Меню

Как правильно выбрать трехфазный стабилизатор напряжения

Как правильно выбрать трехфазный стабилизатор напряжения

Какой мощности должен быть?

При выборе трехфазного стабилизатора в первую очередь необходимо определиться с мощностью, которой должен обладать прибор.

Для трехфазных моделей существует следующая градация:

  • до 30 кВт;
  • от 30 до 100 кВт;
  • свыше 100 кВт.

К первой категории относятся стабилизаторы напряжения, мощности которых хватает, чтобы обеспечить население качественным электропитанием на бытовом уровне (ставятся в частных домах, коттеджах) или в небольших организациях.

Стабилизаторы мощностью от 30 до 100 кВт уже предназначены для работы с мощным промышленным оборудованием.

Приборы свыше 100 кВт используются для группы сверхмощных потребителей.

Так как самой распространенной и востребованной является первая категория (до 30 кВт), рассмотрим подбор трехфазного стабилизатора напряжения на ее примере.

Существует два способа, как узнать необходимую мощность:

    Способ № 1 : подбор для одного-двух потребителей на 380В.

В данном случае все достаточно просто — необходимо посмотреть в техническом паспорте мощность каждого прибора, посчитать суммарную мощность и брать стабилизатор на 30% превышающий данное значение (с падением напряжения падает и выдаваемая стабилизатором мощность, поэтому чтобы всегда иметь необходимые заявленные киловатты, нужно брать стабилизатор с запасом мощности).

Способ № 2 : подбор для всего объекта (частного дома или коттеджа).

На каждый объект электриками ставится ограничительный вводной автомат, который, во избежание пожаров, не позволяет одновременно включить электроприборы большей мощности, чем рассчитана электропроводка.

Чаще всего на современный частный дом выделяется 15 — 20 кВт (киловатт) и ставится вводной автомат на 20 или 25А (ампер).

Современные вводные автоматы 20 и 25 ампер для дома

Давайте подсчитаем, какой мощности нужен стабилизатор напряжения в дом с автоматом 20 ампер. Для этого используем формулу:

20 * 220 * 3 = 13200

Получаем 13200 Вт (ватт) или 13,2 кВт (киловатт).

Трехфазные модели стабилизаторов выпускаются на 30, 20, 15, 9, 6 кВа. Понимаем, что на 9 кВА мощности стабилизатора будет не хватать, а вот вариант на 15 кВА теоретически должен подойти. Почему теоретически? Об этом попробуем рассказать в следующем блоке.

15 кВА и 15 кВт — это одно и то же?

Внимательный читатель заметил, что 20амперный вводной автомат рассчитан на суммарную мощность всех потребителей в доме до 13,2 кВт (киловатта), а мощность стабилизаторов указывается в кВА (киловольт-амперах). Из этого возникает вопрос: можно ли приравнять кВт (киловатты) и кВА (киловольт-амперы)?

Чтобы дополнительно не перегружать статью техническими терминами, ответим, что есть 2 варианта ответа:

  • 15 кВА равно 15 кВт — если ни один потребитель в доме не имеет электродвигателя в своей конструкции. К таким электроприборам относятся: лампочки, ноутбук, стационарный компьютер, телевизор и т.д;
  • 15 кВА не равно 15 кВт — если в доме есть потребители с электродвигателем. Это: холодильник, кондиционер, насос, циркулярная пила и т.д.
    В этом случае необходимо перевести кВА в кВт. Для этого умножаем мощность стабилизатора (в нашем случае это 15 кВА) на коэффициент реактивной мощности «0.7»:

15 * 0.7 = 10.5 кВт

Как видим, при наличии указанных потребителей с электродвигателем, получаем стабилизатор напряжения уже не на 15 кВт, а всего на 10,5 кВт. Понятно, что этой мощности будет недостаточно и подойдет стабилизатор только на 20 кВА:

Вот теперь, для нашего вводного автомата в 20 ампер на 13,2 кВт, удалось узнать требуемую мощность трехфазного стабилизатора — 20 кВА, который в реале будет выдавать 14 кВт.

