Меню

Как течет ток в p n переходе

Что такое p-n переход

Атомы и ковалентная связь

Для начала давайте разберемся на уровне атомов что и как работает. Это будет небольшое предисловие.

Вся материя состоит из молекул, а молекулы в свою очередь из атомов. И у каждого атома есть протоны, нейтроны и электроны.

Протоны образуют с нейтронами ядро, в котором их равное количество.

Исключение — это водород у которого есть только один протон в ядре, без нейтрона.


Вокруг ядра находятся орбиты электронов (кстати, сейчас принято считать, что это облако электронов). Между ними действуют сильные и слабые силы, которые являются основой атомов. Далее на изображениях не будем указывать протоны и нейтроны для простоты восприятия.

Конечно, можно погрузиться и дальше, что есть мезоны, кварки и другие фундаментальные частицы. А еще, что на электронных оболочках атомов электроны распределены в виде «газа» и их не получится точно обнаружить, только с определенной долей вероятности. Однако, это не обязательно знать для понимания принципов работы общей цифровой электроники.

Достаточно просто принять тот факт, что есть атомы, у которых присутствуют ядра с положительным зарядом, а вокруг этого ядра находятся орбиты с электронами.

Электроны и протоны имеют противоположные знаки.

В электрически нейтральном атоме количество электронов и протонов одинаково. Все электроны распределены по разным уровням. Кто ближе к ядру – по два электрона, следующий уровень по 4 электрона и так далее. Но если по какой-либо причине атом теряет электрон, то такой атом становится положительным ионом.

Ему не хватает электрона на своей внешней электронной орбите, которая называется валентным уровнем. С валентного уровня у атома проще «забрать» электрон. А такие электроны, которые находятся на валентном уровне, называются валентными электронами.

Положительный ион (атом, у которого не хватает электронов) будет со знаком +, так как у него дефицит электронов, и он будет притягивать или притягиваться к свободному электрону (зависит от среды).

Все атомы в молекулах соединены друг с другом на валентном уровне, то есть при помощи ковалентной связи.

На валентном уровне связь ядра с электронами намного меньше, чем на других, поэтому атомы могут образовывать материю, соединяясь с другими атомами. Так и получаются химические реакции и соединения атомов друг с другом.

Полупроводники и кристаллическая решетка

Теперь плавно переходим к полупроводникам. У полупроводников, таких как кремний (Si) и германий (Ge) на ковалентном уровне есть по 4 электрона.

Не путайте кремень и кремний. Кремень – это минерал, а кремний – это химический элемент, который был открыт в 1810 году.

Особенность полупроводников заключается в том, что их атомы друг с другом образуют парные связи.

Допустим, есть атом кремния. У него 4 электрона на валентном уровне. Если к нему присоединить еще 4 атома кремния, то получится кристаллическая решетка. 4 атома связаны друг с другом 4 своими электронами.

На картинке показана связь атомов в плоскости. В реальности она естественно, находится не в одной плоскости, а в пространстве.

То есть, каждый атом может образовывать устойчивую связь друг с другом, по 4 штуки с каждой стороны и плоскости.

Особенность полупроводников заключается в том, что эта кристаллическая решётка очень устойчива.

Кстати, проводимость полупроводников сильно зависит от внешних условий (давление, температура, радиация, свет). Намного сильнее, чем у других материалов. Это все связано с особенностью кристаллической решетки, которая позволят делать солнечные батареи, датчики, камеры и много чего еще.

Итак, атомы полупроводников без примесей электрически нейтральны.

И что самое главное, они все равно будут связаны друг с другом. Общая ковалентная связь позволят им обмениваться друг с другом электронами.

Проводимость полупроводников в нормальных условиях практически такая же, как у диэлектриков, то есть очень низкая.

Проводимость кристаллической решетки с примесями

Свободных электронов в чистом полупроводнике мало, и это объясняет низкую проводимость материала.

Однако, при повышении температуры электроны на валентном уровне получают большую энергию, и могут быстрее покидать свои орбиты. Поэтому материал становится более проводимым при повышении температуры.

И из-за этого полупроводники получили свое название. Это и проводник, и диэлектрик в одном флаконе, который меняет свою проводимость из-за внешних условий.

Донорская примесь и n-тип

Если добавить в кристаллическую решетку кремния атом, у которого 5 валентных электронов, то из-за него в кристалле появятся свободные электроны.

Например, есть атом мышьяка (As) и атомы кремния (Si).

4 валентных электрона мышьяка образуют валентную связь с другими атомами кремния. А вот один электрон будет находится в зоне проводимости. То есть, он станет свободным электроном.

А вот атом мышьяка, который непреднамеренно отдал свой электрон, станет положительным ионом. И несмотря на это, кристаллическая решетка остается стабильной.

