Меню

Как протекает ток в катушке

Катушка индуктивности. Устройство и принцип работы.

Катушка индуктивности

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самых основ, и темой сегодняшней статьи будет катушка индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – резисторы и конденсаторы.

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку 🙂 То есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Катушки индуктивности

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название 🙂 Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

Магнитное поле проводника с током

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

Магнитное поле катушки индуктивности

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

Давайте разберемся, что за величину входят в это выражение:

  • \mu_0 – магнитная проницаемость вакуума. Это табличная величина (константа) и равна она следующему значению: \mu_0 = 4 \pi \cdot 10^<-7>\medspace\frac <Гн>
  • \mu – магнитная проницаемость магнитного материала сердечника. А что это за сердечник и для чего он нужен? Сейчас выясним. Дело все в том, что если катушку намотать не просто на каркас (внутри которого воздух), а на магнитный сердечник, то индуктивность возрастет многократно. Посудите сами – магнитная проницаемость воздуха равна 1, а для никеля она может достигать величины 1100. Вот мы и получаем увеличение индуктивности более чем в 1000 раз
  • S – площадь поперечного сечения катушки
  • N – количество витков
  • l – длина катушки

Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный!

Катушка индуктивности в цепи постоянного тока.

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Катушка индуктивности в цепи постоянного тока

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь. Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку I_L будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

Напряжение и ток катушки индуктивности

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать.

Напряжение на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

Напряжение и ток в катушке

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

Катушка индуктивности в цепи переменного тока.

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Катушка индуктивности в цепи переменного тока

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Зависимость тока и ЭДС самоиндукции в катушке в цепи переменного тока

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

Собственно, график нам и демонстрирует эту зависимость! Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу 🙂

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: \varepsilon i > 0, участок 3-4: \varepsilon > 0, i w – круговая частота: w = 2 \pi f . [/latex]f[/latex] – это частота переменного тока. Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( f = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение u ? Здесь все на самом деле просто! По 2-му закону Кирхгофа:

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Сдвиг фаз при включении катушки индуктивности

Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

Вот и с включением катушки в цепь переменного тока мы разобрались!

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому разговор о катушках индуктивности мы продолжим в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

Источник

Практическое руководство по катушкам индуктивности

Катушки индуктивности (индукторы)

Большинство проводящих материалов (металлов) является парамагнитными или ферромагнитными, в то время как большинство непроводящих материалов (неметаллов) является диамагнитными. Любой проводник обладает некоторой индуктивностью в ответ на изменение величины или направления протекания тока. Даже обычный прямой провод имеет индуктивность, хотя она достаточно мала, чтобы пренебрегать ею. Если провод свернуть в петлю — его индуктивность увеличится. Чем больше сделать таких одинаковых витков, тем большая индуктивность будет присуща проводу. Индуктивность одиночной петли или катушки из провода может быть многократно увеличена с помощью подходящего ферромагнитного сердечника.

Простейшими катушками индуктивности являются катушки с воздушным сердечником (рисунок 1). Они сделаны путем намотки провода вокруг пластмассового, деревянного или любого не ферромагнитного сердечника. Индуктивность катушки зависит от числа витков, радиуса и общей формы, также она пропорциональна числу витков и диаметру катушки. Индуктивность обратно пропорциональна длине провода для заданного диаметра катушки и числу витков. Итак, чем ближе будут витки, тем больше будет индуктивность. Электропроводность катушек индуктивности зависит от материала и толщины провода. Потери (в виде тепла) в значительной степени зависят от материала, используемого в качестве сердечника.

Пример катушки индуктивности с воздушным сердечником

Рис. 1. Пример катушки индуктивности с воздушным сердечником

Катушки с воздушным сердечником имеют небольшую индуктивность, которая может составлять максимум 1 мГн. Катушки с воздушным сердечником могут быть рассчитаны так, что будут пропускать через себя ток практически неограниченной величины при условии использования проводника большой длины, смотанного в катушку большого радиуса. Такие катушки индуктивности практически не вносят потерь, так как воздух не рассеивает много энергии в виде тепла. Чем выше частота переменного тока, тем меньше индуктивность, необходимая для получения значительных эффектов. Таким образом, катушки индуктивности с воздушным сердечником вполне подходят для применения в высокочастотных цепях переменного тока благодаря отсутствию потерь, способности пропускать через себя большие токи и достаточным значениям индуктивности.

