Меню

Как рассчитать амперметр по постоянному току по сопротивлению

Расчет простых цепей при постоянных токах и напряжениях. Расчет сложных цепей с помощью прямого применения законов Кирхгофа (главы 1-2 учебного пособия «Теоретические основы электротехники в примерах и задачах») , страница 2

Окончательно для токов , получим (рис. 1.8)

5. Ток определим из уравнения, составленного по первому закону Кирхгофа для узла 1 (рис.1.6)

6. Из уравнений, составленных по первому закону Кирхгофа, для узлов 3 и 2 (рис. 1.6) определим токи и :

Определить показание амперметра, установленного в ветви с источником ЭДС (рис. 1.12), если , , , , , , . Внутренним сопротивлением амперметра можно пренебречь ( ).

Рис. 1.12. Рис. 1.13.

1. Методом свертывания цепи преобразуем схему рис. 1.12 к виду, приведенному на рис. 1.13.

Заменим треугольник сопротивлений, подключенный к точкам 1, 2 и 3 (рис. 1.12), эквивалентной звездой с вершинами 1, 2 и 3 (рис. 1.14).

Величины сопротивлений эквивалентной звезды:

Рис. 1.14. Рис. 1.15.

Сопротивление соединено последовательно с , а сопротивление последовательно с (рис. 1.14). Участок цепи с сопротивлениями и включен параллельно участку с сопротивлениями и (рис. 1.14).

Общее сопротивление обоих участков схемы (рис. 1.15) равно:

Сопротивления , , , (рис. 1.15) включены последовательно. Эквивалентное сопротивление всей цепи (рис. 1.13)

2. Показание амперметра соответствует току (рис. 1.13):

Определить величину источника тока, установленного на входе цепи (рис. 1.16), если показание амперметра в разветвленной части схемы составляет . Сопротивления резисторов равны .

Внутреннее сопротивление источника . Внутренним сопротивлением амперметра можно пренебречь ( ).

Рис. 1.16. Рис. 1.17.

1. Пользуясь методом свертывания, приведем участок цепи (рис. 1.16) относительно узлов 3 и 4 к виду, представленному на рис. 1.17.

Общее сопротивление участка цепи

2. Напряжение между узлами 1 и 2 (рис. 1.17)

3. Ток в ветви с сопротивлением (рис. 1.17)

4. Ток источника на входе цепи определим на основании первого закона Кирхгофа:

В схеме (рис. 1.18) найти токи, применив метод пропорционального пересчета, если , , , , , .

Рис. 1.18. Рис. 1.19.

1. В рассматриваемой цепи зададим ток в одной из удаленных от источника ветвей, например, с сопротивлением , равным и определим некоторое напряжение источника на входе цепи , при котором (рис. 1.19)

2. Определим токи (рис. 1.19)

Ток определим как сумму токов и

Напряжение на сопротивлении

Напряжение между узловыми точками 3 и 4

Ток определим как

Ток на входе цепи определим как сумму токов и :

Напряжение на сопротивлении

Напряжение на входе цепи

3. Определим коэффициент пересчета как отношение напряжения на входе цепи, заданного по условию задачи , к найденному при расчетах :

4. Действительные токи в ветвях цепи найдем как

Задачи для самостоятельного решения

Задача 1.6. Определить эквивалентное сопротивление электрической цепи, представленной на рис. 1.20, относительно зажимов 1 и 2, в которой сопротивления равны .

Рис. 1.20. Рис. 1.21.

Задача 1.7. Определить эквивалентное сопротивление цепи (рис.1.21) между входными зажимами 1 и 2 при разомкнутом и замкнутом положениях ключа ( ), если , , , , , .

О т в е т: при разомкнутом ключе ; при замкнутом ключе .

Задача 1.8. Определить токи в ветвях цепи (рис. 1.22), если задано , , , , , .

Задача 1.9. В схеме (рис. 1.23) определить токи во всех ветвях, если , , , , , .

Рис. 1.22. Рис. 1.23.

Задача 1.10. Определить токи во всех ветвях схемы (рис. 1.24), если задано , , , .

Задача 1.11. В электрической схеме рис. 1.25 определить токи во всех ветвях, если задано , , , , .

Рис. 1.24. Рис. 1.25.

Задача 1.12. Определить показание амперметра для схемы рис. 1.26, если , , , , . Принять .

Задача 1.13. Определить показание амперметра для схемы рис. 1.27, если , , , , . Принять .

Рис. 1.26. Рис. 1.27.

Задача 1.10. Показание амперметра (рис. 1.28), установленного в разветвленной части схемы, составляет . Найти величину источника тока , если , , , . Сопротивление источника считать , амперметра .

