле ωt7, когда при времени t7 сумма углов ωt7 + φ = 270° и, соответственно,

и имеет два нулевых значения при ωtn + φ = 0, когда ωtn = —φ (на рис.1 эта область не показана и находится слева от начала координат)

и имеет нулевое значение при угле ωt11, когда при времени t11 сумма ωt11 + φ = 360° и соответственно,

Именно по такому закону и меняется привычное нам переменное напряжение 220 В, изменяясь по синусоидальному закону от значения 0 В до максимальных 311 В и обратно.

2. Другая форма представления – это комплексное число. Чтобы представить ранее рассмотренную форму представления синусоидальной величины, которая имеет некоторую начальную фазу φ, создают комплексную плоскость в виде графика зависимости двух величин (рис.2)

Комплексное число на комплексной плоскости

Рис.2. Комплексное число на комплексной плоскости

Длина вектора Am на такой комплексной плоскости равна амплитуде (максимальному значению) рассматриваемой величины. С учетом начальной фазы φ такое число записывают как .

На практике при использовании для расчетов символического (комплексного) метода расчета используют для некоторых удобств не амплитудное значение величины, а так называемое действующее значение. Его величина в корень из двух раз меньше амплитудного и обозначается без индекса m, т.е. равна

действующее значение

На рисунке выше этот вектор также показан.
Например, при том же нашем напряжении в сети, максимальное значение синусоидально изменяющегося напряжения равно 311 В, а действующее значение, к значению которого мы привыкли

Действующее значение напряжения

При работе с комплексными числами и расчетов применяют различные формы записи комплексного числа. Например, при сложении комплексных чисел удобнее использовать алгебраическую форму записи таких чисел, а при умножении или делении – показательную форму записи. В некоторых случаях пишут тригонометрическую форму.
Итак, три формы записи комплексного числа:

1) показательная форма в виде

Показательная форма комплексного числа

2) тригонометрическая форма в виде

Тригонометрическая форма комплексного числа

3) алгебраическая форма

Алгебраическая форма комплексного числа

где ReA — это действительная составляющая комплексного числа, ImA — мнимая составляющая.

Например, имеем комплексное число в показательной форме вида

в тригонометрической форме записи это запишется как

Читайте также:  Входной ток сдвига это

при подсчете получим число, плавно переходящее в алгебраическую форму с учетом того, что

В итоге получим

При переходе от алгебраической формы к показательной комплексное число вида

переходит к показательному виду по следующим преобразованиям

Таким образом, и получим

Перейдем к рассмотрению несложных примеров использования символического, или по-другому, комплексного метода расчета электрических цепей. Составим небольшой алгоритм комплексного метода:

      • Составить комплексную схему, заменяя мгновенные значения ЭДС, напряжений и токов их комплексным видом
      • В полученной схеме произвольно выбирают направления токов в ветвях и обозначают их на схеме.
      • При необходимости составляют комплексные уравнения по выбранному методу решения.
      • Решают уравнения относительно комплексного значения искомой величины.
      • Если требуется, записывают мгновенные значения найденных комплексных величин.

Пример 1. В схеме рис.3 закон изменения ЭДС e = 141sin*ωt. Сопротивления R1 = 3 Ом, R2 = 2 Ом, L = 38,22 мГн, С = 1061,6 мкФ. Частота f = 50 Гц. Решить символическим методом. Найти ток и напряжения на элементах. Проверить 2-ой закон Кирхгофа для цепи.

Схема с последовательным соединением элементов

Рис.3. Схема с последовательным соединением элементов

Составляем комплексную схему, обозначив комплексные токи и напряжения (рис.4):

Схема с комплексными обозначениями

Рис.4. Схема с комплексными обозначениями

По закону Ома ток в цепи равен

Закон ома в комплексной форме

где U — комплексное входное напряжение, Z — полное сопротивление всей цепи. Комплекс входного напряжения находим как

Пояснение: здесь начальная фаза φ = 0°, так как общее выражение для мгновенного значения напряжение вида при φ = 0° равно

Соответственно, комплекс входного напряжения в показательной форме запишется как

Полное комплексное сопротивление цепи в общем виде

Находим комплексное сопротивление индуктивности

Находим комплексное сопротивление емкости

Соответственно, общее комплексное сопротивление цепи

Комплексные напряжения на элементах

Проверяем второй закон Кирхгофа для замкнутого контура, т.е. должно выполняться равенство

С небольшим расхождением из-за округлений промежуточных вычислений всё верно.

