Меню

Как правильно подобрать конденсатор по напряжению

Как подобрать конденсатор

Корректный подбор конденсатора обеспечивает работоспособность электрической схемы в точном соответствии с техническим заданием. Для некоторых конструкций, кроме емкости, необходимо обеспечить определенные размеры, устойчивость к неблагоприятным внешним воздействиям. Найти подходящие изделия в ассортименте специализированных магазинов поможет данная публикация.

Подобрав конденсатор, можно установить диапазон рабочих частот динамика

Подразделения конденсаторов по возможности изменения емкости

По данному параметру детали этой категории делят на:

  • постоянные;
  • переменные;
  • подстроечные.

Специфические названия определяют главные конструктивные особенности, целевое назначение. Типовой постоянный конденсатор создают из проводящих обкладок, свернутых в рулон для уменьшения габаритов. Между ними устанавливают диэлектрик. Сборку помещают в металлический корпус или заливают полимером для обеспечения необходимых параметров защищенности.

Радиальный конденсатор с электролитическим наполнителем

В переменных и подстроечных моделях применяют наборы из пластин с механическим приводом. Изменением положения рабочих элементов устанавливают необходимое значение емкости. Каждое изделие рассчитано на определенный диапазон рабочих параметров. Такие конденсаторы применяют для точной настройки колебательного контура. Их устанавливают в радиоэлектронных блоках, чтобы регулировать отдельные рабочие параметры в процессе эксплуатации.

Свойства и параметры конденсаторов

Главным параметром приборов этой категории является емкость (С). Она определяет накопительные свойства изделия. Принцип работы базируется на переходе электронов на соответствующую пластину при подключении источника питания. В зависимости от полярности на соответствующем электроде появляются положительные (отрицательные) заряды.

Величина емкости зависит от нескольких параметров:

  • размеров пластин (площади обкладок);
  • расстояния между ними;
  • диэлектрических свойств материала в промежутке.

К сведению. Емкость указывают в кратных единицах. Пример: пФ или pF – это пикофарад (10-12 фарада).

Напряженность плоского конденсатора вычисляют по формуле:

где:

  • q – заряд;
  • e – диэлектрическая проницаемость;
  • S – рабочая площадь.

Из этого выражения несложно сделать вывод о взаимном влиянии электрических и конструкционных параметров. Емкость определяют следующим образом:

где:

  • d – расстояние между пластинами;
  • U – напряжение.

Для удобства применяют удельный показатель:

где V – объем изделия.

По нему делают вывод о том, насколько эффективно выполняет основные функции конденсатор. При высокой удельной емкости разрядка занимает больше времени, если подключают аналогичную нагрузку.

Классом точности или процентным отклонением обозначают допуск от номинальной емкости (значения указаны ± в %):

  1. 5;
  2. 10;
  3. 15;
  4. от -20 до +30;
  5. от -20 до +50.

Потребительские параметры диэлектрика характеризуют электрической прочностью. Как правило, на корпусе изделия указывают номинал напряжения в длительном рабочем режиме для определенных условий с учетом диапазонов:

  • температуры;
  • относительной влажности;
  • давления.

В подробной документации указывают напряжение пробоя.

Индуктивность (собственная) изменяет напряженность поля конденсатора. Эта реактивная составляющая «помогает» изделию разрядиться быстрее или медленнее, по сравнению с расчетной скоростью процесса. Подобные паразитные воздействия искажают рабочие характеристики колебательного контура. Их надо учитывать при проектировании частотно зависимых цепей.

Потери оценивают по электрическому сопротивлению изоляционных слоев. Если соответствующим образом подключить мультиметр, можно уточнить действительный ток утечки. Этот параметр измеряют на протяжении определенного времени. Следует запомнить, что сопротивление зависит от температуры и влажности.

К сведению. Слюдяные конденсаторы будут разряжаться медленнее, по сравнению с бумажными в равных условиях, так как токи утечки отличаются на порядок.

Для комплексного сравнения разных деталей этой категории проверяют стабильность. Этот показатель характеризует постоянство рабочих параметров. Как правило, учитывают влияние температуры. Специализированный коэффициент (ТКЕ) показывает соответствующие изменения при увеличении (снижении) на 1°С.

Как разрядить конденсатор, чтобы минимизировать остаточное напряжение? Ответ на этот вопрос поможет получить изучение абсорбционных процессов в диэлектрическом слое. Соответствующие параметры характеризуют поправочным коэффициентом (Ка). Он увеличивается вместе с повышением температуры.