Теперь, зная всю схему подсчетов, можем быстро подсчитать необходимую мощность стабилизатора, если на дом подведена сеть 380 вольт и стоит вводной автомат уже на 25А (ампер):

  • умножаем: 25 * 220 * 3 = 16 500 Вт (или 16,5 кВт);
  • если нету потребителей с электродвигателем (в чем я сильно сомневаюсь), то берем трехфазный стабилизатор на 20 кВА;
  • если же приборы с электромотором есть, то умножаем 20 кВА на 0.7 и получаем только 14 кВт, который будет выдавать трехфазник, и 16,5 кВт которые выделяются вводным автоматом он станет попросту обрезать и уже будет отключаться по перегрузу с нагрузкой в 14 кВт. Чтобы этого избежать, нужно ставить трехфазник на 30 кВА:

Казалось бы, нам нужен стабилизатор на 16.5 кВт, ну максимум на 17 кВт, а 21 кВт это много. Но тут всплывает первый подводный камень — при падении напряжения в сети падает и выдаваемая стабилизатором мощность, которая будет составлять 85% от номинальной, а при очень сильных просадках и все 60%:

При выборе стабилизатора с запасом мощности у нас будет тот самый необходимый запас в 30%, который электрики так рекомендуют закладывать, чтобы избавиться от ситуаций, когда стабилизатор не выдерживает и отключается по перегрузу.

Когда напряжение сильно падает, то ни один стабилизатор не в состоянии выдавать номинальную мощность. А чтобы всегда получать заявленные киловатты, как раз и требуется брать аппарат по мощности на 30% больше, чем необходимо.

Мощность стабилизатора напряжения необходимо подбирать исходя из значения вводного автомата и с запасом по мощности на 30%.

Нужен ли морозостойкий стабилизатор и как сильно падает напряжение?

С мощностью мы определились и теперь нужно понять, будет стабилизатор стоять в отапливаемом помещении или требуется аппарат с возможностью работы при минусовых температурах.

Морозостойкие трехфазники, обычно, имеют ценник выше. Для примера сравним стабилизаторы на 20 кВА:

Энергия СНВТ-20000/3 Hybrid Энергия Hybrid 25000/3
Мощность: 20 кВA (14. 20 кВт) 25 кВA (17. 25 кВт)
Тип: обычный морозостойкий
Рабочий диапазон температуры: -5. +40°С -20. +40°С
Цена: 67 000 руб. 84 450 руб.

Что касается способности справляться с аномальными падениями или с повышенным напряжением (т.е., диапазон входных напряжений), здесь также выгоднее более новые модели.

Для сравнения возьмем всё те же трехфазники на 20 кВА:

Энергия СНВТ-20000/3 Hybrid Энергия Hybrid 25000/3
Мощность: 20 кВA (14. 20 кВт) 20 кВA (14. 20 кВт)
Рабочий диапазон температуры, °С: -5. +40 -20. +40
Входное напряжение линейное (380в): 155. 465в 140. 476в
Входное напряжение фазное (220в): 80. 275в

Как видим, новые улучшенные модели гораздо лучше приспособлены к современным колебаниям в сети и могут работать при минусовой температуре.

Обычные трехфазники имеют широкий диапазон входных напряжений. У морозостойких диапазон уже, но они могут работать в суровых климатических условиях.

Трехфазный или три однофазных?

Все трехфазные стабилизаторы напряжения имеют довольно высокий ценник и чтобы его снизить есть маленький лайфхак.

Дело в том, что у трехфазников есть такая особенность — когда пропадает одна из фаз, то у аппарата срабатывает защита и он отключается, обесточивая весь дом. Чтобы этого избежать и оставить работающими электроприборы на оставшихся двух фазах, лучше поставить три однофазных стабилизатора вместо одного на 380В (по одному на каждую фазу).

Кроме того, три однофазника выходят дешевле, чем один на 3 фазы. Возьмем всё тот же трехфазник на 20 кВА и реальными 14 кВт.

Так как фазы у нас три, то 14 кВт делим на 3 и понимаем, сколько у нас на каждой фазе:

Округляем до пяти и смотрим однофазный на 5 кВт. Не забываем, что 5 кВА в нашем случае не соответствует 5 кВт и выбираем в категории с пометкой: «8 кВА / 5. 8 кВт».

