Меню

Как снять коэффициент трансформации трансформатора тока

Испытание измерительных трансформаторов — Измерение коэффициента трансформации на всех ответвлениях

Содержание материала

  • Испытание измерительных трансформаторов
  • Нормы приемо-сдаточных испытаний измерительных трансформаторов
  • Проверка полярности выводов или группы соединения обмоток
  • Измерение коэффициента трансформации на всех ответвлениях
  • Испытание повышенным напряжением промышленной частоты

Производится для встроенных трансформаторов тока и трансформаторов, имеющих переключающее устройство (на всех положениях переключателя).

Отклонение найденного значения коэффициента от паспортного должно быть в пределах точности измерения.

Проверка коэффициента трансформации К

встроенных ТТ и ТТ, имеющих внутренние переключающие устройства осуществляется методами измерения токов (рис. 10а) и измерения напряжения (рис. 10б).

Схема проверки полярности выводов ТТ

Схема проверки полярности выводов встроенных ТТ

Рис. 8. Схема проверки полярности выводов ТТ

Рис. 9. Схема проверки полярности выводов встроенных ТТ

При проверке по схеме рис. 10а коэффициент трансформации определяется как отношение значений первичного тока I1, измеренного лабораторным ТТ, ко вторичному току I2, измеренное проверяемым ТТ, т. е.

Значение тока I1, при котором производится измерения, не регламентируется и обычно устанавливается в пределах 0,1 ÷ 0,25Iном. Это необходимо учитывать при выборе нагрузочного и регулирующего устройства. При этом исходят из условия удобства и точности измерений приборами. Для измерения первичного тока можно использовать измерительные клещи Ц-91, а вторичного — ВАФ-85M. При проверке ТТ, имеющих несколько вторичных обмоток, каждая из них должна быть замкнута на прибор или перемычкой. Также не допускается изменять пределы измерения прибора измеряющего вторичный ток без предварительного закорачивания вторичной обмотки ТТ. При проверке встроенных ТТ, поставляемых в корпусе, заполненном маслом, как и при проверке полярности, роль первичной обмотки играет стержень, опущенный через верхнее окно и упираю щийся в дно корпуса.

Проверка по схеме рис. 10б может проводиться у ТТ имеющих вторичную обмотку. В этом случае на вторичную обмотку ТТ подается от регулируемого автотрансформатора напряжение, измеряемое вольтметром Vl. Напряжение на первичной обмотке измеряется вольтметром V2. Коэффициент трансформации определяется

У встроенных ТТ коэффициент трансформации проверяется на всех ответвлениях. В тех случаях, когда заводская маркировка выводов отпаек нарушена для определения последней производят измерение распределения напряжения между выводами по схеме рис. 11. Для этого напряжение 20-50 В подается на любые два вывода. Измеряя напряжение между различными выводами, определяют два вывода, напряжение между которыми наибольшее. Данные выводы есть конечные выводы вторичной обмотки ТТ (выводы И1 и И5 на рис. 11). Далее напряжение подается на определенные конечные выводы и измеряются напряжения между каждым конечным выводом и всеми другими выводами. Полученные результаты анализируют.

Схемы проверки коэффициента трансформации ТТ

Рис. 10. Схемы проверки коэффициента трансформации ТТ:

а) — методом измерения токов (1 — лабораторный ТТ; 2 — испытываемый ТТ);

б) — методом измерения напряжения.

Схема определения выводов встроенных ТТ

Рис. 11. Схема определения выводов встроенных ТТ.

При этом необходимо учесть, что из-за конструктивных особенностей, вызванных необходимостью компенсацией погрешности по току при измерении малых токов, на пряжение на первой ступени (И1-И2) у ТТ такого типа всегда меньше напряжения на последней ступени (И4-И5). Это позволяет отличить выводы И1 и И5.

Измерение сопротивления обмоток постоянному току.

Производится у первичных обмоток трансформаторов тока напряжением 10 кВ и выше, имеющих переключающее устройство, и у связующих обмоток каскадных ТН. Отклонение измеренного значения сопротивления обмотки от паспортного или от сопротивления обмоток других фаз не должно превышать 2 % .

