Меню

Как регулировать пусковой ток

Пусковой ток

При работе с различными электротехническими устройствами довольно часто возникает вопрос, что такое пусковой ток. В самом простом варианте ответа это будет такой ток, который потребен при запуске электродвигателя или другого устройства. Его значение может в несколько раз превышать номинальное, требующееся в нормальном устойчивом режиме работы. Таким образом, для того чтобы раскрутить ротор, электродвигатель должен приложить гораздо больше энергии по сравнению с работой при постоянном числе оборотов. Снизить пусковые токи можно с помощью систем гашения и устройств плавного пуска.

Пусковые токи электродвигателей

Пусковой ток

В каждом приборе, устройстве или механизме возникают процессы, называемые пусковыми. Это особенно заметно при начале движения, когда необходимо тронуться с места. В этот момент для первоначального толчка требуется значительно больше усилий, чем при дальнейшей работе данного механизма.

Точно такие же явления затрагивают и электрические устройства – электродвигатели, электромагниты, лампы и другие. Наличие пусковых процессов в каждом из них зависят от того, в каком состоянии находятся рабочие элементы. Например, нить накаливания обычной лампочки в холодном состоянии обладает сопротивлением, значительно меньшим, чем при нагревании в рабочем режиме до 1000 С. То есть, у лампы, мощностью 100 Вт сопротивление нити во время работы составит около 490 Ом, а в выключенном состоянии этот показатель снижается до 50 Ом. Поэтому при высоком пусковом токе лампочки иногда перегорают. От всеобщего перегорания их спасает сопротивление, возрастающее при нагревании. Постепенно оно достигает постоянного значения и способствует ограничению рабочего тока до нужной величины.

Влияние пусковых токов в полной мере затрагивает все виды электродвигателей, широко применяющихся во многих областях. Для того чтобы правильно эксплуатировать электроприводы нужно знать их пусковые характеристики. Существует два основных параметра, оказывающих влияние на пусковой ток. Скольжение является связующим звеном между частотой вращения ротора и скоростью вращения электромагнитного поля. Снижение скольжения происходит от 1 до минимума по мере набора скорости. Пусковой момент является вторым параметром, определяющим степень механической нагрузки на валу. Эта нагрузка имеет максимальное значение в момент пуска и становится номинальной после того, как произошел полный разгон механизма.

Следует учитывать особенности асинхронных электродвигателей, которые при пуске становятся эквивалентны трансформатору с короткозамкнутой вторичной обмоткой. Она обладает совсем небольшим сопротивлением, поэтому величина пускового тока при скачке может достичь многократного превышения по сравнению с номиналом. В процессе дальнейшей подачи тока в обмотки, сердечник ротора начинает по нарастающей насыщаться магнитным полем. Возникает ЭДС самоиндукции, под действием которой начинает расти индуктивное сопротивление цепи. С началом вращения ротора происходит снижение коэффициента скольжения, то есть наступает фаза разгона двигателя. При росте сопротивления пусковой ток снижается до нормативных показателей.

В процессе эксплуатации может возникнуть проблема, связанная с увеличенными пусковыми токами. Причиной их возникновения, чаще всего, становится перегрев электродвигателей, перегруженные электрические сети в момент пуска, а также ударные механические нагрузки в подключенных устройствах и механизмах, таких как редукторы и другие. Для решения этой проблемы предусмотрены специальные приборы, представленные частотными преобразователями и устройствами плавного пуска. Они выбираются с учетом особенностей эксплуатации того или иного электродвигателя. Например, устройства плавного пуска используются в основном для агрегатов, соединенных с вентиляторами. С их помощью достигается ограничение пускового тока до двух номиналов. Это вполне нормальный показатель, поскольку во время обычного пуска ток превышает номинальное значение в 5-10 раз. Ограничение достигается за счет измененного напряжения в обмотках.

Обычные двигатели переменного тока получили широкое распространение в промышленном производстве, благодаря очень простой конструкции и низкой стоимости. Их серьезным недостатком считается тяжелый запуск, который существенно облегчается частотными преобразователями. Наиболее ценным качеством этих устройств является способность к поддержке пускового тока в течение одной минуты и более. Самые современные приборы позволяют не только регулировать пуск, но и оптимизировать его по заранее установленным эксплуатационным характеристикам.