Пример 2. В электрической цепи (рис.5) однофазного синусоидального тока, схема и параметры элементов которой заданы для каждого варианта в таблице, определить:
1) полное сопротивление электрической цепи и его характер;
2) действующие значения токов в ветвях;
3) показания вольтметра и ваттметра;

      Исходные данные: Е = 220 В, f = 50 Гц, L1 = 38,2 мГн, R2 = 6 Ом, С2 = 318 мкФ, L2 = 47,7 мГн, R3 = 10 Ом, С3 = 300 мкФ.

Рис.5.Цепь однофвзного синусоидального тока

Решение:
1. Находим комплексные сопротивления ветвей и всей цепи:
Учитываем, что

Комплексное сопротивление первой ветви:

Комплексное сопротивление второй ветви:

Комплексное сопротивление третьей ветви:

Общее сопротивление цепи

— нагрузка носит активно-индуктивный характер

2. Находим действующие значения токов в ветвях:

Рис.6. Схема с обозначенными комплексными токами

Действующие значения, соответственно,

3. Определим показания приборов:
Вольтметр подключен по схеме параллельно источнику питания. Соответственно его показание равно:
U=220 В
Ваттметр включен токовой обмоткой в разрыв третьей ветви, а обмоткой напряжения также к выводам третьей ветви, измеряя, таким образом, активную мощность третьей ветви. Эта мощность равна мощности на сопротивлении R3. Его показания:

Источник

Лекция по электротехнике Фазные и линейные напряжения (токи), соотношения между ними. Векторные диаграммы напряжений и токов. Мощность трехфазной цепи переменного тока. Нулевой провод, его значение»

Одним из видов систем с множеством фаз, представлены цепи, состоящие из трех фаз. В них действуют электродвижущие силы синусоидального типа, возникающие с синхронной частотой, от единого генератора энергии, и имеют разницу в фазе.

Электрическое напряжение трехфазных сетей Под фазой, понимаются самостоятельные блоки системы с множеством фаз, имеющие идентичные друг другу параметры тока. Поэтому, в электротехнической области, определение фазы имеет двойное толкование.

Во-первых, как значение, имеющее синусоидальное колебание, а во-вторых, как самостоятельный элемент в электросети с множеством фаз. В соответствии с их количеством и маркируется конкретная цепь: двухфазная, трехфазная, шестифазная и т.д.

Сегодня в электроэнергетике, наиболее популярными являются цепи с трехфазным током. Они обладают целым перечнем достоинств, выделяющих их среди своих однофазных и многофазных аналогов, так как, во-первых, более дешевы по технологии монтажа и транспортировки электроэнергии с наименьшими потерями и затратами.

Во-вторых, они имеют свойство легко образовывать движущееся по кругу магнитное поле, которое является движущей силой для асинхронных двигателей, которые используются не только на предприятиях, но и в быту, например, в подъемном механизме высотных лифтов и т.д.

Электрические цепи, имеющие три фазы, позволяют одновременно пользоваться двумя видами напряжения от одного источника электроэнергии – линейным и фазным.

Основные определения

Трехфазная цепь является совокупностью трех электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, сдвинутые относительно друг друга по фазе на 120o

, создаваемые общим источником. Участок трехфазной системы, по которому протекает одинаковый ток, называется фазой.

Трехфазная цепь состоит из трехфазного генератора, соединительных проводов и приемников или нагрузки, которые могут быть однофазными или трехфазными.

Трехфазный генератор представляет собой синхронную машину. На статоре генератора размещена обмотка, состоящая из трех частей или фаз, пространственно смещенных относительно друг друга на 120o

. В фазах генератора индуктируется симметричная трехфазная система ЭДС, в которой электродвижущие силы одинаковы по амплитуде и различаются по фазе на
120o
. Запишем мгновенные значения и комплексы действующих значений ЭДС.

Сумма электродвижущих сил симметричной трехфазной системы в любой момент времени равна нулю.