Измерения производятся одним из методов, приведенных испытаниях изоляции электрооборудования повышенным напряжением, обеспечивающих соответствующую точность. Если сравнение производится с заводскими данными, то результаты измерений необходимо привести к 20 °С.

Рекомендуется для проведения измерений использовать малогабаритный мост постоянного тока типа ММВ или комбинированные приборы.

Испытание трансформаторного масла.

Производится у измерительных трансформаторов 35 кВ и выше в соответствии с соответствующими указаниями.

Для измерительных трансформаторов, имеющих повышенное значение тангенса угла диэлектрических потерь изоляции, следует произвести испытание масла по п. 12 табл. 2.14.

У маслонаполненных каскадных измерительных трансформаторов оценка состоя
ния масла в отдельных ступенях производится по нормам, соответствующим номинальному рабочему напряжению ступени (каскада).

Испытание емкостных трансформаторов напряжения типа НДЕ.

Производится согласно инструкции завода-изготовителя.

Проведение периодических проверок, измерений и испытаний измерительных трансформаторов в эксплуатации.

Нормы испытаний измерительных трансформаторов.

Профилактические испытания измерительных трансформаторов проводят при капитальном ремонте (К) и в межремонтный период (М).

К — проводится в сроки, устанавливаемые системой ППР, но не реже 1 раза в 8 лет.

М — проводится в сроки, устанавливаемые системой ППР, но не реже 1 раза в 3 года.

Объем профилактических испытаний, предусмотренный ПЭЭП, включает следующие работы.

1. Измерение сопротивления изоляции:

а) первичных обмоток;

б) вторичных обмоток.

2. Измерение тангенса угла диэлектрических потерь tgδ изоляции обмоток. 3. Испытание повышенным напряжением промышленной частоты:

а) изоляции первичных обмоток;

б) изоляции вторичных обмоток и доступных стяжных болтов.

4. Определение погрешности.

5. Испытание трансформаторного масла.

Измерение сопротивления изоляции.

Производится при М.

а) первичных обмоток.

Производится у трансформаторов напряжением выше 1000 В мегаомметром на напряжение 2500 В. Сопротивление изоляции не нормируется.

б) вторичных обмоток.

Производится мегаомметром на напряжение 500-1000 В.

При оценке состояния вторичных обмоток можно ориентироваться на следующие средние значения сопротивления изоляции исправной обмотки:

— у встроенных ТТ 10 МОм;

— у выносных ТТ 50 МОм.

У ТТ типа ТФН на напряжение 220 кВ при наличии вывода от экрана вторичной обмотки измеряется сопротивление изоляции между экраном и вторичной обмоткой.

Сопротивление изоляции не нормируется, но должно быть не менее 1 МОм вместе с подсоединенными к ним цепями.

О порядке проведения измерений следует руководствоваться указаниями выше.

Измерение тангенса угла диэлектрических потерь tgδ изоляции обмоток.

Производится при М.

Производится у ТН напряжением 35 кВ и выше, у которых оба вывода первичной обмотки рассчитаны на номинальное напряжение, а также у Т1 всех напряжений с основной изоляцией, выполненной из бумаги, бакелита или битуминозных материалов, а также у ТТ серии ТФН и ТФЗН при неудовлетворительных показателях качества залитого в них масла. Следует обращать внимание на характер изменения tgδ и емкости с течением времени.

Максимально допустимые значения тангенса угла диэлектрических потерь ТТ и ТН представлены в табл. 5, 11.6.

Таблица 5. Максимально допустимый tgδ, %, трансформаторов тока при 20°С

Номинальное напряжение, кВ, и вид испытания

Источник

Проверка трансформаторов тока с использованием комплекса РЕТОМ-21

Построение ВАХ трансформаторов тока

Построение вольт-амперной характеристики (ВАХ) является одним из важных этапов проверки трансформаторов тока (ТТ). Вольт-амперная характеристика представляет собой зависимость напряжения одной из вторичных обмоток от намагничивающего тока со стороны этой же или другой обмотки при XX на первичной обмотке ТТ (рисунок 1). Снятие ВАХ производится в пределах от нуля до нескольких кратностей тока начала насыщения магнитопровода трансформатора, при этом напряжение на вторичной обмотке не должно превышать 1800 В во избежание повреждений её изоляции. Снятая характеристика сопоставляется с типовой характеристикой намагничивания или с характеристиками намагничивания исправных ТТ, однотипных с проверяемым, чаще всего с характеристиками ТТ других фаз того же присоединения.