Пусковой ток аккумуляторной батареи

Аккумулятор не зря считается одним из важных элементов автомобиля. Его основная функция заключается в подаче напряжения на имеющееся электрооборудование. В основном это стартер, автомагнитола, освещение и другие устройства. Для того чтобы успешно решать эту задачу, в аккумуляторе должно происходить не только накопление, но и сохранение заряда в течение длительного времени.

Одним из основных параметров батареи является пусковой ток. Данная величина соответствует параметрам тока, который протекает в стартере в момент его пуска. Пусковой ток непосредственно связан с режимом работы автомобиля. Если транспортное средство эксплуатируется очень часто, особенно в холодных условиях, в этом случае батарея должна иметь большой пусковой ток. Его номинальный параметр обычно находится в соответствии с мощностью источника питания, выдаваемой в течение 30 секунд при температуре минус 18 С. Он появляется в тот момент, когда ключ поворачивается в замке зажигания и начинает работать стартер. Измерение токового значения производится в амперах.

Читайте также:  Тема урока решение задач по теме работа электрического тока

Пусковые токи могут быть совершенно разными у аккумуляторов, одинаковых по своему внешнему виду и основным характеристикам. На этот фактор существенное влияние оказывают физические свойства материалов для изготовления и конструктивные особенности каждого изделия. Например, возрастание тока может наблюдаться, если свинцовые пластины становятся пористыми, повышается их количество, используется ортофосфорная кислота. Завышенная величина тока не оказывает негативного влияния на оборудование, она лишь способствует повышению надежности пуска.

Плавный пуск электродвигателя схема

Соединение звездой и треугольником обмоток электродвигателя

Частотные преобразователи: принцип работы

Устройство синхронного двигателя

Асинхронный двигатель с короткозамкнутым ротором схема

Источник

Понятие пускового тока и его понижение до номинала при помощи преобразователей частоты

Понятие пускового тока и его понижение до номинала при помощи преобразователей частоты

Пусковой ток возникает при начале вращения двигателя и до достижения номинального скольжения двигателя. Под скольжением понимаем относительную разность между вращением электромагнитного поля и частотой вращения ротора и определяется нагрузкой на валу двигателя. Пока ротор двигателя не начал вращение, скольжение равно единице, момент на валу максимален, двигатель представляет собой трансформатор с закороченной вторичной обмоткой. При подаче напряжения в обмотках статора электродвигателя возникает вращающиеся магнитное поле, ротор в это время не подвижен, возникает пусковой ток определяемый коэффициентом трансформации между обмотками статора и ротора. С началом вращения скольжение электродвигателя начинает уменьшаться, вместе с ним уменьшаться пусковой момент, при достижении скольжения номинального значения – пусковой ток уменьшается до значения определяемого моментом на валу электродвигателя, но не более номинального значения.

Устройство плавного пуска регулирует величину действующего напряжения поданного на обмотки электродвигателя, т.е. в начальный момент пуска оно ограничивает момент и пусковой ток пропорционально квадрату поданного напряжения, пусковой ток полученный с использование современных устройств плавного пуска огранивается полутора-двумя номинальными токами для насосно-вентиляторной нагрузки, и 3-4 номиналами против 10 номиналов для пуска приводов с редукторами.

Частотные преобразователи в начальный момент пуска аналогичны устройствам плавного пуска, так, как при нулевой начальной частоте первичный пусковой ток определяется только амплитудой поданного напряжения. Но при дальнейшем разгоне, выходная амплитудно-частотная характеристика частотного преобразователя, при правильной настройке его на двигатель или в режиме векторного управления, обеспечивают запуск при скольжении близком к номинальному, что обеспечивает запуск электродвигателя на токах близких к номинальному току электродвигателя. Вышесказанное действительно при оптимальном выборе времени разгона и амплитудно –временной характеристике для устройства плавного пуска и амплитудно-частотной характеристике для частотного преобразователя. При наличии технологического процесса требующего отклонения от оптимальных характеристик, например, требуется малое время разгона или повышенный пусковой момент, пусковые токи отличаются в большую сторону, но являются оптимальными для данных условий. Поэтому для различных нагрузок производители устройств плавного пуска и частотных преобразователей выпускают особые серии оборудования.