На схемах трехфазных цепей начала фаз обозначают первыми буквами латинского алфавита ( А, В, С

), а концы — последними буквами (
X, Y, Z
). Направления ЭДС указывают от конца фазы обмотки генератора к ее началу. Каждая фаза нагрузки соединяется с фазой генератора двумя проводами: прямым и обратным. Получается несвязанная трехфазная система, в которой имеется шесть соединительных проводов. Чтобы уменьшить количество соединительных проводов, используют трехфазные цепи, соединенные звездой или треугольником.



Вывод

Используя возможности трехфазной цепи (четырехпроводниковая цепь), можно по-разному выполнять подключения, что дает возможность ее широкого применения. Специалисты считают трехфазное напряжение для подключения универсальным вариантом, так как оно дает возможность подключать нагрузку большой мощности, жилые помещения, офисные здания.

В многоквартирных домах основными потребителями являются бытовые приборы, рассчитанные на сеть 220 В, по этой причине важно сделать равномерное распределение нагрузки между фазами цепи, это достигается включением квартир в сеть по шахматному принципу. Отличается распределение нагрузки частных домов, в них она выполняется по величинам нагрузки на каждую фазу всего домашнего оборудования, токами в проводниках, проходящими в период максимального включения приборов.

  • Способы преобразования 220 Вольт в 380
  • Расчет потерь напряжения в кабеле
  • Работа с мегаомметром: для чего нужен и как пользоваться?

Соединение в звезду. Схема, определения

Если концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная звездой. При этом три обратных провода сливаются в один, называемый нулевым или нейтральным. Трехфазная цепь, соединенная звездой, изображена на рис. 7. 1.

Провода, идущие от источника к нагрузке называют линейными проводами, провод, соединяющий нейтральные точки источника Nи приемника N’ называют нейтральным (нулевым) проводом. Напряжения между началами фаз или между линейными проводами называют линейными напряжениями. Напряжения между началом и концом фазы или между линейным и нейтральным проводами называются фазными напряжениями. Токи в фазах приемника или источника называют фазными токами, токи в линейных проводах — линейными токами. Так как линейные провода соединены последовательно с фазами источника и приемника, линейные токи при соединении звездой являются одновременно фазными токами.

Читайте также:  Напряжение тока в вагоне

ZN — сопротивление нейтрального провода.

Линейные напряжения равны геометрическим разностям соответствующих фазных напряжений

На рис. 6.2 изображена векторная диаграмма фазных и линейных напряжений симметричного источника.

Из векторной диаграммы видно, что

При симметричной системе ЭДС источника линейное напряжение больше фазного в √3 раз.

Соотношение

Соотношение между линейным и фазным напряжением

Значение напряжения фазы равняется около 58% от мощности линейного аналога. То есть, при обычных эксплуатационных параметрах, линейное значение стабильно и превосходит фазное в 1,73 раза.

Оценка напряжения в сети трехфазного электрического тока, в основном производится по показателям его линейной составляющей. Для линий тока этого типа, подающегося с подстанций, оно, как правило, равняется 380 вольтам, и идентично фазному аналогу в 220 В.

В электросетях с четырьмя проводами, напряжение трехфазного тока маркируется обоими значениями – 380/220 В. Это обеспечивает возможность питания от такой сети устройств, как с однофазным потреблением электроэнергии 220 вольт, так и более мощных агрегатов, рассчитанных на ток 380 В.

Самой доступной и универсальной стала система трехфазного типа 380/220 В, имеющая нулевой провод, так называемое заземление. Электрические агрегаты, работающие на одной фазе 220 В., могут быть запитаны от линейного напряжения при подключении к любой паре фазных выводов.

Электрические агрегаты трехфазного питания работают только при подключении сразу к трем выводам разных фаз.

В этом случае, применение нулевого вывода в качестве заземления, не является обязательным, хотя в случае повреждения изоляции проводов, его отсутствие серьезно повышает вероятность удара током.

Соединение в треугольник. Схема, определения

Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке. На рис. 6.3 изображена трехфазная цепь, соединенная треугольником. Как видно из рис. 6.3, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы.

IA, IB, IC — линейные токи;

Iab, Ibc, Ica- фазные токи.

Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с.