При использовании железных или ферритовых сердечников индуктивность может быть значительно увеличена. Однако порошкообразный, железный или ферритовый сердечник вносит значительные потери электрической энергии в виде тепла. Использование ферромагнитных сердечников также ограничивает максимальную величину рабочего тока катушек индуктивности. В ферромагнитных сердечниках насыщение происходит при протекании максимального рабочего тока. При увеличении тока сверх этого критического значения индуктивность может начать уменьшаться. При больших токах ферромагнитные сердечники могут достаточно сильно нагреваться, что может привести к их разрушению и необратимому существенному изменению номинальной индуктивности катушки.

Соленоид против катушек индуктивности

Соленоиды часто путают с катушками индуктивности. Соленоиды — это катушки проводов, которые предназначены для использования в качестве электромагнитов. Многие индукторы также являются катушками проводов, но они предназначены для обеспечения индуктивности в электрической цепи. Катушки индуктивности цилиндрической формы также называют соленоидными катушками, но только из-за их конструкции, схожей с конструкцией соленоида. Тем не менее, они не предназначены для использования в качестве электромагнита. Соленоиды специально используются в качестве электромагнитов и обычно имеют подвижный или статический сердечник. Обычно соленоиды используются в качестве электромагнитов в электрических звонках, электродвигателях, работающих на постоянном токе, и в реле.

Соленоидные катушки как индуктивности

Простейшими и наиболее распространенными индуктивностями являются соленоидные катушки. Эти индуктивности представляют собой цилиндрические катушки, намотанные вокруг диамагнитного или ферромагнитного сердечника. Они являются самыми простыми с точки зрения проектирования и изготовления.

Соленоидная, или цилиндрическая катушка может быть легко использована для подстройки величины индуктивности, если в конструкцию интегрировать механизм перемещения ферромагнитного сердечника катушки внутрь и наружу. Путем перемещения сердечника внутрь катушки и обратно можно изменять ее эффективную магнитную проницаемость и, следовательно, величину индуктивности. Это называется настройкой магнитной проницаемости и используется для подстройки частот в радиочастотных схемах.

Сердечник можно сделать подвижным, прикрепив его к винтовому валу и закрепив гайкой на другом конце катушки. Когда вал винта вращается по часовой стрелке — сердечник перемещается внутрь катушки, увеличивая эффективную магнитную проницаемость и, следовательно, величину индуктивности. Когда вал винта вращается против часовой стрелки — сердечник выдвигается, уменьшая эффективную магнитную проницаемость и, следовательно, величину индуктивности.

Тороиды как катушки индуктивности

Сегодня еще одной наиболее распространенной формой катушек индуктивности является тороид. Тороиды имеют кольцевой ферромагнитный сердечник, на который намотан провод. Тороиды нуждаются в меньшем числе витков и физически меньше при той же величине индуктивности и рабочей величине тока, по сравнению с соленоидными катушками (рисунок 2). Другим важным преимуществом тороидов является то, что магнитный поток находится внутри сердечника, что позволяет избежать нежелательной взаимной индуктивности.

Сильноточные тороидальные катушки индуктивности

Рис. 2. Сильноточные тороидальные катушки индуктивности

Однако намотать провод на тороид сложно. Регулировать магнитную проницаемость тороида еще сложнее. Проектирование катушек с тороидальным сердечником и переменной величиной индуктивности требует реализации громоздкой и сложной конструкции. В цепях, где требуется взаимная индуктивность, катушки должны быть намотаны на один и тот же сердечник в случае, если тороид используется в качестве катушки индуктивности.

Индуктивности на основе чашеобразных Р-сердечников*

В типичных катушках индуктивности — соленоидных и тороидных — провод намотан вокруг ферромагнитного сердечника. Катушки индуктивности на основе чашеобразных сердечников – это другой тип индуктивностей, в котором обмотка катушки находится внутри ферромагнитного сердечника. Чашеобразный ферромагнитный сердечник имеет форму двух половин в виде чаш со специальным цилиндрическим выступом (керном) на дне одной из половин, на котором размещается обмотка. Обе половины имеют отверстия, из которых извлекается провод катушки. Вся сборка скрепляется болтом и гайкой.

Катушки данного типа, как и тороиды, обладают большой индуктивностью и электропроводностью при небольших габаритах и меньшем числе витков. Магнитный поток, как и в случае с тороидами, остается внутри. Таким образом, нет нежелательной взаимной индуктивности с сердечниками. Опять же, как и в случае с тороидами, очень трудно варьировать величину индуктивности катушек данного типа. Изменять величину индуктивности в катушках индуктивности на основе Р-сердечников возможно только путем изменения числа витков и при использовании отводов в разных точках катушки.