Полупроводник с примесью, в котором находятся свободные электроны, называется полупроводником n-типа. Основные носители заряда – свободные электроны. Неосновные – дырки.

Примеси добавляют при помощи легирования. Оно может быть, как металлургическим (повышением температуры, изготовление сплавов), так химическим (ионное и диффузное).

Если подать ток по такому материалу, то свободные электроны из примеси притягиваются положительным потенциалом. А с отрицательного потенциала приходят «новые» электроны, взамен старым, которые ушли к положительному потенциалу.

Акцепторная примесь и p-тип

А что будет, если в полупроводник добавить атом с тремя валентными электронам, например бор (B)?

Тогда три валентных электрона атома бора создадут связь с другими атомами кремния. Однако теперь в кристалле с такой примесью будет не хватать одного электрона.

Это отсутствие электрона называется дыркой. По сути, это положительный потенциал, но для простоты понимания его принято называть дыркой.

Это не ион и не элементарная частица. Это дефицит электрона у атомов. И тот атом, у которого будет не хватать электрона на своей орбите, будет притягивать к себе и свободные электроны, которые оказались в кристалле, и электроны от соседних атомов.

Такая примесь в кристалле также повышает его проводимость. И эта примесь называется акцепторной. То есть, примесные атомы создают дефицит электронов в кристаллической решетке.

Поэтому, такой полупроводник с акцепторной примесью называются p-типом. Его основные носители заряда – дырки. А неосновные – электроны.

Если пустить ток по такому материалу, то к отрицательному потенциалу будет притягиваться дырка к новому поступающему электрону из источника тока. А вот к положительному потенциалу будут уходить электроны, которые находились в кристалле.

Кстати, примесный атом бора получается отрицательно заряженным ионом, поскольку при прохождении тока на его орбите будет не 3 электрона, а 4, что является для него избытком.

Ток неосновных зарядов

Как уже было сказано выше, у p-типа основные носители заряда — это дырки, а у n-типа — это электроны. Неосновные носители соответственно, наоборот. И неосновные носители зарядов тоже участвуют при прохождении тока.

Конечно, неосновных носителей зарядов намного меньше, чем основных, но не стоит их полностью игнорировать, особенно когда речь идет о p-n переходе.

Создание p-n перехода

Что будет, если соединить два кусочка кремния c примесями p-типа и n-типа вместе? Получится p-n переход. Или как его еще называют — электронно-дырочный переход.

Этот переход является разграничительной зоной между p-областью и n-областью.

И особенностью этого перехода является то, что этот переход состоит из ионизированных примесных атомов, которые не позволяют свободным зарядам из двух разных областей соединяться друг с другом. Он образовался от такого явления, как диффузионный ток.

Этот ток возникает при нагреве (изготовлении перехода). Носители зарядов рекомбинируют друг с другом и уравновешивают баланс. Диффузионный ток под воздействием тепла хаотичный, и не имеет упорядоченного направления, если на него не действует вешнее напряжение.

Например, электроны из n-области начинают накапливаться возле положительных ионов примеси, но так как с другой стороны находятся отрицательные ионы n-области, они не могут перейти этот барьер. С дырками ситуация аналогична.

Читайте также:  Статическое сопротивление нелинейного элемента при токе 2 а составит ом

Свободные электроны из n-области не могут перейти в p-область из-за барьера, который создан ионизированными донорскими примесями. Здесь создается электрическое поле, которое действует как барьер для дырок и электронов. И из-за этого в p-n переходе отсутствуют свободные носителя зарядов. Переход их попросту отталкивает от себя с двух сторон.

Кстати, еще одно название барьера – обедненная область.

А в целом, кристалл остается электрически нейтральным. Если бы не было этого барьера, свободные носители заряды уравновесили бы друг друга.

Преодоление потенциального барьера

Чтобы свободные электроны и дырки могли пройти через этот барьер, нужно приложить внешнее напряжение, которое будет превышать напряжение, требуемое для перехода барьера.

Подключим к n-области минус источника тока, а к p-области плюс источника тока. Такое включение называется прямым. Еще n-область в приборах называют катодом, а p-область — анодом.

Напряжение источника должно быть выше, чем то, которое требуется для открытия p-n перехода.

Допустим, потенциальный барьер равен 0,125 Вольт. Чтобы преодолеть его, подключим источник с напряжением 5 В.

Чтобы не перегружать восприятие, на схеме не показаны неосновные носители зарядов.

И благодаря воздействию электрического поля внешнего источника, свободным носителям хватает энергии для того, чтобы перейти этот потенциальный барьер и преодолеть его электрическое поле. Переход подключен с прямым смещением.