А также, среди тиристорных в категории «7.5 кВА / 5. 7,5 кВт» (у них немножко отличается градация по мощности).

Отсеиваем релейные стабилизаторы (у них ступенчатая регулировка, из-за чего мигают лампы, они для дома не подходят) и останавливаемся на вариантах с плавной регулировкой: электромеханических (1 шт = 21900 руб.) и тиристорных (1 шт = 31050 руб.).

Умножаем цену на три и получаем таблицу:

Энергия Hybrid 25000/3 Энергия Hybrid-8000(U) Энергия Classic 7500
трехфазный однофазные однофазные
гибрид электро-механические тиристорные
1 шт. = 84450 руб. 21900 3 шт. = руб. 31050 3 шт. = руб.

В случае с тремя электромеханическими однофазниками экономия составляет руб, а это уже приятно.

С тиристорными стабилизаторами ситуация другая. Это аппараты более высокого класа со своими преимуществами (бесшумность, еще шире диапазон по низу (до 60 вольт), настенные, с расширенной гарантией до 3 лет) и ценник соответственно повыше.

То же самое можно посчитать и для вводного автомата на 25А (ампер) с 16,5 кВт. Вспоминаем, что на него нужен стаб 30 кВА и реальными 21 кВт. Делим 21 на 3:

Итак, на каждую фазу нужен однофазник на 7 кВт. Смотрим электромеханику мощностью: 10 кВА / 7. 10 кВт(1 шт = 24100 руб.) и тиристоры: 9 кВА / 7. 9 кВт (1 шт = 36500 руб.).

Энергия Hybrid 30000/3 Энергия Hybrid-10000(U) Энергия Classic 9000
трехфазный однофазные однофазные
гибрид электро-механические тиристорные
1 шт. = 98800 руб. 24100 3 шт. = руб. 36500 3 шт. = руб.

В случае с тремя электромеханическими однофазниками экономим уже руб. По тиристорным было написано выше.

У этого способа есть только один минус — трехфазник можно заменить тремя однофазными стабилизаторами только в том случае, если в доме все электроприборы на 220В и нету потребителей на 380В. Если же приборы на 380 вольт есть, то ставить нужно только трехфазник. Иначе потребители на 380В не будут защищены.

Если есть потребители на 380В, то ставим трехфазник. Если электроприборы только на 220В — дешевле будет поставить три однофазных стабилизатора

Выводы

Итак, у нас все-таки получилось подсчитать и выбрать аппарат для самых распространенных вводных автоматов:

  • для 20А — трехфазник на 20 кВА или три однофазных на 8 кВА (5 кВт);
  • для 25А — трехфазник на 30 кВА или три однофазных на 10 кВА (7 кВт);

По этому же принципу можно подобрать трехфазный стабилизатор напряжения под номинал любого другого вводного автомата.

Надеюсь, удалось максимально помочь с подбором стабилизатора. Если Вы узнали для себя что-то новенькое и считаете эту информацию полезной, нажмите ниже на кнопки социальных сетей и сохраните эту статью себе, чтобы не потерять.

Источник



Как выбрать стабилизатор 380 В?

Принцип подхода к выбору трехфазного стабилизатора сетевого напряжения немного отличается от выбора однофазного устройства.

Критерии выбора

Перед тем, как приступить к выбору конкретного устройства, владелец объекта, имеющего трёхфазное электропитание должен сформулировать некоторую концепцию, в рамках которой будут осуществляться применение тех или иных средств коррекции питающего напряжения. В этом вопросе могут иметь место несколько подходов:

  • установка общего трёхфазного стабилизатора напряжения на вводе питания объекта;
  • установка трёх однофазных стабилизаторов, каждый из которых питает нагрузочную группу, подключенную к соответствующей фазе;
  • подключение одного или нескольких стабилизаторов только на вводе некоторых, наиболее чувствительных к перепадам напряжения электроприборов.

