Меню

Как правильно монтаж с трансформатором тока

Подключение счетчика через трансформаторы

Общие требования

Схемы подключения счетчиков через трансформаторы можно разделить на две группы: полукосвенного и косвенного включения.

При схеме полукосвенного включения, счетчик включается в сеть только через трансформаторы тока (ТТ). Такая схема, как правило, применяется для средних и крупных предприятий которые питаются от сети 0,4кВ и имеют присоединенную нагрузку свыше 100 Ампер.

При схеме косвенного включения, счетчик включается в сеть через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН). Такие схемы применяются, как правило, для крупных предприятий имеющих на своем балансе трансформаторные подстанции и другое высоковольтное оборудование которое питается от сети выше 1кВ.

Счетчик трансформаторного включения имеет 10 либо 11 выводов:

Выводы для подключения счетчика через трансформаторы

Как видно на картинке выше выводы №1, 3, 4, 6, 7 и 9 используются для подключения токовых цепей (от трансформаторов тока), а выводы №2, 5, и 8 — для подключения цепей напряжения (от трансформаторов напряжения — при косвенной схеме включения либо напрямую от сети — при полукосвенном включении). 10 вывод, как и 11 (при его наличии), служит для подключения нулевого проводника к счетчику.

В соответствии с п. 1.5.16. ПУЭ класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.

Кроме того в соответствии с п.1.5.23. ПУЭ цепи учета (цепи от трансформаторов до счетчика) следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки. При этом токовые цепи должны выполняться сечением не менее 2,5 мм 2 по меди и не менее 4 мм 2 по алюминию (п.3.4.4 ПУЭ), а сечение и длина проводов и кабелей в цепях напряжения счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения (п. 1.5.19. ПУЭ). (Как правило цепи напряжения выполняются тем же сечением, что и токовые цепи)

Как было написано выше цепи учета необходимо выводить на сборки зажимов или испытательные блоки, так что же представляет из себя испытательный блок?

Испытательный блок или испытательная коробка представляет из себя сборку зажимов предназначенных для подключения электросчетчика и обеспечивающих возможность удобного и безопасного проведения работ со счетчиком:

Контакты испытательной коробки для подключения счетчика через трансформаторы

Обратная сторона испытательной коробки для подключения счетчика через трансформаторы

ВАЖНО! Винты для закорачивания первых выводов токовых цепей обязательно должны быть вкручены при семипроводной схеме подключения и выкручены при десятипроводной схеме.

Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!

Подключения счетчика через трансформаторы тока

Трансформатор тока, внешний вид, обозначение на схеме

Как уже было написано выше при напряжении сети 0,4 кВ (380 Вольт) и нагрузках свыше 100 Ампер применяются схемы полукосвенного включения счетчика, при которой цепи напряжения подключаются к счетчику напрямую, а токовые цепи подключаются через трансформаторы тока:

Примечание: Расчет трансформатора тока можно произвести с помощью нашего онлайн калькулятора.

Существуют следующие схемы подключения счетчиков через трансформаторы: десятипроводные, семипроводные и с совмещенными цепями (может использоваться только при полукосвенном включении). Разберем каждую из схем в отдельности:

2.1 Десятипроводная схема

Принципиальная десятипроводная схема подключения счетчика через трансформаторы тока:

Принципиальная десятипроводная схема подключения счетчика через трансформаторы

Фактически десятипроводная схема будет иметь следующий вид:

Схема подключения счетчика через трансформаторы тока десятипроводная

Преимущества десятипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Высокая надежность. Учет по каждой фазе собирается независимо друг от друга. В случае нарушения цепей учета по одной из фаз работа учета на других фазах не нарушается.

Недостатки десятипроводной схемы:

  1. Большой расход проводника, для сборки вторичных цепей учета.