Читайте также:  Как определить наличие блуждающих токов в водопроводных трубах

Основная задача построения ВАХ – определение передаточной характеристики ТТ, которая позволяет вычислить максимально допустимую нагрузку, подключаемую к вторичной обмотке трансформатора. При насыщении магнитопровода ТТ происходит значительное изменение формы сигнала, что может привести к большим погрешностям коэффициента передачи, при этом, чем выше ток, тем больше погрешность. Поэтому при расчете уставок устройств РЗиА, подключаемых к ТТ, необходимо знать, когда трансформатор работает на линейном участке ВАХ (участок a-b Рисунок 1), а когда – на участке, отклонение которого от линейного превышает 10% (участок b-c на рисунке 1) в момент наступления насыщения магнитопровода. На последнем участке ВАХ работа трансформатора не рекомендуется. Таким образом, максимальная нагрузка, подключаемая к вторичной обмотке ТТ, рассчитывается исходя из того, что трансформатор должен работать на линейном участке ВАХ.

Рис. 1. Типовая вольт-амперная характеристика ТТ

При снятии вольт-амперной характеристики может быть выявлено наличие короткозамкнутых витков – одного из наиболее распространенных повреждений ТТ. Данный тип повреждения можно выявить по резкому снижению ВАХ и изменению ее крутизны. Необходимо отметить, что при проведении других проверок, например проверки коэффициента трансформации, это не обнаруживается.

Следует выделить ряд требований, предъявляемых к испытательному оборудованию, применяемому для построения ВАХ трансформаторов:

1. Источник напряжения должен обладать высокой мощностью.

Очевидно, что чем мощнее источник напряжения при снятии характеристики, тем стабильнее синусоидальность напряжения и достовернее результаты.

В приборе РЕТОМ-21 применяется мощный источник напряжения U3, способный выдавать напряжение до 500 В мощностью до 3 кВА. При помощи данного источника можно проверять ТТ на напряжения от 0.4 до 35 кВ с напряжением насыщения магнитопровода до 500 В. Регулирование источника осуществляется при помощи ЛАТРа, выполненного из высококачественных материалов, что позволяет получать минимально возможные искажения формы сигнала.

В 2010 году научно-производственное предприятие «Динамика» начало серийный выпуск блока РЕТ-ВАХ-2000, который пришел на смену ранее производимому блоку РЕТ-ВАХ. Новый блок значительно расширил возможности прибора РЕТОМ-21. С его помощью можно получать напряжения до 2000 В. Мощность, которую способен передавать блок составляет 2 кВА, что позволяет выдавать синусоидальный сигнал на трансформаторы тока на напряжение до 750 кВ. При этом необходимо учитывать, что собственное насыщение внутреннего трансформатора блока РЕТ-ВАХ-2000 происходит при напряжении 2100 В. Это означает, что на всем рабочем диапазоне напряжений блока не происходит искажения выходного сигнала. Данная особенность РЕТ-ВАХ-2000 исключает возникновение дополнительных погрешностей при построении ВАХ.

Пример схемы подключения трансформатора тока к блоку РЕТ-ВАХ-2000 показан на рисунке 2.

Рис. 2. Схема подключения трансформатора тока к комплексу РЕТОМ-21

2. Измеритель должен реагировать на среднеквадратичные значения тока и напряжения.

При снятии ВАХ в области насыщения магнитопровода трансформатора форма сигнала напряжения и тока искажается. Если в таких условиях в качестве измерителя использовать прибор, реагирующий на средневыпрямленное значение входных параметров, вольт-амперная характеристика оказывается завышенной из-за влияния формы сигнала на точность показаний. Приборы, реагирующие на среднеквадратичные значения (True RMS) лишены подобных недостатков.

В приборе РЕТОМ-21 имеется возможность измерения среднеквадратичного (True RMS), средневыпрямленного и амплитудного значений токов и напряжений. Это позволяет строить ВАХ трансформаторов без дополнительных погрешностей, которые могут возникнуть из-за несинусоидальности измеряемого параметра.