Иногда можно услышать высказывания о том, что все трёхфазные стабилизаторы представляют собой три однофазных прибора, помещённых в один общий корпус, и поэтому нет никакой разницы между одним трёхфазным стабилизатором и тремя однофазными. Разберёмся, почему это не соответствует истине, а стабэксперт.ру поможет вам в этом.

Один трехфазный ≠ три однофазных

Во-первых, большинство трёхфазных стабилизаторов, построенных по традиционной схеме, которые предназначены для промышленного использования, не являются объединением трёх однофазных. Основу этих устройств составляют трансформаторы с трёхстержневыми магнитопроводами. Обмотка каждой из фаз располагается на своём стержне. Такие конструкции, правда, значительно реже, встречаются и среди устройств, предназначенных для бытовых потребителей, но работать в однофазном режиме они не в состоянии.

Во-вторых, трёхфазные стабилизаторы, предназначенные для использования в быту, действительно, чаще всего представляющие собой три однофазных устройства, имеют существенное отличие от трёх приборов, каждый из которых работает автономно. Заключается оно в наличии общего блока управления и защиты. Работает блок по следующему принципу:

При возникновении критической ситуации в одной из фаз, происходит отключение нагрузки по всем трём фазам. В случае применения трёх однофазных приборов, в такой ситуации отключился бы только один из них, а остальные фазы функционировали бы штатно.

Если говорить о показателях качества электроэнергии, то в трёхфазных системах, в добавление ко всем параметрам однофазного режима, существует понятие симметричности напряжения. Симметричной называется такая трёхфазная система, в которой численные значения напряжений фаз равны между собой, а угловой сдвиг между их векторами на диаграмме составляет 120 градусов. Симметричность фазных напряжений контролируется блоком управления трёхфазных стабилизаторов.

Наличие симметрии очень важно для работы трёхфазного оборудования, например электрических двигателей.

Отклонение от симметричности вызывает снижение коэффициента полезного действия электродвигателя, нагрев железа статора. А при потере одной фазы, что относится к крайнему проявлению несимметричности, происходит перегрев и повреждение обмотки статора.

В качестве итога, для большей наглядности, рассмотрим три конкретных примера: обычный трехфазный стабилизатор (моноблок), три однофазных (т.н. модульный вариант) и защита только одной фазы, где запитана критически важная техника (бюджетный вариант).

Популярные трехфазные стабилизаторы:

  • → 9 кВт на 380 В
  • → 12 кВт на 380 В
  • → 15 кВт на 380 В
  • → 20 кВт на 380 В
  • → 24 кВт на 380 В
  • → 27 кВт на 380 В
  • → 30 кВт на 380 В
  • → 45 кВт на 380 В
  • → 60 кВт на 380 В
  • → 90 кВт на 380 В

Из сказанного можно сделать следующие выводы:

    1. Установка общего трёхфазного стабилизатора на вводе трёхфазного питания объекта допустима во всех случаях, хотя не всегда такой вариант является оптимальным. Для частного дома лучше подходит следующий пункт (#2). Ресанта трехфазный

Недорогие модели Ruself, например SDV-3-15000 на 15 кВт

  • 2. Для большинства, более приемлемым может оказаться сценарий, связанный с установкой трёх однофазных приборов, которые, при необходимости, можно разместить даже в разных местах, либо установить на монтажную стойку, как тут. Кроме этого, данный вариант нередко оказывается более выгодным экономически. Но, СтабЭксперт напоминает, что крайне нежелательно такое решение в случае наличия на объекте трёхфазных двигателей, которые при работе трёх однофазных стабилизаторов оказываются полностью без защиты от несимметрии и неполнофазных режимов. Как решить эту проблему, читайте ниже (про Блок Контроля Сети).
  • Прогресс трехфазный

    Progress 45000SL-20-3 на 45 кВт

    Читайте по теме: как выбрать стабилизатор 220 В для дачи и какая технология лучше: релейная, электронная, сервоприводная .

    Стойка для монтажа стабилизатора Премиум

    Так выглядит монтажная стойка для комплекта

    Бывает, что производители, специально для комплектов из трех стабилизаторов выпускают специальные монтажные стойки с заводскими проводами внутри. К ним подключается каждый из приборов, а сама стойка крепится к стене и полу.