Задача 1.11. Найти все токи в ветвях цепи, схема которой приведена на рис. 1.29, если , , , , . Принять сопротивление источника .

Рис. 1.28. Рис. 1.29.

Задача 1.12. Определить показание амперметра в схеме (рис. 1.30), если , , , , . Принять .

Задача 1.13. Методом пропорционального пересчета найти все токи в схеме рис. 1.31, если , , , , , , , . В расчетах принять ток в сопротивлении равным .

Рис. 1.30. Рис. 1.31.

2. РАСЧЕТ СЛОЖНЫХ ЦЕПЕЙ С ПОМОЩЬЮ ПРЯМОГО ПРИМЕНЕНИЯ ЗАКОНОВ КИРХГОФА

Законы Кирхгофа лежат в основе расчета сложных цепей содержащих несколько источников энергии. С помощью двух законов Кирхгофа устанавливаются соотношения между токами и ЭДС в ветвях электрической цепи и напряжениями на элементах цепи.

Пользуясь законами Кирхгофа, рассчитать токи в ветвях схемы рис.2.1, если , , , , , , .

1. Цепь рис. 2.1 содержит три ветви ( ), два узла ( ). Цепь питает два источника ЭДС и . Источники тока в цепи отсутствуют ( ).

Читайте также:  Как определить токи трансформатора формулы

Выберем произвольно положительные направления токов в ветвях схемы и обозначим их как указано на рис. 2.2.

Рис. 2.1. Рис. 2.2.

2. Определим достаточное количество уравнений для расчета цепи по законам Кирхгофа.

По первому закону Кирхгофа:

По второму закону Кирхгофа:

Достаточное количество уравнений равно трем, что соответствует количеству неизвестных токов, обозначенных в ветвях схемы как , и (рис. 2.2).

3. Составим систему уравнений по первому и второму закону Кирхгофа. Одно уравнение по первому закону Кирхгофа, например, для узла 1 и два уравнения по второму закону Кирхгофа для двух независимых контуров. Положительные направления обхода контуров соответствуют направлениям, указанным на рис. 2.2.

4. После подстановки числовых значений имеем:

5. Решение системы получим с помощью определителей:

где – главный определитель системы, , , – алгебраические дополнения.

Главный определитель системы равен:

Дополнительные определители равны:

6. Токи в ветвях:

Рассчитать с использованием законов Кирхгофа токи в ветвях схемы изображенной на рис. 2.3, если известны , , , , , . Выполнить правильность расчета цепи путем проверки баланса мощностей.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Расчет сопротивления шунта амперметра

Часто при электротехнических измерениях необходимо узнать величину тока протекающего в цепи. Для этого используется амперметр. Как и другие измерительные приборы, амперметр имеет свой максимальный предел измерения, в тех случаях, когда его недостаточно, применяют шунтирование амперметра.

Шунт — это сопротивление, которое подключается параллельно к зажимам амперметра, с целью увеличения диапазона измерений. Добавление шунта параллельно амперметру вызывает разделение тока I, который протекает через данную цепь, на две составляющие – Iа и Iш.

Читайте также:  Тербелмелі контурдагы ток куши

Схема подключения шунта к амперметру

По закону Кирхгофа известно, что сумма токов сходящихся в узле равна нулю, а значит, ток I представляет собой сумму токов Iа и Iш. Чем меньше сопротивление шунта Rш , тем ток Iш больше, а значит ток Iа, который протекает через амперметр — меньше. Зная, как соотносятся сопротивление амперметра Ra и шунта Rш, можно узнать величину измеряемого тока I или напротив, зная ток I, можно рассчитать необходимое сопротивление шунта Rш.

Формула для расчета сопротивления шунта:

Формула для расчета сопротивления шунта

Для увеличения диапазона измерения амперметра в n раз, формула для шунта:

Формула 2 для расчета сопротивления шунта

Пример 1

Рассчитайте сопротивление шунта, который увеличит диапазон электромагнитного амперметра до 10 А, если известно, что амперметр имеет внутреннее сопротивление 5 Ом и измеряет ток до 1 А.

Измеряемый ток в 10 А, делится на два тока Iа = 1 А, и Iш, который равен:

Расчет сопротивления шунта - формула 3

Отсюда измеряемый ток должен разделиться в соотношении:

Расчет сопротивления шунта - формула 4

Так как по закону Ома сопротивление обратно пропорционально току, то

Расчет сопротивления шунта - формула 5

Расчет сопротивления шунта - формула 6

Пример 2

Определите, какое должно быть сопротивление шунта, для того, чтобы увеличить предел измерения амперметра в 5 раз, если известно, что внутреннее сопротивление амперметра 2 Ом.