Свежий электрон идет с источника, переходит в n-область, далее преодолевает барьер и переходит дырке, где происходит рекомбинация. И далее этот электрон идет на встречу к дырке, которая идет с положительного потенциала, подключенного к p-области. То есть, по p-n переходу проходит электрический ток. Этот ток называют еще диффузионным током или током прямого включения – когда основные носители зарядов упорядочено движутся к внешнему источнику тока.

Аналогична ситуация с дырками. Положительный потенциал внешнего источника, который подключён к p-области, будет забирать электрон, а на его месте появится дырка. Дырка в свою очередь будет двигаться к барьеру и далее к отрицательному потенциалу источника.

Ток, который создается дырками называется дырочным. Соответственно, ток, который создается электронами – электронным.

А на этой схеме переход показан без барьера, но с обратным током.

Неосновные носители зарядов в свою очередь действуют наоборот, от чего и возникает дополнительное сопротивление в p-n переходе.

Обратный ток может быть равен всего нескольким микроамперам.

Обратное включение

Поменяем полярность внешнего источника на противоположную. Минус к p-области, а плюс к n-области. Что же будет происходить с барьером и током зарядов?

Барьер увеличится за счет того, что основные носители зарядов будут притягиваться к внешнему источнику. Увеличится сопротивление потенциального барьера и напряжение его открытия.

Однако, не смотря на все это, через p-n переход будет протекать обратный ток.

Этот обратный ток очень мал, поскольку создается неосновными носителями заряда. Он еще называется дрейфовым током.

Применение p-n перехода

Вот так и работает простой диод, который состоит из p-n перехода. По-простому, p-n переход – это и есть классический диод. И он может работать как при прямом включении, так и при обратном. А вообще, вся современная цифровая техника состоит из p-n переходов.


Транзисторы, тиристоры, микросхемы, логические элементы, процессоры и многое другое основано именно на этом.

Контролируемый лавинообразный пробой

А что будет, если превысить напряжение потенциального барьера? Например, оно равно 7 В. А на схеме источник 5 В. Если подключим источник на 8 В, то наступит лавинообразный ток.

Неосновные носители зарядов будут забирать с собой основные. От части этот процесс контролируем, если не превышать напряжение источника выше, чем может выдержать p-n переход.

Электрический пробой

Если еще больше повысим напряжение, то будет электрический пробой. Эти явления широко используются на практике, например, в качестве стабилизаторов.

Ток не пойдет по цепи пока не будет то напряжение, которое требуется для открытие обратного смещенного p-n перехода.


И электрический пробой контролируется. Стабилитроны (так называются диоды, которые работают в таком режиме) делаются специально с широкими p-n переходами, которые долго работают под постоянными нагрузками.

Тепловой пробой

Но если радиодеталь изначально не рассчитана электрический пробой, то она быстро нагреется и произойдет тепловой пробой. Дырки и электроны получат тепловую энергию, из-за которой барьер полностью разрушится. Переход нагревается и трескается под действием температуры. Это необратимый процесс.

Вообще, когда техника «перегорает» — это и есть явление теплового пробоя, то есть превышение допустимой температуры.


И во время пайки тоже может случиться тепловой пробой. Достаточно немного перегреть деталь и p-n переход будет разрушен.

Соответственно, если пустить по диоду ток, который превышает его пропускную способность, то тоже случится тепловой пробой. Тоже самое касается и рассеиваемой мощности.

Как избавиться от обратного тока

А можно ли избавиться от обратного тока? Для этого в переход добавляют металлические примеси, которые убирают неосновные носители зарядов при обратном включении.

Но и обратный ток можно использовать на практике.

Например, с его помощью реализуются обратная связь, некоторые функции и измерения.

Как еще применяется обратное включение

А еще, обратное включение очень похоже на конденсатор. Взгляните на схему. Это же две обкладки конденсатора, посередине которого есть «диэлектрик». И электронно-дырочный переход обладает емкостью. И это тоже используется на практике. Так называется полупроводниковый конденсатор.

В радиоприёмниках используют вместо подстрочных конденсаторов варикапы. Варикапы легко настроить. Нужно всего лишь подать напряжение обратным смещением определенного значения, для повышения или понижения емкости.

Конечно, это не основное применение p-n перехода. Переход используется во всей цифровой технике по-разному.


Выпрямители, усилители, генераторы, процессоры, солнечные батареи и много другое. И то, что было описано выше про принцип работы p-n перехода – это принцип работы обычного диода.

Это наиболее простое описание принципа работы p-n перехода. Он бывает разных типов, и в полупроводниках есть физические явления, которые возникают при различных условиях.

Да и изготовление полупроводниковых радиодеталей бывает разным. Полупроводники разделяются на целые классы со своими особенностями. А микропроцессорное производство – это отдельный вид искусства.