Для устройств плавного пуска часто составляют таблицы соответствия мощностей оборудования мощностям приводов в зависимости от их типов. Механические характеристики большинства насосов и вентиляторов примерно одинаковые, и современное устройство плавного пуска запустит этот электропривод с пусковым током полтора-два номинала, а вот конвейер потребует три-четыре. Поэтому можно использовать устройства плавного пуска различной мощности.

Преобразователи частоты выпускаются всеми производители обособленными сериями, как правило они делятся на насосную (вентиляторную) и общепромышленную серию. Если заглянуть в характеристики преобразователей этих серий, то увидим что номинальные рабочие токи у них одинаковые, а перегрузочная способность по превышению номинального номинального тока разная. Частотные преобразователи насосной серии обычно имеют перегрузочную способность 120% номинального тока в течении 30-40 скунд, а вот частотные преобразователи общепромышленной серии имеют 150-200% номинального тока в течении минуты и более. Частотные преобразователи общепромышленной серии способны выдерживать большую перегрузку и работать практически с любым электроприводом. Частотные преобразователи насосной серии часто имеют преднастроенные характеристики для работы на вентиляторную нагрузку, имеют ограниченный функционал логического программирования и управления, но обязательно имеют ПИД-регулятор. Общепромышленные частотные преобразователи имеют возможность настраивать рабочие характеристики на любые типы приводов (включая и насосы и вентиляторы, более развитые функции дискретных входов , многие производители в топовых линейках общепромышленных частотных преобразователей изначально закладывают установку дополнительных плат расширения, например для работы с различными типами энкодеров, плат управления натяжением, плат управления группой насосов. Приобретая частотный преобразователь общепромышленной серии нет никакой необходимости перезакладываться и брать его большей мощности, он запустит любой электродвигатель и сможет управлять им. Для насосной(вентиляторной) серии иногда надо учитывать тип насосов, особенности гидросистемы. например погружной насос установленный на несколько сотен метров под землёй, может иметь механическую характеристику отличную от вентиляторной и потребовать большего тока при запуске, здесь может потребоваться общепромышленный преобразователь или преобразователь насосной серии следующего номинала. Другой пример — винтовой и поршневой компрессор. у первого вентиляторная механическая характеристика, и для него достаточно насосного частотного преобразователя или простого устройства плавного пуска, поршневой компрессор имеет повышенный начальный момент, пусковой ток будет выше и при частотном преобразователе и при плавном пуске, нужны особые настройки и повышенная перегрузочная способность.

Читайте также:  Циркуляция вектора напряженности в замкнутом контуре с током

24.02.21 STIHL Моющие и очистительные устройства Чистый результат

Источник

Уменьшение пусковых токов с помощью преобразователей частоты

В момент пуска любого электродвигателя значение силы тока в обмотках ротора и статора возрастает скачкообразно и в большинстве случаев существенно превышает номинальное значение. Обмотки и контакты сильно перегреваются, возрастает доля тепловых и электромагнитных потерь, и, как следствие, во время пуска КПД двигателя существенно снижается. Если двигатель входит в состав агрегата, который необходимо часто включать и выключать, то серьезно повышается расход электроэнергии.

Помимо того, нагрев элементов электрической схемы приводит к их быстрому износу. В результате рабочие характеристики двигателя и привода серьезно отклоняются от расчетных, резко сокращается срок службы отдельных узлов привода, растет число сбоев и аварий. С экономической точки зрения увеличиваются расходы, связанные с эксплуатацией, обслуживанием, ремонтом оборудования, а также неявные потери от простоев в связи с необходимостью проведения профилактических и ремонтных работ.

Проблему уменьшения пусковых токов в настоящее время чаще всего решают включением в структурную схему электрического привода одного из следующих узлов:

  • устройства плавного пуска (УПП);
  • преобразователя частоты (ПЧ).

Устройство плавного пуска обеспечивает плавную регулировку напряжения питания, поданного на вход электродвигателя. В итоге ограничивается вращательный момент на валу привода и пусковые токи в обмотках. Момент и ток зависят примерно пропорционально квадрату поданного напряжения. Для систем с невысокими механическими нагрузками на валу (например, вентиляторов и насосов) удается таким образом ограничить значения пусковых токов полутора-двумя номинальными значениями. Для силовых приводов и систем с редукторами значения пусковых токов составляют 3-4 от номинальных.