2.2 Семипроводная схема

Принципиальная семипроводная схема подключения электросчетчика через трансформаторы тока:

принципиальная семипроводная схема подключения счетчика через трансформаторы тока

Фактически семипроводная схема будет иметь следующий вид:

Схема подключения счетчика через трансформаторы тока семипроводная

Примечание: Обратите внимание в принципиальной схеме закорочены и заземлены выводы «И2» трансформаторов тока, в то время как в фактической семипроводной схеме закорочены и заземлены выводы «И1». Для правильной работы схемы учета не имеет значения какую группу выводов заземлять (И1 или И2), главное что бы заземлены они были только с одной стороны, поэтому оба варианта схем верны.

Преимущества семипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Экономия проводника, для сборки вторичных цепей учета за счет объединения вторичных токовых цепей.

Недостатки семипроводной схемы:

  1. Низкая надежность. В случае нарушения совмещенной токовой цепи электроэнергия не учитывается ни по одной из фаз.

2.3 Схема с совмещенными цепями

Принципиальная схема подключения электросчетчика через трансформаторы тока с совмещенными цепями.

При данной схеме цепи напряжения объединяются с токовыми цепями путем установки перемычек на трансформаторах от контакта Л1 к контакту И1.

принципиальная схема подключения счетчика через трансформаторы тока с совмещенными цепями

Фактически схема с совмещенными цепями будет иметь следующий вид:

Схема подключения счетчика через трансформаторы тока с совмещенными цепями

Схема с совмещенными цепями не соответствует требованиям действующих правил и в настоящее время не применяется, однако она все еще встречается в старых электроустановках.

3. Подключение счетчика через трансформаторы тока и напряжения

В случае необходимости организации учета электрической энергии в сети выше 1000 Вольт применяется схема косвенного включения счетчика при которой токовые цепи подключаются к счетчику через трансформаторы тока, а цепи напряжения подключаются через трансформаторы напряжения:

Схема подключения счетчика через трансформаторы тока и трансформаторы напряжения

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник

Что такое трансформатор тока, его конструкция и принцип работы

Для нормального функционирования устройств обеспечивающих релейную защиту высоковольтных ЛЭП, требуется контролировать параметры электрической линии. Снимать показания с высоковольтных проводов напрямую – опасно и не эффективно. Режим работы обычного трансформатора не позволяет контролировать изменение тока. Решает эту проблему трансформатор тока, у которого показатели вторичной цепи изменяются пропорционально величине тока первичной обмотки.

Читайте также:  Электровозы постоянного тока это

Конструкция и принцип действия

Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.

Трансформатор тока

Рис. 1. Трансформатор тока

Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).

Промышленный керамический трансформатор тока

Рис. 2. Промышленный керамический трансформатор тока

Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.

Принципиальная схема трансформатора тока

Рис. 3. Принципиальная схема трансформатора тока

В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).

Схематическое изображение ТТ Рис. 4. Схематическое изображение ТТ Устройство ТТ Рис. 5. Устройство ТТ

Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).

ТТ с разъемным корпусом

Рис. 6. ТТ с разъемным корпусом

Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.

Принцип действия.

Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.

Зависимости между обмотками и токами выражены формулой: k = W2 / W1 = I1 / I2 .

Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.

На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.

Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.

В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.

Принцип действия трансформатора тока

Рис. 7. Принцип действия трансформатора тока

На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.

Классификация

Семейство трансформаторов тока классифицируют по нескольким признакам.

Пример наружного использования ТТ

  1. По назначению:
    • защитные;
    • линейки измерительных трансформаторов тока;
    • промежуточные (используются для выравнивания токов в системах дифференциальных защит);
    • лабораторные.
  2. По способу монтажа:
    • наружные (см. рис. 8), применяются в ОРУ;
    • внутренние (размещаются в ЗРУ);
    • встраиваемые;
    • накладные (часто совмещаются с проходными изоляторами);
    • переносные.

Рис. 8. Пример наружного использования ТТ

  • Классификация по типу первичной обмотки:
    • многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
    • одновитковые;
    • шинные.
  • По величине номинальных напряжений:
    • До 1 кВ;
    • Свыше 1 кВ.

Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.

Расшифровка маркировки

Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:

  • Т — трансформатор тока;
  • П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
  • В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
  • ВТ — встроенный в конструкцию силового трансформатора;
  • Л— со смоляной (литой) изоляцией;
  • ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
  • Ф — с надежной фарфоровой изоляцией;
  • Ш — шинный;
  • О — одновитковый;
  • М — малогабаритный;
  • К — катушечный;
  • 3 — применяется для защиты от последствий замыкания на землю;
  • У — усиленный;
  • Н — для наружного монтажа;
  • Р — с сердечником, предназначенным для релейной защиты;
  • Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
  • М — маслонаполненный. Применяется для наружной установки.
  1. Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
  2. Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
  3. следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
  4. после позиции дробных символов — код варианта конструкционного исполнения;
  5. буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
  6. цифра на последней позиции — категория размещения.

Схемы подключения

Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.

Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.

При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.

Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.

Схема «неполная звезда» применяется для двухфазного соединения.

В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.

Основные схемы подключения:

Основные схемы подключения

  • В сетях с глухозаземленной нейтралью ТТ подключается к каждой фазе. Соединение обмоток трансформатора – полная звезда.
  • Подключение по схеме неполной звезды. Применяется в сетях с изолированными нулевыми точками.
  • Схема восьмерки. Симметрично распределяет нагрузки при трехфазном КЗ.
  • Соединение ТТ в фильтр токов нулевой последовательности. Применяется для защиты номинальной нагрузки от коротких замыканиях на землю.
Читайте также:  Как определить активную мощность цепи параллельного тока

Технические параметры

Очень важной характеристикой трансформатора тока является класс точности. Этот параметр характеризует погрешность измерения, то есть показывает, на сколько номинальный (идеальный) коэффициент трансформации отличается от реального.

Коэффициент трансформации

Так как в реальном коэффициенте трансформации присутствует синфазная и квадратурная составляющая, то значения коэффициента всегда отличаются от номинального. Разницу (погрешность) необходимо учитывать при измерениях. На результаты измерений влияют также угловые погрешности.

У всех ТТ погрешность отрицательна, так как у них всегда присутствуют потери от намагничивания и нагревания токовых катушек. С целью устранения отрицательного знака погрешности, для смещения параметров трансформации в положительную сторону, применяют витковую коррекцию. Поэтому в откорректированных устройствах привычная формула для вычислений не работает. Поэтому коэффициенты трансформации в таких аппаратах производители определяют опытным путем и указывают их в техпаспорте.

Класс точности

Токовые погрешности искажают точность измерения электрического тока. Поэтому для измерительных трансформаторов высокие требования к классу точности:

  • 0,1;
  • 0,5;
  • 1;
  • 3;
  • 10P.

Трансформатор может находиться в пределах заявленного класса точности, только если сопротивление максимальной нагрузки не превышает номинального, а ток в первичной цепи не выходит за пределы 0,05 – 1,2 величины номинального тока трансформатора.

О назначении

Основная сфера применения трансформаторов – защита измерительного и другого оборудования от разрушительного действия предельно высоких токов. ТТ применяются для подключения электрического счетчика, изоляции реле от воздействия мощных токовых нагрузок.

Видео по теме

Источник

Монтаж трансформатора — этапы, подготовка, демонтаж

Трансформатор — элемент электрической цепи, предназначенный для преобразования электроэнергии с одним показателем в другой.Во время работы на первичную обмотку (обращенная в сторону электрической цепи) подается ток с определенными показателями. Он перемещается на сердечник трансформатора и сцепляет обе обмотки. Далее ток перемещается по вторичке и уже движется в сторону получателя. Таким образом предприятия, жилые дома, учебные и государственные заведения могут пользоваться электричеством, подходящим для работы электроприборов.