Сопротивление шунта рассчитывается по следующей формуле:

Расчет сопротивления шунта - формула 7

Пример 3

Амперметр дает полное отклонение стрелки при токе в 3 А. Необходимо измерить с помощью него ток в 150 А. Определите сопротивление шунта, если известно, что внутреннее сопротивление амперметра 1 Ом.

Для проведения измерения необходимо увеличить ток в n раз:

Расчет сопротивления шунта - формула 8

По уже знакомой формуле рассчитаем сопротивление шунта:

Источник

Расчет силы тока по мощности, напряжению, сопротивлению

Бесплатный калькулятор расчета силы тока по мощности и напряжению/сопротивлению – рассчитайте силу тока в однофазной или трехфазной сети в ОДИН КЛИК!

Если вы хотите узнать как рассчитать силу тока в цепи по мощности, напряжению или сопротивлению, то предлагаем воспользоваться данным онлайн-калькулятором. Программа выполняет расчет для сетей постоянного и переменного тока (однофазные 220 В, трехфазные 380 В) по закону Ома. Рекомендуем без необходимости не изменять значение коэффициента мощности (cos φ) и оставлять равным 0.95. Знание величины силы тока позволяет подобрать оптимальный материал и диаметр кабеля, установить надежные предохранители и автоматические выключатели, которые способны защитить квартиру от возможных перегрузок. Нажмите на кнопку, чтобы получить результат.

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Формулы расчета силы тока

Электрический ток — это направленное упорядоченное движение заряженных частиц.
Сила тока (I) — это, количество тока, прошедшего за единицу времени сквозь поперечное сечение проводника. Международная единица измерения — Ампер (А / A).

— Сила тока через мощность и напряжение (постоянный ток): I = P / U
— Сила тока через мощность и напряжение (переменный ток однофазный): I = P / (U × cosφ)
— Сила тока через мощность и напряжение (переменный ток трехфазный): I = P / (U × cosφ × √3)
— Сила тока через мощность и сопротивление: I = √(P / R)
— Сила тока через напряжение и сопротивление: I = U / R

  • P – мощность, Вт;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Коэффициент мощности cos φ – относительная скалярная величина, которая характеризует насколько эффективно расходуется электрическая энергия. У бытовых приборов данный коэффициент практически всегда находится в диапазоне от 0.90 до 1.00.

Источник



Как рассчитать амперметр по постоянному току по сопротивлению

Для контроля величины тока применяется прибор называемый амперметром. Из практики могу сказать, что не всегда под рукой оказывается прибор с нужным диапазоном измерения. Как правило, диапазон либо мал, либо велик. Здесь мы разберем, как изменить рабочий диапазон амперметра. Амперметры на большие токи от 20 ампер и выше имеют в своём составе внешний шунтирующий резистор. Он подключается параллельно амперметру. На рисунке 1 приведена схема включения амперметра с шунтирующем резистором.

shunting_resistor_00.jpg

В качестве примера в экспериментах будет использован амперметр M367 со шкалой до 150 ампер, соответственно при таком токе амперметр используется с внешним шунтирующим сопротивлением.

shunting_resistor_02.jpg shunting_resistor_03.jpg

Если убрать шунтирующий резистор, то амперметр станет миллиамперметром с максимальным током отклонения стрелки 30 мА (далее будет пояснение, откуда это значение взялось). Таким образом, используя разные шунтирующие сопротивления можно сделать амперметр практически с любым диапазоном измерения.

Рассмотрим подробнее имеющийся измерительный прибор. Из его маркировок можно узнать следующее. Маркировка в верхнем правом углу (цифра 1 на изображении). Модель измерительной головки М367. Сделан на краснодарском заводе измерительных приборов (это можно определить по ромбику с буковками ЗИП). Год выпуска 1973. Серийный номер 165266.