*- В литературе также встречается термин “Р-сердечник закрытого типа”. В ГОСТ 19197-73 данному типу сердечников присвоено название – “броневой”.

Линия передачи как индуктивность

В цепях постоянного тока катушки индуктивности ведут себя почти так же, как и обычный провод, обладая незначительным сопротивлением, но не более того. Таким образом, они находят применение преимущественно в электрических цепях переменного тока. В аудиосхемах в качестве индуктивностей обычно используются тороиды, катушки на основе круглых чашеобразных сердечников или аудиотрансформаторы. Номинал индуктивности, применяемый в таких электрических цепях, варьируется от нескольких мГн до 1 Гн. Катушки индуктивности вместе с конденсаторами используются в аудиосхемах для подстройки. В настоящее время микросхемы практически полностью вытеснили катушки индуктивности и конденсаторы в аудиосистемах и других подобных областях применения.

При увеличении частоты должны использоваться индуктивности с сердечниками меньшей проницаемости. На нижнем конце радиочастотного спектра используются те же катушки индуктивности, что и в аудиоприложениях. На частотах до нескольких МГц весьма распространены катушки индуктивности с тороидальным сердечником. Для частот 30…100 МГц предпочтительны катушки с воздушным сердечником. Для частот более 100 МГц в линии передачи используются высокочастотные индуктивности и специальные трансформаторы. Линии передачи малой длины (четверть длины волны сигнала или меньше) сами могут быть использованы в качестве индуктивности для подстройки частоты радиосигналов. Линия передачи, используемая в качестве подобной индуктивности, обычно представляет собой коаксиальный кабель.

Индуктивности в цепях постоянного тока

Катушки индуктивности практически бесполезны в цепях постоянного тока. Однако можно предположить, что катушка индуктивности, подключенная к цепи постоянного тока, может быть полезна для понимания принципов ее работы и особенностей поведения пульсирующих напряжений постоянного тока. Предположим, что обычная катушка индуктивности подключена к источнику напряжения через ключ. При замыкании ключа на индуктивность подается напряжение, вызывающее быстрое изменение протекающего через нее тока. Когда приложенное напряжение увеличивается от нуля до пикового значения (за короткое время), индуктивность противодействует изменяющемуся через нее току, индуцируя напряжение, противоположное по полярности приложенному напряжению. Индуцированное напряжение при подаче питания на катушку индуктивности называется обратной ЭДС и определяется по формуле 1:

  • VL – напряжение (обратная ЭДС), индуцированная на катушке;
  • L – индуктивность катушки;
  • di/dt – скорость изменения тока во времени.

Согласно приведенной формуле 1, внезапное изменение тока через катушку индуктивности дает бесконечное напряжение, что физически невозможно. Таким образом, ток через катушку индуктивности не может измениться мгновенно. Ток сталкивается с влиянием индуктивности при каждом небольшом изменении его величины и медленно возрастает до своего пикового постоянного значения. Итак, в начальный момент времени катушка индуктивности представляет собой разрыв цепи, когда переключатель замкнут. Обратная ЭДС наводится на катушку индуктивности до тех пор, пока изменяется значение протекающего через нее тока. Индуцированная обратная ЭДС всегда остается равной и противоположной возрастающему приложенному напряжению. Когда напряжение и ток от источника приближаются к постоянному значению, обратная ЭДС падает до нуля, а катушка индуктивности начинает вести себя как обычный провод. При подаче напряжения на катушку индуктивности мощность, запасенная ею, определяется по формуле 2:

P = V * I = L*i*di/dt, (2)

  • P – электрическая мощность, запасенная в катушке;
  • V – величина пикового напряжения на катушке индуктивности;
  • I – величина пикового тока, протекающего через катушку индуктивности.

Энергия, запасенная индуктивностью при подаче напряжения, определяется по формуле 3:

W = ∫P.dt = ∫L*i*(di/dt)dt = (1/2)LI 2 , (3)

  • W – электрическая энергия, запасенная в катушке индуктивности в виде магнитного поля;
  • I – максимальное значение тока, протекающего через катушку.

Когда происходит отключение источника напряжения (путем размыкания ключа), напряжение на индуктивности падает с постоянного пикового значения до нуля. В отличие от конденсаторов, при отключении источника напряжения напряжение на индуктивности не поддерживается. Фактически оно уже упало до нуля, тогда как ток, проходящий через него стал постоянным. Теперь, когда приложенное напряжение падает от пикового постоянного значения до нуля, ток, протекающий через катушку индуктивности, также падает с постоянного пикового значения до нуля. Катушка противодействует падению тока, вызывая прямую ЭДС в направлении приложенного напряжения. Из-за индуцированной прямой ЭДС ток, проходящий через катушку индуктивности, падает до нуля с более медленной скоростью. Как только ток уменьшается до нуля, прямая ЭДС также падает до нуля.