Линейный ток равен геометрической разности соответствующих фазных токов. На рис. 7.4 изображена векторная диаграмма трехфазной цепи, соединенной треугольником при симметричной нагрузке. Нагрузка является симметричной, если сопротивления фаз одинаковы. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений, так как нагрузка состоит из активных сопротивлений.

Из векторной диаграммы видно, что

Iл = √3 Iф- при симметричной нагрузке.

Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме «звезда». Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.

Треугольник

соединение обмоток трансформатора звезда треугольник

Это тип соединения, в котором начало (Н) и конец (К) схемы находятся в одной точке. Так, К первой фазы подсоединён у Н второй. Её К соединяется с Н третьей. А её конец соединён с началом первой. Такую схему можно было бы назвать кругом, если не особенность её монтирования, когда более эргономичным является размещение в виде треугольника. Чтобы узнать все особенности соединения, ознакомитесь с ниже приведёнными видами соединений. Но до этого ещё немного информации. Чем отличается соединение звездой и треугольником? Разница между ними заключается в том, что по-разному соединяются фазы. Также существуют определённые отличия в эргономичности.

Расчет трехфазной цепи, соединенной звездой

Трехфазную цепь, соединенную звездой, удобнее всего рассчитать методом двух узлов. На рис. 7.5 изображена трехфазная цепь при соединении звездой. В общем случае сопротивления фаз нагрузки неодинаковы (ZA ≠ ZB ≠ ZC )

Нейтральный провод имеет конечное сопротивление ZN . В схеме между нейтральными точками источника и нагрузки возникает узловое напряжение или напряжение смещения нейтрали. Это напряжение определяется по формуле (6.2).

Фазные токи определяются по формулам (в соответствии с законом Ома для активной ветви):

Ток в нейтральном проводе

1. Симметричная нагрузка. Сопротивления фаз нагрузки одинаковы и равны некоторому активному сопротивлению ZA = ZB = ZC = R. Узловое напряжение

потому что трехфазная система ЭДС симметрична, .

Напряжения фаз нагрузки и генератора одинаковы:

Фазные токи одинаковы по величине и совпадают по фазе со своими фазными напряжениями. Ток в нейтральном проводе отсутствует

В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.

На рис. 6.6 изображена векторная диаграмма трехфазной цепи для симметричной нагрузки.

2. Нагрузка несимметричная, RA

Провода, идущие от источника к нагрузке называют линейными проводами, провод, соединяющий нейтральные точки источника Nи приемника N’ называют нейтральным (нулевым) проводом. Напряжения между началами фаз или между линейными проводами называют линейными напряжениями. Напряжения между началом и концом фазы или между линейным и нейтральным проводами называются фазными напряжениями. Токи в фазах приемника или источника называют фазными токами, токи в линейных проводах — линейными токами. Так как линейные провода соединены последовательно с фазами источника и приемника, линейные токи при соединении звездой являются одновременно фазными токами.

Iл = Iф.

ZN — сопротивление нейтрального провода.

Линейные напряжения равны геометрическим разностям соответствующих фазных напряжений

На рис. 7.2 изображена векторная диаграмма фазных и линейных напряжений симметричного источника.

Из векторной диаграммы видно, что

При симметричной системе ЭДС источника линейное напряжение больше фазного в √3 раз.

Uл = √3 Uф

1. Симметричная нагрузка. Сопротивления фаз нагрузки одинаковы и равны некоторому активному сопротивлению ZA = ZB = ZC = R.

В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.

2. Нагрузка несимметричная, RA Читайте также: Распознать токи утечки на раннем этапе: RCM-устройства от Phoenix Contact

Вектор тока в нейтральном проводе равен геометрической сумме векторов фазных токов.

На рис. 7.6 приведена векторная диаграмма трехфазной цепи, соединенной звездой, с нейтральным проводом, имеющим нулевое сопротивление, нагрузкой которой являются неодинаковые по величине активные сопротивления.

3. Нагрузка несимметричная, RA

Линейный ток равен геометрической разности соответствующих фазных токов. На рис. 7.4 изображена векторная диаграмма трехфазной цепи, соединенной треугольником при симметричной нагрузке. Нагрузка является симметричной, если сопротивления фаз одинаковы. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений, так как нагрузка состоит из активных сопротивлений.

Из векторной диаграммы видно, что

Iл = √3 Iфпри симметричной нагрузке.

Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме «звезда». Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.

Отличия

Специфика ЛН — это показатель, по которому производится расчёт токов и остальных величин трёхфазной цепи. Подобная схема позволяет подключать одно- и трёхфазные контакты. Номинальное равно 380В и меняется при изменениях в ограниченной сети, к примеру, вследствие скачков.

Читайте также:  С током называют контакт

Популярнейшей является цепь с нейтралью и заземлением. Подключение в такой системе производится по схеме:

  • к фазным проводам подсоединяются однофазные провода;
  • к 3-фазным — 3-фазные.


Типы соединений
Широта применения ЛН обуславливается его безопасностью и комфортностью разветвления цепи. Оборудование в таком случае подключается к фазному выводу, и лишь он не безопасен.

Расчёт системы несложен, при этом действуют стандартные физические формулы. Параметры ЛН сети замеряются мультиметром, а ФН — спецустройствами, например, вольтметром, датчиком тока, тестером.

  1. Разводка подобной проводки не нуждается в применении профессионального оборудования. Достаточно отвёрток, которые имеют индикаторы.
  2. Вероятность удара током очень мала. Подобное объясняется присутствующей в цепи свободной нейтралью. Соединение проводников не требует подключения 0-вого вывода.
  3. Схема подходит для всех видов тока.

Вам это будет интересно Особенности светильника ДРЛ 250
Важно! К 3-фазной цепи можно подключить 1-фазную. Наоборот сделать нельзя.


Включение в трёхфазную цепь приёмников электрической энергии

  1. Подобная схема подключения пригодна для многих устройств, которым необходима высокая мощность, чтобы работать. ЛН позволяет увеличить КПД двигателя на33%.

При переключении обмоток генератора к треугольнику со звезды обуславливает увеличение в 1,73 раза величины ЛН.


Соединения в трёхфазных цепях

Важно! Сложность обнаружения повреждений в линейном соединении является немаловажным недостатком цепи, так как вследствие этого может случиться пожар.

Отличие между ЛН и ФН состоит в различии соединяемых проводов обмоток. Чтобы проконтролировать параметры ЛН и ФН потребуется импульсный стабилизатор, по-другому — линейный стабилизатор. Этот прибор даёт возможность, сохраняя показатель на одном уровне, приводить в норму напряжение, если оно резко выросло. Прибор можно подключить к контактам электорооборудования, обычной розетке.

Источник



Расчёт трёхфазных цепей

Расчёт трёхфазных цепей переменного токаЦепь трехфазного переменного тока состоит из трехфазного источника питания, трехфазного потребителя и проводников линии связи между ними.

Симметричный трехфазный источник питания можно представить в виде трех однофазных источников, работающих на одной частоте с одинаковым напряжением и имеющих временной угол сдвига фаз 120˚. Эти источники могут соединяться звездой или треугольником.

При соединении звездой условные начала фаз используют для подключения трех линейных проводников A, B, C, а концы фаз объединяют в одну точку, называемую нейтральной точкой источника питания (трехфазного генератора или трансформатора). К этой точке может подключаться нейтральный провод N. Схема соединения фаз источника питания звездой приведена на рисунке 1, а.

Схемы соединения фаз источника питания: а – звездой; б – треугольником

Рис. 1. Схемы соединения фаз источника питания: а – звездой; б – треугольником

Напряжение между линейным и нейтральным проводами называется фазным, а между линейными проводами – линейным (подробнее смотрите здесь — Линейное и фазное напряжение).

В комплексной форме записи выражения для фазных напряжений имеют вид:

Соответствующие им линейные напряжения при соединении звездой:

Здесь Uф – модуль фазного напряжения источника питания, а Uл – модуль линейного напряжения. В симметричной трёхфазной системе, при соединении фаз источника звездой, между этими напряжениями есть взаимосвязь:

При включении фаз треугольником фазные источники питания соединяют последовательно в замкнутый контур (рисунок 1, б).

Из точек объединения источников между собой выводятся три линейных провода A, B, C, идущие к нагрузке. Из рисунка 1, б видно, что выводы фазных источников подключены к линейным проводникам, а следовательно, при соединении фаз источника треугольником фазные напряжения равны линейным. Нейтральный провод в этом случае отсутствует.