В приборе предусмотрена возможность пересчета токов и напряжений с учетом коэффициента трансформации блока РЕТ-ВАХ-2000, что позволяет отображать на экране измерителя реальные напряжение и ток, подаваемые на обмотку трансформатора.

3. Снятие ВАХ не должно влиять на дальнейшую работу ТТ.

Если при снятии ВАХ ТТ прекратить подачу напряжения в точке синусоиды, отличной от нуля (рисунок 3), то на магнитопроводе трансформатора может появиться остаточное намагничивание.

Рис. 3. Некорректное отключение источника напряжения

Наличие остаточного намагничивания (точка 1 на рисунке 4) может привести к некорректной работе трансформатора при последующей подаче тока.

Рис. 4. Петля гистерезиса магнитопровода ТТ

Выдача сигналов в приборе РЕТОМ-21 построена таким образом, что источник напряжения прибора РЕТОМ-21 отключается при переходе через ноль синусоиды входного напряжения (рисунок 5), что в свою очередь исключает возможность появления остаточного намагничивания.

Рис. 5. Корректное отключение источника

Определение однополярных выводов первичной и вторичной обмоток

Прибор РЕТОМ-21 можно использовать для определения полярности обмоток трансформатора. В начале проверки необходимо собрать схему, изображенную на рисунке 6.

Рис. 6. Схема подключения ТТ к прибору РЕТОМ-21 для определения полярности обмоток.

На первичную обмотку трансформатора подается ток с источника I5, вторичная обмотка подключается к встроенному в прибор внешнему амперметру. С помощью фазометра определяется угол между токами первичной и вторичной обмоток. Если угол между двумя этими токами близок к нулю, то выбраны однополярные обмотки, если угол близок к 180 градусам – разнополярные. Для проверки полярности обмоток небольших ТТ также можно использовать вольтамперфазометр РЕТОМЕТР-М2.

Проверка коэффициента трансформации ТТ

В зависимости от класса трансформатора измерение коэффициента трансформации может проводиться либо с использованием выхода U5 (максимальный ток до 750 А) прибора РЕТОМ-21 (рисунок 8)

Рис. 8. Схема подключения ТТ к выходу U5 для проверки коэффициента трансформации

либо с помощью трансформатора тока РЕТ-3000, подключенного к источнику U6 (рисунок 9). В этом случае для измерения первичного тока используется блок РЕТ-ДТ, способный измерять токи до 30 кА.

Рис. 9. Схема подключения ТТ для проверки коэффициента трансформации

Испытание электрической прочности и сопротивления изоляции

Испытание электрической прочности и сопротивления изоляции можно проводить при помощи прибора РЕТОМ-6000, который выдает постоянное и переменное напряжение до 6 кВ.

В данном приборе предусмотрена возможность измерения токов утечки, омического сопротивления изоляции, а также построения ВАХ трансформаторов тока.

Таким образом, комплекс РЕТОМ-21 позволяет проводить полноценную проверку трансформаторов тока, предоставляя ряд преимуществ:

– сокращаются трудозатраты и время проведения проверок;

– возможность проверки любых ТТ;

– возможность проверки ТТ без использования дополнительных вспомогательных приборов;

Источник

Что такое коэффициент трансформации трансформатора?

Трансформатор — электронное устройство, способное менять рабочие величины, измеряется коэффициентом трансформации, k. Это число указывает на изменение, масштабирование какого-либо параметра, например напряжения, тока, сопротивления или мощности.

Читайте также:  Причины поражения работников электрическим током

Что такое коэффициент трансформации

Трансформатор не меняет один параметр в другой, а работает с их величинами. Тем не менее его называют преобразователем. В зависимости от подключения первичной обмотки к источнику питания, меняется назначение прибора.

Что такое коэффициент трансформации трансформатора?

В быту широко распространены эти устройства. Их цель — подать на домашнее устройство такое питание, которое бы соответствовало номинальному значению, указанному в паспорте этого прибора. Например, в сети напряжение равно 220 вольт, аккумулятор телефона заряжается от источника питания в 6 вольт. Поэтому необходимо понизить сетевое напряжение в 220:6 = 36,7 раз, этот показатель называется коэффициент трансформации.