Таким образом, при подаче напряжения питания электрическая энергия преобразовывалась в магнитное поле в катушке индуктивности, что было очевидно по обратной ЭДС, индуцированной на ней. При отключении напряжения питания та же самая электрическая энергия возвращается индуктором в цепь в форме прямой ЭДС. Всякий раз, когда напряжение на катушке индуктивности увеличивается, возникает обратная ЭДС, а всякий раз, когда напряжение на катушке уменьшается, возникает прямая ЭДС.

На практике обратная или прямая ЭДС, которая наводится на катушке индуктивности, во много раз больше приложенного напряжения. Если источник индуктивности подключен к источнику напряжения или катушка индуктивности подключена к цепи постоянного тока без какой-либо защиты, электрическая энергия, возвращаемая при размыкании переключателя, выделяется в виде скачка напряжения или искры на контактах переключателя. Если индуктивность или ток в цепи достигают достаточно больших значений, то энергия выделяется в форме дуги или искры на контакте переключателя и может даже сжечь или расплавить его. Этого можно избежать, используя резистор и конденсатор, соединенные в RC-цепь и включенные последовательно с контактом переключателя. Такая RC-цепь называется снабберной и позволяет электрической энергии, выделяемой катушкой индуктивности, заряжать и разряжать конденсатор, поэтому она не повреждает другие компоненты. Во многих электрических цепях для сохранения компонентов схемы от обратной или прямой ЭДС катушек индуктивности или соленоидов используются защитные диоды.

Катушка индуктивности в цепи переменного тока

Катушка индуктивности противодействует любому изменению тока, который протекает через нее, а переменный ток, в свою очередь, отстает на 90° от напряжения. В начальный момент времени, когда напряжение источника подается на катушку, ток через нее протекает максимальный, но в противоположном направлении. При подаче напряжения ток протекает через катушку индуктивности из-за индуцированной обратной ЭДС, которая противоположна приложенному напряжению. Индуцированное на катушке напряжение всегда равно и противоположно по знаку приложенному напряжению в любой момент времени. Когда приложенное напряжение возрастает от нуля до пикового значения, ток через катушку падает от максимума до нуля.

Когда прикладываемое напряжение падает от максимального значения до нуля, то на катушке индуцируется прямая ЭДС, заставляя ток противоположного направления расти от нуля до пикового значения. Когда приложенное напряжение меняет полярность и возрастает до пикового значения, ЭДС снова индуцируется на катушке, вызывая падение обратного тока от пикового значения до нуля. Когда приложенное напряжение снова падает до нуля в обратном направлении, в катушке индуцируется прямая ЭДС, заставляющая ток снова расти от нуля до максимального значения в противоположном направлении. Это продолжается для каждого цикла протекания переменного тока.

Индуктивное сопротивление

Противодействие протекающему току из-за наличия индуктивности называется индуктивным сопротивлением. Амплитуда тока через катушку индуктивности обратно пропорциональна частоте приложенного напряжения. Поскольку напряжение на катушке (обратная или прямая ЭДС) пропорционально индуктивности, то амплитуда тока также обратно пропорциональна величине индуктивности. Итак, противодействие току из-за наличия индуктивности в виде индуктивного сопротивления определяется по формуле 4:

Соответственно, пиковая амплитуда тока, проходящего через катушку индуктивности, определяется по формуле 5:

  • Ipeak – пиковое значение переменного тока, протекающего через катушку индуктивности;
  • Vpeak – пиковое значение переменного напряжения, приложенного к катушке;
  • XL – индуктивное сопротивление.

Как резистивное и емкостное сопротивление, так и единица индуктивного сопротивления измеряется в омах. Следует отметить, что в электрических цепях нет потерь энергии из-за наличия емкостного или индуктивного сопротивления, что нельзя сказать об обычном резистивном сопротивлении. Тем не менее, реактивное сопротивление может ограничивать уровни тока через конденсатор или катушку индуктивности.

Применение катушек индуктивности

Катушки индуктивности используются в электрических цепях переменного тока. Они обычно применяются в аналоговых схемах, схемах обработки сигналов и в системах телекоммуникаций, а также используются вместе с конденсаторами для создания фильтров различных топологий. В телекоммуникационных системах индуктивности применяются в составе специальных фильтров, которые нужны для подавления возможных бросков напряжения и предотвращения утечки информации через линии системы электропитания.