Преобразователь частоты в начальный период пуска ведет себя почти так же, как УПП. При нулевой и близкой к ней частоте вращения вала пусковой ток пропорционален амплитуде напряжения, поданного с преобразователя на вход двигателя. Однако, при дальнейшем разгоне, амплитудно-частотная характеристика системы ПЧ-двигатель существенно отличается от других методов управления пуском. Конкретная форма этой кривой может сильно меняться в зависимости от согласования настроек двигателя и преобразователя между собой. Кроме того, существуют частотные преобразователи, поддерживающие векторный метод управления режимом работы двигателя. Если удается четко согласовать параметры электродвигателя и настройки преобразователя, то значения пусковых токов в обмотках двигателя могут вообще не превышать номинальные значения – двигатель просто плавно набирает обороты до выхода на штатный режим.

Если по тем или иным причинам процесс выхода привода на номинальную скорость вращения требуется сократить, то значения пусковых токов несколько возрастут, но в любом случае они будут лежать в контролируемых пределах.

В итоге применение частотных преобразователей позволяет существенно ограничить величину пусковых токов, устраняя большинство связанных с ними проблем и неприятностей. Кроме того, частотный метод регулировки режимов работы электроприводов имеет множество дополнительных преимуществ. Вот только некоторые из них:

  • возможность значительно снизить расход электроэнергии;
  • наличие множества защит от нештатных и аварийных ситуаций;
  • широкие возможности по автоматизации работы привода в зависимости от значений тех или иных параметров;
  • возможность удобного удаленного контроля и обслуживания.

Неудивительно, что использование преобразователей частоты в составе систем на основе синхронных и асинхронных двигателей находит все новых и новых сторонников – и среди профессионалов на крупных предприятиях, и среди любителей для частных хозяйств. Существенное снижение стоимости преобразователей и расширение их функциональных возможностей благодаря новейшим технологическим разработкам только ускоряют этот процесс и делают преобразователи частоты почти таким же обычным устройством, как автомобиль или банкомат.

Источник



Устройство и схема плавного пуска асинхронного электродвигателя

Плавный пуск асинхронного электродвигателя необходим для продления его срока эксплуатации и минимизации работ, связанных с устранением возможных поломок.

Необходимость плавного запуска

Для того чтобы обеспечить необходимую пусковую мощность, следует увеличить номинальную мощность питающей сети. По этой причине оборудование может значительно подорожать. Причем очевиден и перерасход электроэнергии.

Одним из недостатков асинхронного электродвигателя является большой ток пуска. Он превышает номинальный в 5 — 10 раз. Ток с большими бросками может также возникнуть при торможении двигателя или при его реверсе. Это ведет к нагреву обмоток статора, а также слишком больших электродинамических усилий в частях статора и ротора.

Если вследствие возникшей аварийной ситуации двигатель перегрелся и вышел из строя всегда рассматривается возможность его ремонта. Но после перегрева параметры трансформаторной стали изменяются. Отремонтированный электродвигатель обладает номинальной мощностью на 30% меньшей, чем у него была ранее.

Читайте также:  Как определяется магнитная индукция в центре кругового проводника с током

Для того чтобы ток ограничить используют пусковые реакторы, автотрансформаторы, резисторы и устройства плавного пуска двигателей — софт-стартеры.

Прямой запуск

В электросхеме прямого пуска машина непосредственно подключена к сетевому напряжению питания.

Электросхема прямого пуска

На схеме выше показана характеристика пускового тока при прямом старте. При таком подключении повышение температуры в обмотках машины минимальное.

Подключение осуществляется с помощью контактора (пускателя). В схеме применяется реле перегрузки для защиты электродвигателя. Однако такой метод применим, когда нет ограничений по току.

Во время старта машины пусковой момент ограничивают, чтобы сгладить резкий рывок, вследствие которого могут выйти из строя механические части привода и подсоединенные механизмы.

По этой причине производители крупных электродвигателей запрещают их прямой пуск.

Подключение «звезда-треугольник»

Одним из основных способов запуска машины является электросхема «звезда-треугольник». Такой старт возможен, для двигателей, у которых все начала и концы обмоток выведены.