    Для примера, на фото выше, приведен комплект Premium 15000/3, это симисторная модель на 15 кВт и стойка для него.

    Необходимо отметить, что стали появляться интересные комбинированные варианты устройств. По-факту это трехфазные модели, но способные функционировать, как три однофазных прибора. Переход в данный режим осуществляется просто переключением клавиши. Читайте полный обзор СтабЭксерт.ру одного из таких устройств.

    гибрид трехфазный

    Серия HYBRID II 380в способна переключаться в однофазный режим из трех независимых стабилизаторов

    • 3. В самом экономном варианте можно рассмотреть бюджетный проект стабилизации, заключающийся в следующем. В стабилизированную (защищенную) сеть подключаются только наиболее чувствительные к перепадам напряжения приборы (например, только кухня: холодильник, стиральная машина, котел). Такое решение позволит приобрести однофазный стабилизатор небольшой мощности и сэкономить средства. Например, известно, что светодиодные лампы нечувствительны к перепадам напряжения в сети и не снижают яркость свечения в широком их диапазоне. По этой причине, освещение (если оно выполнено на светодиодах) можно не подключать к выходу стабилизатора. Вся современная бытовая техника и компьютеры оснащены импульсными блоками питания, работающими в очень широком диапазоне входного напряжения. В принципе, эти устройства не нуждаются в стабилизации напряжения. Котел отопления можно защитить отдельно.

    Блок контроля сети

    Защитный БКС

    Так выглядит данный блок, пример

    Для варианта #2 необходимо отметить, что если вы сперва обзавелись тремя однофазными стабилизаторами, а только потом, в хозяйстве, появился прибор с трехфазным двигателем (например станок, насос и пр.), то на этот случай есть отдельный прибор под названием — Блок Контроля Сети (БКС). Он отключит всю сеть, в случае обесточивания одной из фаз и тем самым спасет трехфазный двигатель.

    Кроме этого, БКС мониторит порядок чередования фаз (для защиты трехфазных асинхронных двигателей), а так же осуществляет контроль перекоса фаз и несимметрии напряжения.

    Но у данной схемы есть минус, при отключении одной фазы — блок отключит остальные две. Фактически, вся система превращается в обычный трехфазный стабилизатор.

    Читайте подробнее, что такое БКС и как он работает.

    Блок комплексной защиты

    БКЗ

    Для трехфазной сети есть еще БКЗ

    Блок комплексной защиты (БКЗ) работает, как со стабилизаторами, так и самостоятельно, что он дает:

    • Грозозащита и защита от импульсных помех.
    • Защита от короткого замыкания и обрыва нулевого провода.
    • Защита просадок/скачков напряжения.
    • Варисторная защита от импульсных помех (например, при сварке).
    • Подробно.

    БКЗ не заменяет трехфазный стабилизатор, он лишь страхует и дополняет систему, делая защиту более комплексной.

    Источник

    Какой мощности выбрать стабилизатор?

    Выбор стабилизатора напряжения по мощности картинка

    Мощность является важнейшим параметром любого стабилизатора напряжения. Если она подобрана неверно, то прибор, независимо от топологии, точности и быстродействия, не сможет нормально функционировать и не справится со своими задачами.

    В этой статье мы более подробно разберем вопрос правильного подбора стабилизатора напряжения по мощности.

    Содержание

    • Алгоритм расчёта мощности стабилизатора
    • Выясняем мощность подключенной к стабилизатору нагрузки
    • Прибавляем запас по мощности
    • Подбираем модель стабилизатора
    • Пример подбора стабилизатора по мощности
    • Подводим итог

    Алгоритм расчёта мощности стабилизатора

    При подборе необходимой модели стабилизатора напряжения его неправильно рассчитанная мощность может привести к следующим последствиям:

    • стабилизатор с выходной мощностью, меньшей, чем требуется, будет постоянно отключаться или вообще не запустится, а возможно и выйдет из строя;
    • приобретение устройства с мощностью, намного превышающей требуемое значение, будет бесполезной тратой средств. Прибор в процессе работы будет недозагружен, что снизит его КПД.