Рабочий цикл измерения абсорбции

Сокращенные обозначения

В стандартном исполнении выпускают постоянные (К) и подстроечные (КТ) конденсаторы. Переменные (КП) создают по индивидуальным заказам. Ниже приведены отдельные параметры по ГОСТу 13 453-68.

Материал диэлектрика:

  • Б – бумага;
  • МП – комбинация металла/ пленки;
  • С – слюда;
  • Э – электролит;
  • К – керамика.

По степени защиты от внешних воздействий различают герметичное (Г) исполнение и опрессованный корпус (О).

Конструкция:

  • М – монолит;
  • Б – бочонок;
  • Д – диск;
  • С – секционный вариант.

Рабочий режим (по току):

  • И – импульсный;
  • У – универсальный (импульсный, постоянный и переменный);
  • Ч – только постоянный;
  • П – переменный/постоянный.

Иные особенности:

  • У – конденсатор, рассчитанный на работу в диапазоне УКВ;
  • М – компактные габариты;
  • Т – обеспечивается сохранение технических параметров при повышении температуры;
  • В – изделие приспособлено для установки в сетях с высоким напряжением.

В стандартном обозначении указывают (по номеру позиции):

  1. вид конденсатора (К, КТ или КП);
  2. код по диэлектрику и основным параметрам (К10 керамика для напряжения до 1600 V);
  3. рабочий режим по току;
  4. производственная серия или другое технологическое обозначение.

Дополнительные сведения:

  • Выбирать изделия можно по комбинированной (цифровой и буквенной), цветовой маркировке;
  • На компактный корпус наносят сокращения (вместо 1000мкФ – 1000m);
  • Класс точности обозначают латинским шрифтом (U – это ±);
  • Аналогичным образом кодируют номинальное напряжение (Q-160V).

Как подобрать конденсатор

Для лучшего понимания алгоритма правильных действий можно изучить процесс выбора конденсатора при подключении электродвигателя к разным источникам питания. Если применяется трехфазная сеть, подойдет формула емкости:

где:

  • к – фиксированный коэффициент, равный 2 800/ 4 800 для схемы «звезда»/ «треугольник», соответственно;
  • Iф – ток в цепи статора, который производители указывают на шильдике либо в сопроводительной документации;
  • U – напряжение питания.

В упрощенном варианте специалисты берут 6-7мкФ на каждые 0,1 кВт потребляемой мощности. При значительных механических нагрузках обмотка может сгореть. Мягкий запуск электрического двигателя обеспечивает дополнительный конденсатор. Он выполняет свои функции в течении 2-5 секунд. Емкость выбирают в 2,5-3,5 больше результата предыдущего расчета. Номинальное напряжение – на 50-70% выше рабочих параметров сети питания.

Читайте также:  Что будет при падении напряжения магнитного поля

Подключение электродвигателя через конденсатор

Асинхронный двигатель подключают к однофазному источнику. В этом варианте необходимо создать сдвиг фазы для начала вращения ротора. Пуск обеспечивает отдельная обмотка. В эту цепь устанавливают специальный конденсатор. Для упрощенной схемы выбора берут 8-12 мкФ на каждые 0,1 кВт потребляемой мощности.

К сведению. Чтобы исключить перегрев и повреждение деталей, рекомендуется подключение индуктивных нагрузок такого типа через конденсаторы, рассчитанные на рабочее напряжение не менее 450 V.

Расчет гасящего конденсатора для подключения светодиодной ленты можно сделать по формуле:

где:

  • I – ток в цепи;
  • Uп (Uд) – напряжение источника питания (падение на диодах), соответственно.

Можно ли поставить конденсатор большей емкости

Точный ответ на поднятый в этом разделе вопрос можно дать после изучения конкретной схемы. Если надо выбрать деталь для фильтра (колебательного контура), необходимы аналогичные параметры. В противном случае частотные характеристики не будут соответствовать конструкторскому замыслу.

При сглаживании пульсаций в блоке питания подобная модернизация взамен штатного изделия может быть эффективной. В некоторых случаях, чтобы ограничить ток в цепи, придется подбирать подходящий резистор. Через него можно будет разряжать конденсатор без повреждений. Итоговое решение принимают с учетом рассмотренных выше факторов. Существенное значение имеют условия эксплуатации, тепловые и механические нагрузки. Разумное увеличение затрат на этапе приобретения надежных комплектующих продлит срок службы функционального устройства.

Видео

Источник



Как подобрать конденсатор

Среди всего разнообразия радиоэлементов, используемых в схемотехнике, немаловажную и специфическую роль играют конденсаторы. Поскольку конденсаторы применяются в самых разнообразных областях радиотехники (от микропроцессорной техники до силовых установок), они имеют ряд отличительных особенностей и характеристик.