Читайте также:  Инструктаж по оказанию первой помощи при поражении электрическим током

Маркировка в нижнем левом углу (цифра 2 на изображении). Слева на право. Прибор предназначен для измерения постоянного тока. Магнитоэлектрический прибор с подвижной рамкой. Напряжение между корпусом и мангнитоэлектрической системой не должно превышать 2 КВ. Рабочее положение шкалы прибора вертикальное. Класс точности прибора в процентах 1,5. ГОСТ8711-60. Измерительная головка рассчитана на измерения силы тока до 150 ампер с использованием внешнего шунтирующего сопротивления рассчитанного на падение на нём напряжения номиналом в 75 милливольт.

shunting_resistor_04.jpg

Итак, это максимум что удалось узнать из маркировки амперметра. Теперь перейдём к расчетам. Сопротивление шунта определяется по формуле:

shunting_resistor_08.jpg

где :
Rш — сопротивление шунтирующего резистора;
Rприб — внутреннее сопротивление амперметра;
Iприб — максимально измеримый ток амперметром без шунта;
Iраб — максимально измеримый ток с шунтом (требуемое значение)

Если все данные для расчёта имеются, то можно приступать к самому расчёту. Для упрощения можно воспользоваться онлайн калькулятором ниже:

В нашем случае из формулы видно, что данных не достаточно. Нам известен только максимальный измеряемый ток с шунтом. То есть, то, что мы хотим видеть в случае максимального отклонения стрелки амперметра.

Из маркировки прибора удалось узнать падение напряжения на шунтирующем сопротивлении. И это уже что-то. Из этого параметра ясно, что при подаче на прибор напряжения номиналом 0,075 вольт (75мВ) стрелка отклониться до крайнего значения на шкале 150 ампер. Таким образом, получается, что максимальное отклонение стрелки прибора достигается подачей напряжения 75 мВ. Вроде как данных для расчета по-прежнему не хватает. Необходимо узнать сопротивление прибора и ток, при котором стрелка откланяется до максимального значения без шунтирующего резистора. Далее предлагаю несколько способов для определения нужных параметров и решения задачи.

Способ первый. При помощи блока питания выясняем максимальное отклонение стрелки по току и напряжению без шунта. В нашем случае напряжение уже известно. Его замерять не будем. Измеряем ток и отклонение стрелки. Так как блока питания под рукой не оказалось, то пришлось воспользоваться очень разряженой батарейкой типа АА. Ток, который батарейка могла ещё отдать, составил 12 мА (по показаниям мультиметра). При этом токе стрелка прибора отклонилась до значения на циферблате 60А. Далее определяем цену деления и рассчитываем полное (максимальное) отклонение стрелки. Поскольку шкала циферблата амперметра размечена равномерно, то не составит труда узнать (рассчитать) ток максимального отклонения стрелки.

shunting_resistor_05.jpg

Цена деления прибора рассчитывается по формуле:

shunting_resistor_09.jpg

где:
х1 – меньшее значение,
х2 – большее значение,
n – количество промежутков (отрезков) между значениями

Для упрощения можно воспользоваться онлайн калькулятором ниже:

Расчёт показал, что цена деления прибора штатной шкалы составляет 5 ампер. При токе 12 мА стрелка отклонялась до показания 60А. Таким образом, цена одного деления без шунта составляет 1 мА. Всего делений 30, соответственно максимальное отклонение стрелки до значения 150А без шунта составляет 30 мА.

Далее при помощи закона Ома находим сопротивление прибора. 0,075/0,03=2,5 Ом

Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(10-0,03)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(5-0,03)=0,01509 Ом для шкалы 5А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(3-0,03)=0,02525 Ом для шкалы 3А мах

Для упрощения можно воспользоваться онлайн калькулятором расчёта сопротивления шунтирующего сопротивления выше.

Второй вариант. При помощи прецизионного мультиметра замеряем сопротивление амперметра и далее при помощи закона Ома (зная напряжение максимального отклонения стрелки) находим ток максимального отклонения стрелки. Измерения выполнялись прецизионными мультиметрами Mastech MS8218 и Uni-t UT71E. При измерении сопротивления амперметра значение составило 2,50-2,52 Ом прибором UT71E и 2,52-2,53 прибором MS8218.

shunting_resistor_06.jpg

shunting_resistor_07.jpg

Формула для расчёта тока отклонения стрелки до максимального значения:

shunting_resistor_10.jpg

Для упрощения вычислений максимального тока отклонения стрелки амперметра можно воспользоваться калькулятором ниже:

Далее, как и в первом варианте выполняем расчёт сопротивления шунтирующего резистора (калькулятор выше). Для расчёта было принято среднее показание измеренного сопротивления амперметра двумя мультиметрами Rприб = 2,52Ом

Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(10-0,02976)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(5-0,02976)=0,01508 Ом для шкалы 5А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(3-0,02976)=0,02524 Ом для шкалы 3А мах

Если сравнить расчёты двух методик между собой, то получились совпадение данных до четвёртого знака после запятой, а в некоторых случаях даже до пяти знаков.

О тонкостях изготовления шунтирующего сопротивления расскажу в следующей статье: Как сделать шунт (шунтирующий резистор) для амперметра. Самый простой метод подбора.

Источник