    Для определения актуальной мощности стабилизатора и правильного выбора подходящей модели рекомендуем придерживаться алгоритма, состоящего из трёх действий:

    1. Выяснить мощность нагрузки.
    2. Прибавить запас к значению мощности, потребляемой нагрузкой.
    3. Подобрать по итоговой величине подходящую модель стабилизатора.

    Разберём три указанных пункта и проанализируем наиболее распространённые ошибки, сопутствующие каждому из них.

    Выясняем мощность подключенной к стабилизатору нагрузки

    Мощность нагрузки равняется сумме мощностей всех подключённых к стабилизатору устройств. Перед расчетом суммарного значения мощности необходимо выяснить энергопотребление каждого из потребителей. Это сделать очень просто: мощность электроприборов обычно указывается в технической документации и дублируется на заводской табличке, прикреплённой к изделию.

    Несмотря на видимую простоту действия, на данном этапе можно совершить несколько серьёзных ошибок, которые повлекут за собой выбор стабилизатора, не подходящего под ваши задачи.

    Особое внимание стоит обратить на оборудование, для которого указывается несколько мощностей: насосы, обогревательная, звуковая, климатическая техника и т.д. Важно различать мощность электрическую и мощность, выдаваемую изделием при выполнении своих прямых задач, например, тепловую – для нагревательных котлов, охлаждения – для кондиционеров, звуковую – для аудиосистем.

    У электроприборов, конструкция которых содержит ёмкостные компоненты или электродвигатели, активная и полная мощности могут существенно различаться. Поэтому приобретение рассчитанного на 1000 ВА стабилизатора при нагрузке в 1000 Вт может стать неверным решением – прибор окажется перегружен со всеми вытекающими отсюда последствиями.

    Во избежание данной ошибки, следует перевести Ватты в Вольт-Амперы и проанализировать не только активную, но и полную мощность нагрузки. Перевод из Ватт в Вольт-Амперы осуществляется делением значения в Ваттах на специальный параметр – коэффициент мощности или cos(φ): ВА=Вт/cos(φ).

    Сos(φ) отражает зависимость активной мощности устройства от полной. Чем ближе величина cos(φ) к единице, тем меньше энергии рассеивается в виде электромагнитного излучения и тем больше преобразуется в полезную работу.

    Численное значение cos(φ) обычно (но не всегда) указанно в технической документации прибора, потребляющего переменный ток (может обозначаться как «cos(φ)», «Power Factor» или «PF»). Если производитель не предоставил информацию о коэффициенте мощности своего изделия, то для бытовой техники допустимо принять cos(φ) в пределах 0,7-0,8, кроме устройств, преобразующих электроэнергию в свет и тепло (лампы накаливания, электрочайники, утюги и т.д.), для них интервал значений коэффициента мощности – 0,9-1.

    Современная техника, в первую очередь компьютеры, часто оснащается блоком питания с коррекцией коэффициента мощности, которая приближает данный параметр к единице – 0,95-0,99. Если уверенности в наличии такой функции (обозначается «PFC» или «ККМ») нет, то для cos(φ) рекомендуется применить значение из указанного в предыдущем абзаце типового диапазона.

    Полную мощность нагрузки следует рассчитывать с использованием только значения коэффициента мощности оборудования, соответствующего этой нагрузке, а не с использованием значения входного коэффициента мощности стабилизатора!

    Производители указанной техники иногда приводят максимальное энергопотребление непосредственно в характеристиках каждой модели, а иногда наоборот – дают только номинальное значение мощности, стараясь не привлекать внимание к неминуемым скачкам тока. Рекомендуем внимательно изучить сопутствующую любому оборудованию документацию и поискать информацию о фактической мощности, потребляемой устройством при пуске и в различных режимах работы. Мощность нагрузки определяется с использованием наибольшего из приведённых для каждого устройства значений!

    Помимо механизмов с электродвигателями, высокие пусковые токи характерны и осветительным приборам. Причем не только с галогенными лампами и лампами накаливания, но и с популярным в последнее время светодиодными. Светодиоды не имеют пусковых токов, но большинство светильников, реализованных на их базе, снабжены конденсаторами, включение которых вызывает резкое увеличение потребляемого тока.