Чтобы точно рассчитать этот показатель, необходимо вспомнить устройство самого трансформатора. В любом таком устройстве имеется сердечник, выполненный из специального сплава, и не менее 2 катушек:

  • первичной;
  • вторичной.

Первичная катушка подключается к источнику питания, вторичная — к нагрузке, их может быть 1 и более. Обмотка — это катушка, состоящая из намотанного на каркас, или без него, электроизоляционного провода. Полный оборот провода называется витком. Первая и вторая катушки устанавливаются на сердечник, с его помощью энергия передается между обмотками.

Что такое коэффициент трансформации трансформатора?

Коэффициент трансформации трансформатора

По специальной формуле определяется число проводов в обмотке, учитываются все особенности используемого сердечника. Поэтому в разных приборах в первичных катушках число витков будет разным, несмотря на то что подключаются к одному и тому же источнику питания. Витки рассчитываются относительно напряжения, если к трансформатору необходимо подключить несколько нагрузок с разным напряжением питания, то количество вторичных обмоток будет соответствовать количеству подключаемых нагрузок.

Зная число витков провода в первичной и вторичной обмотке, можно рассчитать k устройства. Согласно определения из ГОСТ 17596-72 «Коэффициент трансформации — отношение числа витков вторичной обмотки к числу витков первичной или отношение напряжения на вторичной обмотке к напряжению на первичной обмотке в режиме холостого хода без учета падения напряжения на трансформаторе.» Если этот коэффициент k больше 1, то прибор понижающий, если меньше — повышающий. В ГОСТе такого различия нет, поэтому большее число делят на меньшее и k всегда больше 1.

Что такое коэффициент трансформации трансформатора?

В электроснабжении преобразователи помогают снизить потери при передаче электроэнергии. Для этого напряжение, вырабатываемое электростанцией, увеличивается до нескольких сотен тысяч вольт. Затем этими же устройствами напряжение понижается до требуемого значения.

На тяговых подстанциях, обеспечивающих производственный и жилой комплекс электроэнергией, установлены трансформаторы с регулятором напряжения. От вторичной катушки отводятся дополнительные выводы, подключение к которым позволяет менять напряжение в небольшом интервале. Это делается болтовым соединением или рукояткой. В этом случае коэффициент трансформации силового трансформатора указывается в его паспорте.

Что такое коэффициент трансформации трансформатора?

Определение и формула коэффициента трансформации трансформатора

Получается, что коэффициент — это постоянная величина, показывающая масштабирование электрических параметров, она полностью зависит от конструкторских особенностей устройства. Для разных параметров расчет k производится по-разному. Существуют следующие категории трансформаторов:

  • по напряжению;
  • по току;
  • по сопротивлению.

Перед определением коэффициента необходимо замерить напряжение на катушках. ГОСТ указано, что производить такое измерение нужно при холостом ходе. Это когда к преобразователю не подключена нагрузка, показания могут быть отображены на паспортной табличке этого устройства.

Затем показания первичной обмотки делят на показания вторичной, это и будет коэффициентом. При наличии сведений о количестве витков в каждой катушке производят дробление числа витков первичной обмотки на число витков вторичной. При этом расчете пренебрегают активным сопротивлением катушек. Если вторичных обмоток несколько, для каждой находят свой k.

Трансформаторы тока имеют свою особенность, их первичная обмотка включается последовательно нагрузке. Перед вычислением показателя k измеряют ток первичной и вторичной цепи. Производят разложение значения первичного тока на ток вторичной цепи. При наличии паспортных данных о количестве витков допускается произвести вычисление k путем деления числа оборотов провода вторичной обмотки на число оборотов провода первичной.

Что такое коэффициент трансформации трансформатора?

При расчете коэффициента для трансформатора сопротивления, его еще называют согласующим, сначала находят входное и выходное сопротивление. Для этого вычисляют мощность, которая равняется произведению напряжения и тока. Затем мощность делят на квадрат напряжения и получают сопротивление. Дробление входного сопротивления трансформатора и нагрузки по отношению к его первичной цепи и входного сопротивления нагрузки во вторичной цепи даст k прибора.