В зависимости от количества мотков, трансформатор является повышающим или понижающим. Выходящий ток может быть, как ниже, так и выше поступаемого. Если на первичной обмотке витков больше, чем на вторичной, то трансформатор понижающий. Если наоборот, то повышающий. Монтаж трансформатора от этого не изменяется и проводятся одинаковые этапы.

Они используются, например, в трансформаторных блоках, которые распределяют электричество по жилым домам и квартирам. На первичку поступает ток с одним значением, а к нам в дома – преобразованный, с номинальным напряжением в 220 вольт.

Конструкция трансформатора

Чтобы осуществить полноценный монтаж трансформатора, нужно разобраться в его конструкции. Несмотря на сложность выполняемой работы, устроен он просто.

  • Сердечник. Неизменный элемент трансформаторного блока. Является связующим звеном между двумя обмотками. Изготавливается из электротехнической стали. Это сплав с кремнием, иногда, с алюминием. Находится в специальном баке, на который устанавливаются выводы обмотки;
  • Бак. Резервуар для сердечника. На своем корпусе имеет несколько дополнительных элементов: труба (требуется для экстренного вывода газа из резервуара, что предотвращает взрывы), защита газовая (выключает трансформатор при повреждениях), расширитель (уравнивает уровень масел внутри бака), соединитель-маслоотвод (соединяет бак с расширителем);
  • Термосифонный фильтр. Осуществляет регенерацию масел, предотвращая увлажнение или окисление жидкости;
  • Задвижки для слива. Позволяют регулировать количество масла внутри.

Особенности транспортировки трансформаторного блока

Для перевозки требуется соблюсти все условия, для ликвидации поломки при перевозке, способные нанести вред оборудованию.

Допустимые способы перевозки, в зависимости от типа ТБ

  • ТБ крупногабаритные (более 90 т) в разобранном виде. Отсоединяются все выводы, расширители, фильтровочные блоки. Бак для масла должен быть заполнен каким-либо инертным газом;
  • ТБ, массой до 90 тонн так же перевозятся в частично разобранном виде, но имеют ряд допущений. Бак может быть изначально заполнен маслом для удобства последующего монтажа;
  • Малые трансформаторы могут транспортироваться в полностью собранном виде и с залитым маслом. Сразу после отгрузки они могут быть монтированы на посадочное место.

К дорожному полотну так же приводятся требования. Оно должно быть ровным, иметь градус наклона не более 7. Его размер очень важен, ведь отсутствие должного пространства для маневрирования автомобиля может привести к дополнительным проблемам.

Подготовка к монтажу

Монтаж трансформатора требует полноценной подготовки. Из-за размеров и массы оборудования, требуется подготовить посадочное место.

В этапы подготовки входит:

  1. Создание фундамента. При установке фундамента важно учесть масло-сборную яму. В случае экстренных ситуаций, при которой вероятен взрыв трансформатора, вся жидкость будет сливаться в специальный отсек.
  2. Осмотр и ревизия устройства. Важно, чтобы трансформатор был полностью исправен и не имел повреждений. Малейшие повреждения в обмотке или сердечнике приводит к некорректной работе. Также при монтаже важно учитывать размер. Трансформатор должен полностью вмещаться на посадочную площадку.
  3. Устанавливаются пути транспортировки. Вес и хрупкость трансформатора не позволяют его перемещать в руках. Для удобной транспортировки требуется использовать специальные транспортные пути. По ним и будет переноситься блок до своего места назначения.
  4. Подготовка баков для масла. Их стоит подготовить заранее, а так же нужны и временные баки для хранения масел до залива.
  5. Подготовка силикагеля для абсорбера.

Сборка трансформатора

Перед установкой устройства на фундамент, требуется дополнительно смонтировать все нужные элементы на корпус в следующем порядке:

  1. Радиаторные узлы;
  2. Газовое реле;
  3. Расширитель;
  4. Датчик уровня масла;
  5. Фильтры;
  6. Выводящие контакты;
  7. Трансформаторы тока;
  8. Контрольные приборы.