    При выборе стабилизатора для защиты крупной светотехнической системы следует учесть, что значение мощности, возникающее при запуске такой системы, может многократно превышать номинальное.

    Прибавляем запас по мощности

    Правильно выбранный стабилизатор должен иметь выходную мощность, превышающую мощность, необходимую для электропитания нагрузки. Разница между мощностью стабилизатора и фактическим энергопотреблением нагрузки называется запасом мощности.

    Рекомендуемый запас составляет 30% от величины энергопотребления нагрузки. Данное значение позволит:

    • подключить к устройству в процессе эксплуатации дополнительные приборы, мощность которых не учитывалась при изначальном расчёте нагрузки;
    • избежать перегрузки в случае сильного падения напряжения в электросети.

    Дадим разъяснение по второму пункту. Дело в том, что мощность стабилизатора при выходе питающего напряжения из определённых пределов (рабочего диапазона) уменьшается. В частности, при 135 В в сети, стабилизатор вместо заявленных 500 ВА выдаст только 400 ВА и, соответственно, не сможет запитать предельную к его номиналу нагрузку.

    Для некоторого оборудования рекомендуется заложить запас мощности свыше 30%. Это, например, кондиционеры или IT-техника. В первом случае, данное решение объясняйся ростом потребляемой кондиционером мощности в процессе эксплуатации устройства (вызвано неизбежным загрязнением фильтрующей сетки). Во втором случае – тенденцией к постоянному увеличению мощностей телекоммуникационного оборудования.

    Подбираем модель стабилизатора

    Для определения подходящей по мощности модели необходимо сверить мощностной ряд предлагаемых производителем стабилизаторов с энергопотреблением нагрузки – ближайшее в большую сторону значение в мощностном ряду и будет необходимой мощностью стабилизатора.

    Пример подбора стабилизатора по мощности

    Стабилизатор приобретается для одновременной защиты трех однофазных потребителей. Не будем акцентировать внимание на конкретном виде устройств, назовем их просто: потребитель 1, потребитель 2 и потребитель 3.

    Согласно заводским паспортам:

    • номинальная мощность потребителя 1 составляет 600 Вт, потребителя 2 – 130 Вт, потребителя 3 – 700 Вт;
    • коэффициент мощности потребителей 1 и 2 равен 0,7, потребителя 3 – 0,95.

    Определяем мощность нагрузки. Пусть потребитель 1 относится к категории оборудования, характеризующегося наличием высоких пусковых токов. При расчёте используем не его номинальную мощность, а максимальную – пусковую, равную согласно технической документации 1800 Вт. Используя вышеуказанную формулу, переведём мощность каждого потребителя из Вт в ВА:

    • 1800 / 0,7 = 2571,4 ВА – для потребителя 1;
    • 130 / 0,7 = 185,7 ВА – для потребителя 2;
    • 700 / 0,95 = 736,8 ВА – для потребителя 3.

    Теперь определим суммарную потребляемую мощность планируемой нагрузки в Вт и ВА:

    • 1800 + 130 + 700 = 2630 Вт;
    • 2571,4 + 185,7 + 736,8 = 3493,9 ВА.

    Дальнейший выбор стабилизатора будем проводить, учитывая, что полная мощность нагрузки на устройство составит 3493,9 ВА, а активная – 2630 Вт (обратите внимание на разницу значений в Вт и ВА).

    Далее определяем запас мощности. Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:

    • 2630 х 0,3 = 789 Вт – запас активной мощности;
    • 34,939 х 0,3 = 1048,17 ВА – запас полной мощности.

    Следовательно мощность нагрузки с учётом запаса составит:

    • 2630 + 789 = 3419 Вт;
    • 3493,9 + 1048,17 = 4542,07 ВА.