Что такое коэффициент трансформации трансформатора?

Есть другой способ вычисления. Необходимо найти коэффициент k по напряжению и возвести его в квадрат, результат будет аналогичным.

Разные виды трансформаторов и их коэффициенты

Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:

  • силовой;
  • автотрансформатор;
  • импульсный;
  • сварочный;
  • разделительный;
  • согласующий;
  • пик-трансформатор;
  • сдвоенный дроссель;
  • трансфлюксор;
  • вращающийся;
  • воздушный и масляный;
  • трехфазный.

Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.

Что такое коэффициент трансформации трансформатора?

Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель — это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.

Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.

Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.

Номинальная вторичная нагрузка, В 3 5 10 15 20 30 40 50 60 75 100
Коэффициент, n Номинальная предельная кратность
3000/5 37 31 25 20 17 13 11 9 8 6 5
4000/5 38 32 26 22 20 15 13 11 10 8 6
5000/5 38 29 25 22 20 16 14 12 11 10 8
6000/5 39 28 25 22 20 16 15 13 12 10 8
8000/5 38 21 20 19 18 14 14 13 12 11 9
10000/5 37 16 15 15 14 12 12 12 11 10 9
12000/5 39 20 19 18 18 12 15 14 13 12 11
14000/5 38 15 15 14 14 12 13 12 12 11 10
16000/5 36 15 14 13 13 12 10 10 10 9 9
18000/5 41 16 16 15 15 12 14 14 13 12 12

Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:

  • стержневой;
  • броневой.

Источник



Коэффициент трансформации тока и примеры его расчетов

Все трансформаторы тока обладают рядом характеристик, которые позволяют использовать устройство в той или иной ситуации в зависимости от индивидуальных целей. Выбор конкретного трансформирующего прибора обусловлен в том числе и коэффициентом трансформатора тока. Как рассчитать эту величину и применить ее на практике? Рассмотрим основные виды трансформаторов этого типа.

Базовая классификация устройств трансформаторного тока

Это очень большая группа приборов, которая может делиться на различные группы. Среди самых распространенных:

  1. Классы по способу установки:
  • Монтируемые на поверхности или опорные трансформаторы.
  • Проходные, которые крепятся к шинопроводу и играют роль изолятора.
  • Шинные, прикрепленные к шине, выполняющей функцию первичной обмотки.
  • Встроенные, устанавливаемые устройствах силового типа, а также баковых выключателях.
  • Разъемные, оперативно устанавливающиеся на кабелях и не требующие отключения цепи.

Трансформатор тока: а) — устройство трансформатора тока.

  • Классы по типологическим особенностям изоляции:
  • С изоляцией литого типа, в качестве которой используется эпоксидная смола и специальные изолирующие лаки.
  • Помещенные в корпус из пластмассы.
  • Имеющие высокоэффективную твердую полимерную, бакелитовую или фарфоровую изоляцию.
  • Изолированные вязкими составами, обладающими обволакивающими свойствами.
  • Масляные, изолированные специальными составами.
  • Газонаполненные, использующиеся для высоких и сверхвысоких напряжений.
  • А также смешанная бумажно-масляная изоляция с внушительным ресурсом эффективности.

Трансформаторы тока на напряжение 10 кВ с литой изоляцией

Трансформаторы тока с литой изоляцией: а) — многовитковый, б) — одновитковый, в) — шинный

Классификация в зависимости от коэффициента трансформации ↑

Еще один немаловажный момент при выборе нужного трансформатора — это коэффициент трансформации тока (Кт).

По количеству коэффициентов трансформаторы тока можно определять как:

  • Одноступенчатые, имеющие всего один коэффициент трансформации.
  • Многоступенчатые, имеющие два и более Кт. Еще их называют каскадными. Большее число Кт получается в результате изменения количества витков в обмотках, а также при наличии вариативности, то есть нескольких вторичных обмоток.

Как выбрать трансформатор тока по коэффициенту трансформации? ↑

При выборе такого типа трансформаторных устройств существует ряд определенных ограничений и правил установки дополнительного оборудования. Так, например, установка трансформатора тока, который имеет завышенный Кт, не желательна. При повышенном коэффициенте допускается установка приборов учета непосредственно на приемном вводе. Если же речь о силовых приборах трансформации, то счетчики следует монтировать со стороны напряжения с самым низким значением.