Управление стартом по этой схеме состоит из трех контакторов, реле перегрузки и реле времени, управляющим контакторами.

Схема подключения звезда-треугольник

Первоначально коммутация с сетью происходит по схеме «звезда». Контакторы К1 и К3 замкнуты. Затем, через определенное время, обмотки переключаются автоматически на схему «треугольник». Контакты К3 размыкаются, а контакты К2, наоборот, замыкаются. Реле времени в электросхеме служит для управления их переключением. На нем выставляется время разгона двигателя. При этом пусковые токи существенно снижаются.

Такой способ эффективен, но применяется он не всегда.

Старт через автотрансформатор

Схема подключения через трансформатор

Однако здесь есть и недостаток. В процессе работы машина переключается на сетевое напряжение, что приводит к резкому скачку тока.

Устройства плавного пуска

В условиях плавного старта асинхронной машины с использованием в электросхеме силового блока тиристоров подается ток несинусоидальной формы. Ускорение и торможение происходят за короткий промежуток времени. Многие собирают устройство плавного пуска своими руками. Это намного снижает его цену.

Схема устройства плавного пуска

В этой схеме тиристоры подключены в цепи параллельно по встречному принципу. К общему электроду поступает управляющее напряжение. Такое устройство принято называть симистором. В случае трехфазной системы он присутствует в каждом проводе.

Для того чтобы отвести тепло, выделяемое при нагревании полупроводников, применяются радиаторы. Габариты, вес и цена устройств при этом возрастает.

Существует и другой вариант для решения проблемы нагрева. В схему подключают шунтирующий контакт. После старта контакты замыкаются. В этом случае возникает параллельная цепь, сопротивление которой меньше сопротивления полупроводников. А ток, как известно, выбирает путь наименьшего сопротивления. Пока происходит этот процесс, симисторы остывают. Пример такого подключения приведен ниже на рисунке.

Схема устройства плавного пуска с шунтирующим контактом

Типы устройств плавного старта

Их можно разделить на четыре категории.

  • Регулирующие пусковой момент. Принцип действия их таков, что они осуществляют контроль одной фазы. Но при контроле плавного старта не снижают пусковые токи. Поэтому спектр применения их ограничен.
  • Регулирующие напряжение с отсутствием сигнала обратной связи. Работают они по заданной программе и являются одними из самых распространенных в использовании.
  • Регулирующие напряжение с сигналом обратной связи. Их принцип действия — способность менять напряжение и регулировать величину тока в заданном диапазоне.
  • Регулирующие ток с наличием сигнала обратной связи. Являются самыми современными из всех устройств подобного типа. Обеспечивают наибольшую точность управления.

Софт-стартеры

Софт-стартер

Современные устройства плавного пуска выполнены, на микропроцессорах. И это существенно увеличивает их функциональные возможности по сравнению с аналоговыми. Эти устройства называют софт-стартерами. Они увеличивают срок службы исполнительных механизмов и самих электродвигателей.

С ними старт электродвигателя происходит с постепенным увеличением напряжения. Кроме этого, регулируется время разгона и время его торможения. Для того чтобы пониженное начальное напряжение не могло в электросхеме значительно снизить пусковой момент, его устанавливают в диапазоне 30 — 60% от номинального.

Плавная регулировка напряжения дает возможность плавного ускорения двигателя до номинальной скорости.

Схема подключения софт-стартера

Необходимо отметить, что с применением софт-стартеров уменьшилось количество реле и контакторов в электрической цепи. Само по себе устройство софт-стартеров не является сложным. Они просты в монтаже и эксплуатации. Электросхема подключения показана на рисунке справа.

Однако существует ряд особенностей, которые обязательно следует учитывать при их выборе.

  • Первое — это обязательный учет тока асинхронной машины. Поэтому выбор софт-стартера необходимо осуществлять учитывая полный ток нагрузки, не превышающий тока предельной нагрузки самого устройства,
  • Второе — максимальное число стартов в час. Как правило, оно ограничено софт-стартером. Число запусков в час самой машины не должно превышать этот параметр,
  • Третье — это напряжение самой электрической сети. Оно должно соответствовать паспортному значению устройства. Несоответствие может привести к его поломке.

Источник