Трансформаторы, которые используются для повышения или понижения напряжения переменного тока, состоят из двух катушек индуктивности, объединенных в единую конструкцию определенным образом. Индуктивности также используются для временного хранения электрической энергии в цепях выборки-хранения и источниках бесперебойного питания. В цепях электропитания катушки индуктивности (где они называются фильтрующими дросселями) используются для сглаживания пульсирующих токов.

Поведение индуктивности при прохождении через нее сигнала можно определить следующим образом:

  • Всякий раз, когда приложенное к катушке индуктивности напряжение увеличивается, катушка генерирует обратную ЭДС, в результате чего ток через нее падает с максимального значения до нуля или даже ниже этого уровня. Всякий раз, когда прикладываемое напряжение уменьшается, катушка создает прямую ЭДС, в результате чего ток через нее повышается с нуля или текущего уровня до максимального значения или даже до более высокого.
  • Обратная или прямая ЭДС сохраняется на катушке индуктивности до тех пор, пока приложенное напряжение, а следовательно и ток через нее изменяются. Когда приложенное напряжение достигает определенного постоянного значения, обратная или прямая ЭДС падает до нуля, и постоянный ток протекает через катушку индуктивности без какого-либо противодействия, как в обычном соединительном проводе.
  • Из-за наличия индуктивности скорость изменения тока в цепи замедляется. Если сигнал переменный, то ток всегда будет отставать от напряжения на 90° из-за наличия индуктивности.
  • Благодаря индуктивному или емкостному сопротивлению потери энергии отсутствуют. Энергия, запасенная катушкой индуктивности в форме магнитного поля или конденсатором в форме электростатического поля, возвращается обратно в цепь, как только приложенное напряжение падает до нуля или меняет полярность. Однако из-за реактивного сопротивления пиковый уровень тока (амплитуда сигнала) ограничен.

Источник

Катушка индуктивности. Описание, характеристики, формула расчета

Катушка индуктивности является пассивным компонентом электронных схем, основное предназначение которой является сохранение энергии в виде магнитного поля. Свойство катушки индуктивности чем-то схоже с конденсатором, который хранит энергию в виде электрического поля.

Индуктивность (измеряется в Генри) — это эффект возникновения магнитного поля вокруг проводника с током. Ток, протекающий через катушку индуктивности, создает магнитное поле, которое имеет связь с электродвижущей силой (ЭДС) оказывающее противодействие приложенному напряжению.

фото катушка индуктивности

Возникающая противодействующая сила (ЭДС) противостоит изменению переменного напряжения и силе тока в катушке индуктивности. Это свойство индуктивной катушки называется индуктивным сопротивлением. Следует отметить, что индуктивное сопротивление находится в противофазе к емкостному реактивному сопротивлению конденсатора в цепи переменного тока. Путем увеличения числа витков можно повысить индуктивность самой катушки.

Тестер транзисторов / ESR-метр / генератор Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Самоиндукция и измерение индуктивности

Расчет катушки индуктивности

При изменении тока, который протекает в замкнутом электрическом контуре, меняется создаваемый им магнитный поток. Вследствие этого наводится ЭДС, которая называется ЭДС самоиндукции.

Напряжение ЭДС определяется формулой расчета индукции:

То есть ЭДС прямо пропорциональна величине скорости изменения тока с некоторым коэффициентом L, который и называется «индуктивность».

Гидравлическая модель

Работу катушки индуктивности можно сравнить с работой гидротурбины в потоке воды. Поток воды, направленный сквозь еще не раскрученную турбину, будет ощущать сопротивление до того момента, пока турбина полностью не раскрутится.

Далее турбина, имеющая определенную степень инерции, вращаясь в равномерном потоке, практически не оказывая влияния на скорость течения воды. В случае же если данный поток резко остановить, то турбина по инерции все еще будет вращаться, создавая движение воды. И чем выше инерция данной турбины, тем больше она будет оказывать сопротивление изменению потока.

Также и индуктивная катушка сопротивляется изменению электрического тока протекающего через неё.



Обозначение и единицы измерения

Сопротивление тока: формула

В честь Ленца, единица измерения индуктивности получила обозначение символом «L». Выражается в Генри, сокращенно Гн (в англоязычной литературе Н), в честь известного американского физика.


Джозеф Генри

Если при изменении тока в один ампер за каждую секунду ЭДС самоиндукции составляет 1 вольт, то индуктивность цепи будет измеряться в 1 генри.