    Теперь выберем модели однофазного стабилизатора с необходимой мощностью для электропитания нашей нагрузки (с учетом запаса), используя стандартный мощностной ряд однофазных инверторных стабилизаторов производства ГК «Штиль»:

    Полная мощность, ВА Активная мощность, Вт
    350 300
    550 400
    800 600
    1000 800
    1500 1125
    2000 1500
    2500 2000
    3000 2500
    3500 2750
    5000 4500
    7000 5500
    8000 7200
    10000 9000
    12000 11000
    15000 13500
    20000 18000

    Ближайшая с большей стороны к расчётным значениям мощность – 5000 ВА и 4500 Вт, следовательно, именно такой стабилизатор подходит для подключения потребителя 1, потребителя 2 и потребителя 3.

    Предположим, что потребителя 1, потребителя 2 и потребителя 3 необходимо подключить не к однофазному, а к трехфазному стабилизатору. Стандартный мощностной ряд ГК «Штиль» для подобных устройств следующий:

    Полная мощность, ВА Активная мощность, Вт
    6000 5400
    10000 8000
    15000 13500
    20000 16000

    Нагрузку со значением полной мощности в 4542,07 ВА и активной – в 3419 Вт, возможно подключить к одной фазе трехфазного стабилизатора с выходной мощностью 15000 ВА / 13500 Вт, в котором отдельная фаза выдаст максимально – 5000 ВА / 4500 Вт.

    Выбрать менее мощную модель стабилизатора позволит распределение нагрузки, то есть подключение каждого потребителя к отдельной фазе. Наибольшая нагрузка будет на фазе, питающей потребитель 1, энергопотребление которого – 1800 Вт / 2571,4 ВА.

    Рассчитаем необходимый потребителю 1 запас мощности (примем рекомендованное значение запаса в 30%):

    • 1800 х 0,3 = 540 Вт – запас активной мощности;
    • 2571,4 х 0,3 = 771,4 ВА – запас полной мощности;
    • 1800 + 540 = 2340 Вт – активная мощность потребителя 1 с учётом запаса;
    • 2571,4 + 771,4 = 3342,8 ВА – полная мощность потребителя 1 с учётом запаса.

    Значит, максимально возможная нагрузка на одну фазу стабилизатора при условии подключения трех потребителей к различным фазам может составить: 3342,8 ВА / 2340 Вт.

    Выберем модель стабилизатора с выходной мощностью 10000 ВА / 8000 Вт, в которой допустимая нагрузка на одну фазу приблизительно равна 3333 ВА / 2666 Вт. В данном случае допустимо выбрать стабилизатор с полной мощностью чуть меньшей, чем расчётная – фактически это снизит запас по мощности для потребителя 1 на 1-2%.

    Подробнее с модельным рядом инверторных стабилизаторов «Штиль» можно ознакомиться, перейдя по ссылке:
    Cтабилизаторы напряжения «Штиль» инверторного типа.

    Подводим итог

    Во избежание ошибок при определении мощности стабилизатора и траты денег на прибор, который в итоге окажется бесполезным, необходимо:

    • использовать при расчёте мощности нагрузки значение мощности, потребляемой электроприбором из сети, а не значение мощности, характеризующей полезную работу этого электроприбора;
    • использовать при расчёте полной мощности нагрузки коэффициент мощности, соответствующий этой нагрузке, а не входной коэффициент мощности стабилизатора;
    • рассчитывать мощность нагрузки с обязательным учётом пусковых токов для всех устройств, характеризующихся их высоким значением;
    • при необходимости переводить Вт в ВА и анализировать мощность нагрузки в единицах измерения соответствующих единицам, на основе которых выстроен мощностной ряд стабилизаторов;
    • выбирать мощность стабилизатора с учетом необходимого запаса;
    • выбирать стабилизатор с номинальной мощностью выше, чем расчётная мощность нагрузки (допустимо лишь небольшое округление нагрузочной мощности в меньшую сторону, при условии наличия предварительно заложенного запаса мощности);
    • выбирать трехфазный стабилизатор для однофазной нагрузки, анализируя не только номинальную выходную мощность устройства, но и мощность отдельной фазы.

    Внимательность при расчетах и соблюдение всех вышеприведённых правил поможет подобрать модель стабилизатора, отвечающую требованиям вашей нагрузки. В случае возникновения любых сложностей и вопросов рекомендуем проконсультироваться со специалистами!

    Источник

    Читайте также:  Как понизить напряжение с220 до 110