Сегодня на рынке самыми популярными являются именно трансформаторы с одним КТ, так как этот показатель у устройства гарантированно не меняется на протяжении всего времени эксплуатации.

Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения испытания машин постоянного тока, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать испытания машин постоянного тока или задать вопрос, звоните по телефону: +7 (495) 181-50-34 .

Как определить коэффициент трансформации самостоятельно? ↑

Как правило такие параметры обязательно указываются в документации, прилагающейся к трансформатору, а также в обязательном порядке обозначаются на оборудовании или корпусе устройства. Но бывает, что Кт трансформатора тока необходимо определить самостоятельно, имея только данные, полученные эмпирическим путем. Как это сделать?

Через первичную обмотку такого устройства необходимо пропустить ток, замкнув накоротко вторичную обмотку. Затем соответствующим прибором нужно измерить величину электрического тока, который проходит во время эксперимента по вторичной обмотке.

Первичная и вторичная обмотки

Первичная и вторичная обмотки.

После этого, следует значение первичного тока, которое было подано на первичную обмотку, разделить на значение тока, полученное в результате наших замеров во вторичной обмотке. Частное и будет искомым коэффициентов трансформации.

Особенности расчетов коэффициента трансформации ↑

Расчет отношений первичного и вторичного токов может вестись в двух направлениях в зависимости от задач, которые стоят перед специалистом.

Коэффициент трансформации трансформатора тока можно разделить на:

  • действительное значение (N);
  • номинальное значение (Nн).

В первом случае мы находим соотношение действительного первичного тока к действительному вторичному току. Во втором — отношение номинального первичного тока к номинальному.

К примерам стандартных величин коэффициента ТТ можно отнести: 150/5 (N=30), 600/5 (N=120), 1000/5 (N=200) и 100/1 (N=100).

Примеры расчетов ↑

Рассмотрим принцип расчета потребления на примере трансформатора тока с коэффициентов трансформации 100/5. Как определить коэффициент трансформации трансформатора тока? Если вы сняли показания счетчика по учету электроэнергии и значение показаний оказалось равно 100 кВт/часов, при этом прибор используется с трансформатором 100/5. То расчет фактического потребления не пониженных значений следует производить следующим образом:

Сперва следует узнать во сколько раз ваш трансформатор снижает ток нагрузки. Для этого нужно просто 100 разделить на 5 — вы получите значение коэффициента — 20.

Узнать реально существующий расход электроэнергии можно, взяв коэффициент и умножив его на значение вашего прибора учета, то есть на 100 кВт. Реальное потребление составило 2000 кВт/часов.

Особенности значений, получаемых при измерении коэффициента трансформации ↑

Измеряя коэффициент трансформации ТТ, следует знать, что допустимые отклонения полученного значения от прописанных в документации или показателей аналогичного полностью исправного прибора не должны быть более 2 процентов.

Особенностью замеров у встроенных устройствах является то, что все показания снимаются только на ответвлениях, которые являются рабочими. Остальные же части обмоток в расчет не берутся и не проверяются.

Разделительное трансформирующее устройство на вторичной обмотке может создавать напряжение около 5В, а значение тока должно быть около 1000А.

На что еще обратить внимание при выборе трансформатора? ↑

Не забывайте, что любое оборудование также имеет свой срок «годности». Потому, при покупке обязательно проверьте год и квартал выпуска вашего трансформатора. Напомним, что межповерочные интервалы у всех ТТ должны составлять не более 4 лет с момента изготовления.

Разновидности трансформаторов тока

Разновидности трансформаторов тока.

Чтобы избежать покупки просроченного оборудования, обязательно сверьте данные, которые указаны в паспорте изделия и на шильдике, закрепленном на корпусе трансформатора. Они должны полностью совпадать.

Если вы приобретаете трехфазный счетчик, то с момента выпуска и до пломбировки должно пройти не более года иначе вам придется потратить дополнительные средства, оплачивая государственную проверку или покупку более «свежего» прибора учета. Чтобы проверить дату, обратите внимание на свинцовую пломбу — там указан квартал выпуска римскими цифрами.

Источник