Внешний вид конденсаторов

Внешний вид конденсаторов

Свойства и параметры конденсаторов

Конденсатор представляет собой систему из двух изолированных друг от друга проводников. При подключении источника питания к конденсатору на одной его пластине накапливается положительный заряд, создающий электрическое поле с напряженностью +Е, а на второй – отрицательный заряд, формирующий электрическое поле с напряженностью -Е. Величины этих зарядов одинаковые, но противоположны по знаку. Способность конденсатора накапливать заряд называется электрической емкостью.

Величина электрической емкости прямо пропорциональна заряду одного из проводников и обратно пропорциональна разности потенциалов или напряжению между проводниками:

Поскольку каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого равен:

  • Е – напряженность поля;
  • σ – поверхностная плотность заряда;
  • ε0 – электрическая постоянная;
  • ε – диэлектрическая проницаемость диэлектрика.

соответственно, объединив оба выражения, получается, что емкость плоского конденсатора прямо пропорциональна площади пластин конденсатора, диэлектрической проницаемости диэлектрика и обратно пропорциональна расстоянию между пластинами:

  • S – площадь обкладки конденсатора;
  • d – расстояние между обкладками, или толщина диэлектрика.

Силовые линии электрического поля конденсатора

Силовые линии электрического поля конденсатора

По своему исполнению конденсаторы подразделяются на:

  1. Вакуумные конденсаторы – в качестве диэлектрика выступает вакуум;
  2. Конденсаторы с газообразным диэлектриком;
  3. Конденсаторы с жидким диэлектриком;
  4. Конденсаторы с твердым органическим диэлектриком. В качестве такого диэлектрика выступают бумага, металлобумага, пленочный и бумажнопленочный диэлектрик и тонкослойный диэлектрик из органических синтетических пленок;
  5. Электролитические и оксидно-полупроводниковые конденсаторы. Диэлектриком в них выступает оксидный слой, являющийся анодом. Второй обкладкой, или катодом, выступают либо электролит – в электролитических конденсаторах, либо слой полупроводника – в оксидно-полупроводниковых конденсаторах, нанесенных непосредственно на оксидный слой. В зависимости от типа конденсатора, анод изготавливается из алюминиевой, ниобиевой или танталовой фольги.

По возможности изменения емкости конденсаторы подразделяются на:

  • Постоянные – емкость не меняется на всем сроке службы;
  • Переменные – допускается изменение емкости в процессе функционирования;
  • Подстроечные – емкость меняется разово или с некоторой периодичностью.

К основным параметрам конденсаторов относятся:

  1. Электрическая или номинальная емкость конденсаторов;
  2. Удельная емкость конденсаторов – представляет собой отношение номинальной емкости к объему или массе диэлектрика. Максимальное значение достигается при минимальной толщине диэлектрика, хотя при этом уменьшается напряжение пробоя;
  3. Номинальное напряжение конденсаторов – представляет собой такое напряжение, при котором элемент будет работать с сохранением своих параметров в течение всего срока службы;
  4. Полярность конденсаторов. Электролитические конденсаторы, ввиду своих конструктивных особенностей, функционируют только при корректной полярности напряжения. При противоположном подключении диэлектрик разрушается, и конденсатор выходит из строя.

Сокращенное обозначение конденсаторов:

  • К – постоянный;
  • КТ – подстроечный;
  • КП – переменной емкости;
  • КС – конденсаторные сборки;
  • КМ – керамический монолитный;
  • 10 – керамический, до 1600В;
  • 15 – керамический, от 1600В;
  • 20 – кварцевый;
  • 21 – стеклянный;
  • 22 – стеклокерамический;
  • 23 – стеклоэмалевый;
  • 26 – тонкопленочный с неорганическим диэлектриком;
  • 31 – слюдяной;
  • 40 – бумажный и фольговый;
  • 50 – оксидный, электролитический;
  • 60 – воздушный;
  • 61 – вакуумный;
  • 70 – полистирольный диэлектрик.

Принципы подбора конденсаторов

Сталкиваясь с проблемой, как подобрать конденсатор, нужно запомнить несколько правил, которые позволят устройству работать долгое время с заданными характеристиками.

Для замены вышедшего из строя конденсатора достаточно переписать его маркировку и характеристики. Далее остается приобрести компонент, подбирая его в магазине, и заменить бракованный в схеме.