Как может обозначаться индуктивность в других системах:

  • В системе СГС, СГСМ – в сантиметрах. Для отличия от единицы длины обозначается абгенри;
  • В системе СГСЭ – в статгенри.



Индуктивность в электрических цепях

В то время как конденсатор оказывает сопротивление изменению переменного напряжения, индуктивность же сопротивляется переменному тока. Идеальная индуктивность не будет оказывать сопротивление постоянному току, однако, в реальности все индуктивные катушки сами по себе обладают определенным сопротивлением.

В целом, отношение между изменяющимися во времени напряжением V(t) проходящим через катушку с индуктивностью L и изменяющимся во времени током I(t), проходящим через нее можно представить в виде дифференциального уравнения следующего вида:

Когда переменный синусоидальной ток (АС) протекает через катушку индуктивности, возникает синусоидальное переменное напряжение (ЭДС). Амплитуда ЭДС зависит от амплитуды тока и частоте синусоиды, которую можно выразить следующим уравнением:

где ω является угловой частотой резонансной частоты F:

Причем, фаза тока отстает от напряжения на 90 градусов. В конденсаторе же все наоборот, там ток опережает напряжение на 90 градусов. Когда индуктивная катушка соединена с конденсатором (последовательно либо параллельно), то образуется LC цепь, работающая на определенной резонансной частоте.

Индуктивное сопротивление ХL определяется по формуле:

где ХL — индуктивное сопротивление, ω — угловая частота, F — частота в герцах, и L индуктивность в генри.

Индуктивное сопротивление — это положительная составляющая импеданса. Оно измеряется в омах. Импеданс катушки индуктивности (индуктивное сопротивление) вычисляется по формуле:

Свойства

Имеет следующие свойства:

  • Зависит от количества витков контура, его геометрических размеров и магнитных свойств сердечника;
  • Не может быть отрицательной;
  • Исходя из определения, скорость изменения тока в контуре, ограничена значением его индуктивности;
  • При увеличении частоты тока реактивное сопротивление катушки увеличивается;
  • Обладает свойством запасать энергию – при отключении тока запасенная энергия стремится компенсировать падение тока.



Работа конденсатора

Устройство представляет собой двухполюсник малой проводимости и с переменным или постоянным значением емкости. Когда конденсатор не заряжен, сопротивление его близко к нулю, в противном случае оно равно бесконечности. Если источник тока отсоединить от данного элемента, то он становится этим источником до своей разрядки. Использование конденсатора в электронике заключается в роли фильтров, которые удаляют помехи. Данное устройство в блоках питания на силовых цепях применяются для подпитки системы при больших нагрузках. Это основано на способности элемента пропускать переменную составляющую, но непостоянный ток. Чем выше частота составляющей, тем меньше у конденсатора сопротивление. В результате через конденсатор глушатся все помехи, которые идут поверх постоянного напряжения.

индуктивность конденсатора

Сопротивление элемента зависит от емкости. Исходя из этого, правильнее будет ставить конденсаторы с различным объемом, чтобы улавливать разного рода помехи. Благодаря способности устройства пропускать постоянный ток только в период заряда его используют как времязадающий элемент в генераторах или как формирующее звено импульса.

Конденсаторы бывают многих типов. В основном используется классификация по типу диэлектрика, так как этот параметр определяет стабильность емкости, сопротивление изоляции и так далее. Систематизация по данной величине следующая:

  1. Конденсаторы с газообразным диэлектриком.
  2. Вакуумные.
  3. С жидким диэлектриком.
  4. С твердым неорганическим диэлектриком.
  5. С твердым органическим диэлектриком.
  6. Твердотельные.
  7. Электролитические.

Существует классификация конденсаторов по назначению (общий или специальный), по характеру защиты от внешних факторов (защищенные и незащищенные, изолированные и неизолированные, уплотненные и герметизированные), по технике монтажа (для навесного, печатного, поверхностного, с выводами под винт, с защелкивающимися выводами). Также устройства можно различить по способности к изменению емкости:

  1. Постоянные конденсаторы, то есть у которых емкость остается всегда постоянной.
  2. Подстроечные. У них емкость не меняется при работе аппаратуры, но можно ее регулировать разово или периодически.
  3. Переменные. Это конденсаторы, которые допускают в процессе функционирования аппаратуры изменение ее емкости.

Схемы соединения катушек

Как радиотехнический элемент, катушки индуктивностей обладают свойствами соединений, полностью идентичными соединениям резисторов.