К трехфазному источнику может подключаться нагрузка. По величине и характеру трёхфазная нагрузка бывает симметричной и несимметричной.

В случае симметричной нагрузки комплексные сопротивления всех трёх фаз одинаковы, а если эти сопротивления различны, то нагрузка несимметричная. Фазы нагрузки могут соединяться между собой звездой или треугольником (рисунок 2), независимо от схемы соединения источника.

Схемы соединения фаз нагрузки

Рис. 2. Схемы соединения фаз нагрузки

Соединение звездой может быть с нейтральным проводом (см. рисунок 2, а) и без него. Отсутствие нейтрального провода устраняет жёсткую привязку напряжения на нагрузке к напряжению источника питания, и в случае несимметричной нагрузки по фазам эти напряжения не равны между собой. Чтобы их отличить, условились в индексах буквенных обозначений напряжений и токов источника питания применять прописные буквы, а в параметрах, присущих нагрузке, – строчные.

Алгоритм анализа трёхфазной цепи зависит от схемы соединения нагрузки, исходных параметров и цели расчёта.

Для определения фазных напряжений при несимметричной нагрузке, соединённой звездой без нейтрального провода, используют метод двух узлов. В соответствии с этим методом расчёт начинают с определения напряжения UN между нейтральными точками источника питания и нагрузки, называемого напряжением смещения нейтрали:

где ya , yb , yc – полные проводимости соответствующих фаз нагрузки в комплексной форме

Напряжения на фазах несимметричной нагрузки находят из выражений:

В частном случае несимметрии нагрузки, когда при отсутствии нейтрального провода происходит короткое замыкание одной из фаз нагрузки, напряжение смещения нейтрали равно фазному напряжению источника питания той фазы, в которой произошло короткое замыкание.

Напряжение на замкнутой фазе нагрузки равно нулю, а на двух других оно численно равно линейному напряжению. Например, пусть произошло короткое замыкание в фазе В. Напряжение смещения нейтрали для этого случая UN = UB. Тогда фазные напряжения на нагрузке:

Фазные токи в нагрузке, они же и токи линейных проводов при любом характере нагрузки:

В задачах при проведении расчётов трёхфазных цепей рассматривают три варианта соединения трёхфазных потребителей звездой: соединение с нейтральным проводом при наличии потребителей в трёх фазах, соединение с нейтральным проводом при отсутствии потребителей в одной из фаз и соединение без нейтрального провода с коротким замыканием в одной из фаз нагрузки.

В первом и втором вариантах на фазах нагрузки находят соответствующие фазные напряжения источника питания и фазные токи в нагрузке определяются по приведенным выше формулам.

В третьем варианте напряжение на фазах нагрузки не равно фазному напряжению источника питания и определяется с помощью зависимостей

Токи, в двух незакороченных фазах, определяют по закону Ома, как частное от деления фазного напряжения на полное сопротивление соответствующей фазы. Ток в закороченной фазе определяют с помощью уравнения на основании первого закона Кирхгофа, составленного для нейтральной точки нагрузки.

Для рассмотренного выше примера с коротким замыканием фазы В:

При любом характере нагрузки трёхфазная активная и реактивная мощности равны соответственно сумме активных и реактивных мощностей отдельных фаз. Для определения этих мощностей фаз можно воспользоваться выражением

где U ф, I ф, – комплекс напряжения и сопряжённый комплекс тока на фазе нагрузки; Pф, Qф – активная и реактивная мощности в фазе нагрузки.

Трёхфазная активная мощность: P = P а + Pb + P с

Трёхфазная реактивная мощность: Q = Q а + Qb + Q с

Трёхфазная полная мощность:

При подключении потребителей треугольником схема приобретает вид, изображённый на рисунке 2, б. В этом режиме схема соединения фаз симметричного источника питания не играет роли.

На фазах нагрузки находят линейные напряжения источника питания. Фазные токи в нагрузке определяют с помощью закона Ома для участка цепи I ф = U ф/ z ф, где U ф – фазное напряжение на нагрузке (соответствующее линейное напряжение источника питания); z ф – полное сопротивление соответствующей фазы нагрузки.

Токи в линейных проводах определяют через фазные на основании первого закона Кирхгофа для каждого узла (точки a,b,c) схемы, изображённой на рисунке 2, б:

Источник