Некоторые элементы требуют предустановочную распаковку. Мероприятие требует определенных условий. Желательно, проводить работы в сухую, ясную погоду. Если влажность на отметке более 85 процентов, стоит проводить все манипуляции в комнате.

Этапы монтажа трансформатора

После всех подготовительных работ, можно переходить к самому монтажу. Здесь мы будем использовать базу, которую мы сделали заранее.

  1. Выгрузка агрегата и установка на “рельсы”;
  2. Транспортировка трансформатора до места установки;
  3. Проверка целостности оборудования;
  4. Монтаж трансформатора на фундамент;
  5. Испытание монтажа;
  6. Ввод в работу.

Изначально проводится тестовый ввод в холостую. Затем обязательно проводится проверка под нагрузкой.

Демонтаж трансформатора

В случае, если трансформатор был поврежден или прошел разрешенный срок его эксплуатации, его потребуется заменить. Демонтаж трансформатора так же требует подготовительных работ.

Читайте также:  Каким током заряжать lion

При ремонтных работах демонтируют не весь блок целиком. Отдельное отключение частей цепи позволяет полноценно определить причину поломки. При разборе блока важно осуществлять маркирование всех частей, которые возможно перепутать при последующем монтаже.

Этапы проведения демонтажа активной части

Изначально отсоединяют крышку бака. Извлекают переключатель и отводы. Для удобства дальнейшего монтажа их маркируют. Важно провести осмотр выводов, чтобы понять их дальнейшую работоспособность. При наличии прогара, трещин, их невозможно использовать дальше. Без повреждений их отсоединяют ножом от обмотки и отпаивают специализированными клещами, с угольным электродом. Если изоляция не повреждена, ее можно оставить и отводы демонтируют вместе с древесной рамой.

Далее распрессовывается верхнее ярмо обмотки. Ярмовые балки не могут заменять друг друга. Их маркировка необходима для дальнейшего использования. При расшихтовке демонтируются пластины сердечника, по которым можно определить качество лаковой изоляции. Если она нарушена, ее отправляют в лакировальную машину.На первом этапе демонтажа обмотки уже можно выполнить полноценную проверку состояния изоляции и решить вопрос о ее дальнейшем использовании. Если качество изоляции в полном порядке, ее аккуратно демонтируют и приступают к разборке магнитного блока трансформатора.

Если обмотка была повреждена, то ее использование невозможно. Под действием дуги, изолят плавится и копоть оседает по всей обмотке.

Дальше трансформатор отправляют на капитальный ремонт или в утилизацию.

Дальнейшая транспортировка зависит от того, будет ли использоваться блок или нет.

Источник



Как правильно произвести установку трансформатора тока?

Трансформаторы тока (ТТ) применяются в энергетике, в качестве преобразователей в измерительных схемах и в релейной защите.

Как правильно установить трансформаторы тока?

Гальваническая развязка вторичной и первичной обмотки ТТ позволяет безопасно измерить силу проходящего тока.

Первичная обмотка ТТ включается в разрыв измеряемой линии (Рис. 1). Проходящей по первичной обмотке ток производит магнитный поток, который в свою очередь наводит ток во вторичной. Начало и конец первичной и вторичной обмотки обозначены как Л1, Л2 и И1, И2 соответственно. Величина тока вторичной обмотки определяется коэффициентом трансформации ТТ. Если в первичной обмотке ток течет от начала к концу, то во вторичной направление будет обратным.

Нормальным режимом ТТ считается наличие короткого замыкание на вторичной обмотке (подключение реле или измерительного прибора с небольшим внутренним сопротивлением). При разомкнутых выводах, на вторичной обмотке наводится большое опасное напряжение. Также при холостом ходе ТТ, происходит значительный нагрев сердечника, приводящий к повреждению изоляции.

Подключение ТТ к линии определяется конструкцией самого измерительного трансформатора.

ТТ с многовитковой первичной обмоткой устанавливаются в рассечку измеряемой линии.