Источник



Катушка индуктивности в цепи переменного тока

Рассмотрим цепь, содержащую в себе катушку индуктивности , и предположим, что активное сопротивление цепи, включая провод катушки, настолько мало, что им можно пренебречь. В этом случае подключение катушки к источнику постоянного тока вызвало бы его короткое замыкание, при котором, как известно, сила тока в цепи оказалась бы очень большой.

Иначе обстоит дело, когда катушка присоединена к источнику переменного тока. Короткого замыкания в этом случае не происходит. Это говорит о том. что катушка индуктивности оказывает сопротивление проходящему по ней переменному току .

Каков характер этого сопротивления и чем оно обусловливается?

Чтобы ответить ил этот вопрос, вспомним явление самоиндукции. Всякое изменение тока в катушке вызывает появление в ней ЭДС самоиндукции, препятствующей изменению тока. Величина ЭДС самоиндукции прямо пропорциональна величине индуктивности катушки и скорости изменения тока в ней. Но так как переменный ток непрерывно изменяется, то непрерывно возникающая в катушке ЭДС самоиндукции создает сопротивление переменному току.

Для уяснения процессов, происходящих в цепи переменного тока с катушкой индуктивности, обратимся к графику. На рисунке 1 построены кривые линии, характеризующие соответственно тик в цепи, напряжение на катушке и возникающую в ней ЭДС самоиндукции. Убедимся в правильности произведенных па рисунке построений.

Цепь переменного тока с катушкой индуктивности

С момента t = 0, т. е. с начального момента наблюдения за током, он начал быстро возрастать, но по мере приближения к своему максимальному значению скорость нарастания тока уменьшалась. В момент, когда ток достиг максимальной величины, скорость его изменения на мгновение стала равной нулю, т. е. прекратилось изменение тока. Затем ток начал сначала медленно, а потом быстро убывать и по истечении второй четверти периода уменьшился до нуля. Скорость же изменения тока за эту четверть периода, возрастая от пуля, достигла наибольшей величины тогда, когда ток станет равным нулю.

Рисунок 2. Характер изменений тока во времени в зависимости от величины тока

Из построений на рисунке 2 видно, что при переходе кривой тока через ось времени увеличение тока за небольшой отрезок времени t больше, чем за этот же отрезок времени, когда кривая тока достигает своей вершины.

Следовательно, скорость изменения тока уменьшается по мере увеличения тока и увеличивается по мере его уменьшения, независимо от направления тока в цепи.

Очевидно, и ЭДС самоиндукции в катушке должна быть наибольшей тогда, когда скорость изменения тока наибольшая, и уменьшаться до нуля, когда прекращается его изменение. Действительно, на графике кривая ЭДС самоиндукции e L за первую четверть периода, начиная от максимального значения, упала до нуля (см. рис. 1).

На протяжении следующей четверти периода ток от максимального значения уменьшался до нуля, однако скорость его изменения постепенно возрастала и была наибольшей в момент, когда ток стал равным нулю. Соответственно и ЭДС самоиндукции за время этой четверти периода, появившись вновь в катушке, постепенно возрастала и оказалась максимальной к моменту, когда ток стал равным нулю.

Однако направление свое ЭДС самоиндукции изменила на обратное, так как возрастание тока в первой четверти периода сменилось во второй четверти его убыванием.

Цепь с индуктивностью

Цепь с индуктивностью

Продолжив дальше построение кривой ЭДС самоиндукции, мы убеждаемся в том, что за период изменения тока в катушке и ЭДС самоиндукции совершит в ней полный период своего изменения. Направление ее определяется законом Ленца: при возрастании тока ЭДС самоиндукции будет направлена против тока (первая и третья четверти периода), а при убывании тока, наоборот, совпадать с ним по направлению (вторая и четвертая четверти периода).

Таким образом, ЭДС самоиндукции, вызываемая самим переменным током, препятствует его возрастанию и , наоборот, поддерживает его при убывании .

Катушка индуктивности в цепи переменного тока

Обратимся теперь к графику напряжения на катушке (см. рис. 1). На этом графике синусоида напряжения на зажимах катушки изображена равной и противоположной синусоиде ЭДС самоиндукции. Следовательно, напряжение на зажимах катушки в любой момент времени равно и противоположно ЭДС самоиндукции, возникающей в ней. Напряжение это создается генератором переменного тока и идет на то, чтобы погасить действие в цепи ЭДС самоиндукции.

Таким образом, в катушке индуктивности, включенной в цепь переменного тока, создается сопротивление прохождению тока. Но так как такое сопротивление вызывается в конечном счете индуктивностью катушки , то и называется оно индуктивным сопротивлением.

Индуктивное сопротивление обозначается через X L и измеряется, как и активное сопротивление, в омах.