Многие устройства, используемые человеком, требуют постоянного электрического питания. Не возникает проблем, если под рукой имеется трансформаторный блок питания. Однако и понижающий трансформатор имеет свой основной недостаток, заключающийся в больших размерах и весе, он требует для себя отдельного места. Решить эту проблему можно, благодаря бестрансформаторному блоку питания, изготовленному на основе гасящего конденсатора.

Читайте также:  Конденсаторы для умножителя напряжения схема

Схема простого бестрансформаторного блока питания

Схема простого бестрансформаторного блока питания

Согласно схеме на рис. выше, во входном контуре размещен гасящий конденсатор С1, на котором глушится входное напряжение. Поскольку на входе устройства ток переменный, и конденсатор непрерывно перезаряжается, то на его выходе присутствует некий ток. Конденсатор большей емкости обуславливает больший ток. Соответственно, расчет гасящего конденсатора начинается с указания нагрузочного тока и напряжения.

Емкость гасящего или балластного конденсатора определяется по формуле:

C=Iэф/ 2πƒ√U2вх-U2вых, где:

  • С – емкость гасящего конденсатора (Ф);
  • Iэф – выходной ток блока питания;
  • ƒ – частота тока сети;
  • Uвх – входное напряжение;
  • Uвых – выходное напряжение.

При подборе конденсатора дополнительно необходимо обратить внимание на такие его параметры:

  1. Напряжение конденсатора;
  2. Тип конденсатора.

При питающем напряжении 220В нужно поставить конденсатор, рассчитанный на 400В. Однако надежнее использовать конденсатор с большей величиной напряжения. Но можно ли поставить его в схему или нет, определяет сам размер устройства, ввиду габаритов конденсатора. Максимально надежными по типу являются пленочные плоские конденсаторы, полиэтилентерефталатные металлизированные, МГБО, комбинированные и их аналоги.

Использование гасящих конденсаторов вместо трансформаторов максимально упростило создание компактных и надежных блоков питания. Рассчитать емкости и подобрать балластный конденсатор не составит большого труда даже для начинающих радиолюбителей.

Видео

Источник

Конденсаторы (Всё что Вы хотели знать, но боялись спросить)

Конденсаторы являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы.

Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин (обкладок) конденсатора, и тем больше, чем тоньше слой диэлектрика между ними.

Устройство простейшего конденсатора

Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже:

Формулы соединение конденсаторов

Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ (конденсатор переменной емкости). Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора:

Полярный конденсатор изображение на схеме

К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже. Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус.

Фото электролитический конденсатор

У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода. У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться. У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса:

Фото конденсатора с насечками

Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х 100 В., это означает его емкость, равную 33 микрофарад и допустимое напряжение до 100 вольт. Неполярный конденсатор на схемах обозначается следующим образом:

Неполярный конденсатор изображение на схеме

На фото ниже изображены пленочный и керамический конденсаторы:

Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение:

Расшифровка цифровой маркировки конденсаторов

На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3.3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:

Ёмкость 10 нанофарад (0.01 мкФ)

Конденсаторы с номинальным значением до 100 пикофорад маркируются буквой П или латинской P, например:

1пФ — 1П0 или 1Р0
1,5 пФ — 1П5 или 1Р5
15 пФ — 15П или 15 Р
15,2 пФ — 15П2

Конденсаторы с номинальным значением от 100 пикофарад до 0,1микроофарад маркируются в нанофарадах буквой Н или латинской n, например:

100 пФ (0,1нФ) — Н10 или n10
150 пФ(0,15 нФ)- Н15
1000 пФ(1нФ) — 1Н0 или 1n0
1500 пФ(1,5 нФ)- 1Н5
0,01 мкФ (10 нФ) — 10Н или 10n
0,068 мкФ (68 пФ) — 68Н

Конденсаторы с номинальным значением от 0,1микрофарад и выше маркируются буквой М, например
0,1 мкФ — М10 (на некоторых видах конденсаторов такая емкость может обозначаться и в нанофарадах латинской буквой n, например 100 n=100 нФ=0,1 мкФ и т.д.)

0,15 мкФ — М15
0,22 мкФ — М22
1мкФ — 1М0
1,5 мкФ — 1М5
15 мкФ — 15М
150 мкФ — 150М

Примеры маркировки конденсаторов

Емкость от 0 до 9999 пФ может быть указана без обозначения единицы измерения:

Читайте также:  Каким образом уменьшить напряжение

22 = 22p = 22П = 22пФ

Если емкость меньше 10пФ, то обозначение может быть таким:

Так же конденсаторы маркируют в нанофарадах (нФ), 1 нанофарад равен 1000пФ и микрофарадах (мкФ):

10n = 10Н = 10нФ = 0,01мкФ = 10000пФ

Н18 = 0,18нФ = 180пФ

1n0 = 1Н0 = 1нФ = 1000пФ

330Н = 330n = М33 = m33 = 330нФ = 0,33мкФ = 330000пФ

100Н = 100n = М10 = m10 = 100нФ = 0,1мкФ = 100000пФ

1Н5 = 1n5 = 1,5нФ = 1500пФ

4n7 = 4Н7 = 0,0047мкФ = 4700пФ

6М8 = 6,8мкФ
Маркировка числовым кодом

Если код трехзначный, то первые две цифры обозначают значение, третья – количество нулей, результат в пикофарадах.