Многовитковые трансформаторы тока делятся на:

  • стержневые (представляющие собой «классический» трансформатора с магнитопроводом);
  • петлевые и звеньевые, где первичная обмотка содержит несколько витков внутри катушки вторичной.

Как правильно установить трансформаторы тока?

(Рис.2).

Одновитковые ТТ подразделяются на:

  1. трансформаторы без собственной первичной обмотки, в качестве которой используется проводник измеряемой линии;
  2. трансформаторы тока ее имеющие.

Как правильно установить трансформаторы тока?

В одновитковых ТТ без первичной обмотки, измеряемая линия проходит внутри вторичной (Рис. 3). Конструкция последней бывает не разборной, известной как шинная (Рис. 3, а) и разборной (Рис. 3, б).

Как правильно установить трансформаторы тока?

В одновитковых ТТ с первичной обмоткой (Рис. 4) измеряемая линия подключается к собственной катушке трансформатора выполненной в виде прямого (Рис. 4, а) или U-образного проводника (Рис. 4, б).

Правила установки трансформаторов тока.

В зависимости от характера реализуемой релейной защиты бывают нескольких видов.

  • Соединение вторичных обмоток ТТ в полную звезду применяется для защиты от однофазных и многофазных КЗ (Рис. 5). Допустим в первичной обмотке проходит ток, направленный от начала к концу. Тогда во вторичных обмотках проходят токи обратного направления. В нормальных условиях этот ток не достаточен для срабатывания токовых реле КА1-КА3. Ток, проходящий через реле КА0, определяется как геометрическая сумма токов I2A, I2Bи I2Cи равен нулю. При трехфазном КЗ в условиях симметричного замыкания всех фаз срабатывание реле КА0 также не происходит, реле в каждой фазе вызывает отключение. При двухфазном КЗ ток протекает только через две поврежденные фазы (в неповрежденной фазе тока нет). В идеальном случае при полностью идентичных ТТ ток в реле КА0 равен нулю. При замыкании на землю ток протекает через поврежденную фазу и «нулевое» реле КА0. Как правильно установить трансформаторы тока?Рис. 5
  • Схема включения в неполную звезду применяется, в основном для защиты от межфазных КЗ в линиях с заземленной нейтралью (Рис. 6).При трехфазном коротком замыкании, через обратный провод также проходит ток. При двухфазном КЗ срабатывают, в зависимости от поврежденных фаз одно или два реле. Если произошло замыкание на землю в фазе B, срабатывание какого-либо реле не происходит. Таким образом соединение ТТ в неполной звезде обеспечивает гарантированную защиту только от многофазных КЗ. В связи с этим схема неполной звезды применяется для маломощных сетей, когда имеются другие, дублирующие виды защиты. Как правильно установить трансформаторы тока?Рис. 6
  • Смешанное соединение – в полную звезду на вторичной обмотке и соединение треугольником на первичных обмотках ТТ (Рис. 7) применяется в дифференциальной защите трансформаторов при таком же соединении его обмоток. Как правильно установить трансформаторы тока?Рис. 7
  • Работа на КЗ при смешанном соединении аналогична другим схемам. Как правильно установить трансформаторы тока?Рис. 8
  • В релейной защите от межфазных КЗ применяется встречное соединение вторичных обмоток ТТ (Рис. 8). Ток, проходящий через обмотку КА равен геометрической сумме токов обмоток трансформаторов тока. Данная схема реагирует на все виды коротких замыканий, кроме замыканий на землю. Применяется для реализации защиты трансформаторов на первичных обмотках. Как правильно установить трансформаторы тока?Рис. 9
  • Для защиты от одно- и двухфазных замыканий на землю применяют схему, где первичный обмотки ТТ соединены в так называемый фильтр нулевой последовательности (рис. 9).

Трансформаторы тока впервые появились в схемах релейной автоматики, когда основным коммутационным элементом были обычные электромеханические реле. Однако, в современных условиях, для цифровых схем управления, ТТ также широко применяются в виду их простоты конструкции и легкости установки.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Источник