Индуктивное сопротивление цепи тем больше, чем больше частота источника тока, питающего цепь, и чем больше индуктивность цепи. Следовательно, индуктивное сопротивление цепи прямо пропорционально частоте тока и индуктивности цепи; определяется оно по формуле X L = ω L , где ω — круговая частота, определяемая произведением 2π f . — индуктивность цепи в гн.

Закон Ома для цепи переменного тока, содержащей индуктивное сопротивление, звучит так: величина тока прямо пропорциональна напряжению и обратно пропорциональна индуктивному сопротивлению це п и , т. е. I = U / X L , где I и U — действующие значения тока и напряжения, а X L — индуктивное сопротивление цепи.

Рассматривая графики изменения тока в катушке. ЭДС самоиндукции и напряжения на ее зажимах, мы обратили внимание на то, что изменение этих в еличин не совпадает по времени. Иначе говоря, синусоиды тока, напряжения и ЭДС самоиндукции оказались для рассматриваемой нами цепи сдвинутыми по времени одна относительно другой. В технике переменных токов такое явление принято называть сдвигом фаз .

Если же две переменные величины изменяются по одному и тому же закону (в нашем случае по синусоидальному) с одинаковыми периодами, одновременно достигают своего максимального значения как в прямом, так и в обратном направлении, а также одновременно уменьшаются до нуля, то такие переменные величины имеют одинаковые фазы или, как говорят, совпадают по фазе.

В качестве примера на рисунке 3 приведены совпадающие по фазе кривые изменения тока и напряжения. Такое совпадение фаз мы всегда наблюдаем в цепи переменного тока, состоящей только из активного сопротивления.

В том случае, когда цепь содержит индуктивное сопротивление, фазы тока и напряжения, как это видно из рис. 1 не совпадают, т. е. имеется сдвиг фаз между этими переменными величинами. Кривая тока в этом случае как бы отстает от кривой напряжения на четверть периода.

Следовательно, при включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между током и напряжением, причем ток отстает по фазе от напряжения на четверть периода . Это значит, что максимум тока наступает через четверть периода после того, как наступил максимум напряжения.

ЭДС же самоиндукции находится в противофазе с напряжением на катушке, отставая, в свою очередь, от тока на четверть периода. При этом период изменения тока, напряжения, а также и ЭДС самоиндукции не меняется и остается равным периоду изменения напряжения генератора, питающего цепь. Сохраняется также и синусоидальный характер изменения этих величин.

Рисунок 3. Совпадение по фазе тока и напряжения в цепи с активным сопротивлением

Выясним теперь, каково отличие нагрузки генератора переменного тока активным сопротивлением от нагрузки его индуктивным сопротивлением.

Когда цепь переменного тока содержит в себе лишь одно активное сопротивление, то энергия источника тока поглощается в активном сопротивлении, нагревая проводник.

Катушка индуктивности в цепи переменного тока

Когда же цепь не содержит активного сопротивления (мы условно считаем его равным нулю), а состоит лишь из индуктивного сопротивления катушки, энергия источника тока расходуется не на нагрев проводов, а только на создание ЭДС самоиндукции, т. е. она превращается в энергию магнитного поля. Однако переменный ток непрерывно изменяется как по величине, так и по направлению, а следовательно, и магнитное поле катушки непрерывно изменяется в такт с изменением тока. В первую четверть периода, когда ток возрастает, цепь получает энергию от источника тока и запасает ее в магнитном поле катушки. Но как только ток, достигнув своего максимума, начинает убывать, он поддерживается за счет энергии, запасенной в магнитном поле катушки посредством ЭДС самоиндукции.

Таким образом, источник тока, отдав в течение первой четверти периода часть своей энергии в цепь, в течение второй четверти получает ее обратно от катушки, выполняющей при этом роль своеобразного источника тока. Иначе говоря, цепь переменного тока, содержащая только индуктивное сопротивление, не потребляет энергии : в данном случае происходит колебание энергии между источником и цепью. Активное же сопротивление, наоборот, поглощает в себе всю энергию, сообщенную ему источником тока.

Говорят, что катушка индуктивности, в противоположность омическому сопротивлению, не активна по отношению к источнику переменного тока, т. е. реактивна . Поэтому индуктивное сопротивление катушки называют также реактивным сопротивлением .

Кривая нарастания тока при замыкании цепи, содержащей индуктивность
Кривая нарастания тока при замыкании цепи, содержащей индуктивность — переходные процессы в электрических цепях.

Источник

Читайте также:  Как найти силу тока в цепи физика 8 класс