Например: код 104, к первым двум цифрам приписываем четыре нуля, получаем 100000пФ = 100нФ = 0,1мкФ.

Если код четырехзначный, то первые три цифры обозначают значение, четвертая – количество нулей, результат тоже в пикофарадах.

4722 = 47200пФ = 47,2нФ

Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы 0805 и 1206. Изображение неполярного SMD конденсатора можно видеть на рисунках ниже:

Фото SMD конденсатора

Далее показано фото электролитических SMD конденсаторов:

Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер. Переменные конденсаторы Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости:

Рисунок как устроен переменный конденсатор

Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора. Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей.

Фото переменный конденсатор На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам – максимум сотням пикофарад. Так обозначается на схемах конденсатор переменной емкости:

На следующем рисунке показан подстроечный конденсатор. Подстроечный конденсатор обозначается на схемах следующим образом:

Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры.

Фото подстроечный конденсатор

На следующем рисунке изображено строение подстроечного конденсатора:

Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. Перевести из микрофарад в пикофарады и обратно очень легко. 1 микрофарад равен 1000 нанофарад или 1000000 пикофарад. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях.

Берем мультик и ставим его крутилку на прозвонку или на измерение сопротивления и щупами дотрагиваемся до выводов кондера. Так как у нас мультик на прозвонке и на измерении сопротивления вырабатывает постоянный ток, значит, в какой то момент времени ток будет течь, следовательно, в этот момент сопротивление кондера будет минимальным. Далее мы продолжаем держать щупы на выводах кондера и, сами того не понимая, заряжаем кондер. А пока мы его заряжаем, его сопротивление начинает также расти, пока не будет очень большое. Давайте глянем на практике, как все это выглядит.

Вот в этом момент мы только-только коснулись щупами выводов кондера.

Держим и видим, что сопротивление у нас растет

и пока не станет очень большим

Очень удобен в проверке кондеров аналоговый мультик, потому что можно без труда отслеживать плавное движение стрелки, чем мерцание цифр на цифровом мультик

Если же у нас при прикасании щупов к кондеру, мультик начинает пищать и показывать нулевое сопротивление, значит в кондере произошло короткое замыкание. А если у нас сразу же показывается единичка на мультике, значит внутри кондера произошел обрыв. Кондеры с такими эффектами считаются нерабочими и их можно смело выбрасывать в мусорку.

Неполярные кондеры проверяются проще. Ставим предел измерения на мультике на мегаОмы и касаемся щупами выводов кондера. Если сопротивление меньше 2 МегаОм, то скорее всего кондер неисправен.

Кондеры полярные и неполярные номиналом меньше чем, 0,25мкФ могут с помощью мультика проверяться только на КЗ. Чтобы проверить все таки их на работоспособность, нужен специальный прибор — LC — метр или универсальный R/L/C/Transistor-metr, но и некоторые мультиметры могут также измерять емкость кондеров, имея внутри себя такую функцию. Например мой мультиметр может без труда определить емкость кондера до 200 микроФарад. Имейте ввиду, что внутри мультиметра есть плавкий предохранитель. Если он перегорает, то некоторые функции мультиметра теряются. На моем мультике при перегорании внутреннего предохранителя у меня не работала функция измерения силы тока и измерение емкости кондеров.

В заключении хотелось бы рассказать еще об одном способе проверки кондера, но он действует только на кондеры большой емкости. Для этого способа используется замечательное свойство кондера — заряжаться и копить заряд. Заряжаем кондер, приличным напряжением, но не более чем написано на кондере, в течение пару секунд, и потом аккуратно замыкаем контакты кондера какой нибудь железкой. Железка должна быть изолирована от рук, а то испытаете всю мощь разряда кондера на себе))). Должна появиться искра. Запечатлеть искру у меня не получается на фото 🙁 , так что уж извиняйте.

ЗЫ: Взял где взял, обобщил и добавил немного.
Простите за качество некоторых картинок (чем богаты).

Источник