Источник

Устройство полупроводникового диода, p-n переход.

Возвращаемся к рубрике “Основы электроники” и в этой статье мы разберем очень важное, основополагающее понятие, а именно p-n переход! И, конечно, же разберем работу устройства, сердцем которого является уже упомянутый p-n переход, то есть полупроводникового диода 🙂

И, первым делом, мы подробно рассмотрим устройство p-n перехода и химические процессы, протекающие в нем, которые, собственно, и определяют то как он работает. Основными понятиями, которыми мы будем сегодня оперировать являются “электроны” и “дырки”. И если с электроном все понятно, то на физическом смысле дырок стоит остановиться поподробнее.

Полупроводниковые материалы, которые являются основой p-n перехода, характеризуются тем, что они объединяют в себе как свойства проводников, так и свойства диэлектриков. В кристаллической структуре проводников есть много свободных носителей заряда, которые под воздействием электрического поля начинают перемещаться, что и обуславливает способность проводника проводить ток.

В диэлектриках связь частиц с атомами очень сильная, поэтому свободные носители заряда отсутствуют (все частицы жестко закреплены на своем месте в кристаллической решетке). Поэтому диэлектрики не пропускают электрический ток.

Читайте также:  Номинальный ток генератора постоянного тока с параллельным возбуждением

В полупроводниках же не все так однозначно. В целом, для того, чтобы электрон покинул свое место, то есть высвободился от атома ему необходим определенный уровень внутренней энергии. Эта энергия может появиться, например, в результате повышения температуры. И величина этой внутренней энергии для полупроводников намного меньше, чем для диэлектриков. В этом и есть ключевой момент!

При низкой температуре большинство электронов полупроводника “сидят” на своих местах, и поэтому проводимость тока очень низкая. А, соответственно, с ростом температуры способность полупроводника проводить ток улучшается.

С этим процессом разобрались: итак, с ростом температуры в полупроводнике число свободных электронов увеличивается.

Во время разрыва связи электрона с ядром атома в электронной оболочке атома появляется свободное место. Атом при этом получает положительный заряд, ведь изначально заряд был нейтральным, а электрон, имеющий отрицательный заряд, атом покинул 🙂

Но свободное место не долго остается пустым, так как на него переходит электрон из соседнего атома. И этот процесс повторяется снова и снова. Таким образом, происходит перемещение положительного заряда. И вот именно этот условный(!) положительный заряд и называют дыркой.

Электроны и дырки.

Такой механизм проводимости называется собственной проводимостью полупроводника. Но на практике, в частности в транзисторах и диодах, применяются полупроводники с примесями, поскольку примесная проводимость значительно превышает собственную.

Примеси разделяют на:

  • донорные, то есть отдающие
  • акцепторные, принимающие

Разберем классический пример – кремний и мышьяк 🙂 У кремния на внешней оболочке атома 4 электрона (валентные электроны). У мышьяка таких электронов 5. Атом мышьяка отдает 4 из своих электронов на образование связей с 4-мя электронами атома кремния. При этом один из 5-ти валентных электронов не участвует в образовании связей.

У мышьяка энергия отрыва этого 5-го электрона от атома достаточно невелика. Настолько, что уже при небольшой температуре атомы мышьяка теряют свои незанятые в связях с кремнием электроны. Но при этом, поскольку в соседних атомах нет свободных мест, то дырок не возникает, и “дырочная” проводимость практически отсутствует. Так мы получили полупроводник с электронной проводимостью, то есть полупроводник n-типа.

Если же мы возьмем в качестве примеси 3-х валентный элемент (3 электрона на внешней оболочке атома), то в случае с добавлением примеси к кремнию (4 электрона), одно место останется свободным. На это место “придет” электрон соседнего атома и так далее, то есть возникнет процесс перемещения дырки. Так мы получим полупроводник p-типа.

Вот мы разобрались и с этим 🙂 Двигаемся непосредственно к рассмотрению p-n перехода!

Итак, p-n переход (электронно-дырочный переход) – это область, в которой соприкасаются два полупроводника, имеющие разный тип проводимости (p-тип и n-тип):

Полупроводники p-типа и n-типа.

Причем обе области электрически нейтральны. Только одна из них содержит свободно перемещающиеся дырки, а вторая – электроны.

При соприкосновении полупроводников разного типа возникает диффузионный ток. Это связано с тем, что свободные носители (электроны и дырки) стремятся перейти из той области, где их много в ту область, где их мало. При прохождении через переход частицы рекомбинируют друг с другом. В результате этого вблизи границы перехода образуются избыточные заряды:

p-n переход.

На рисунке изображены только свободные носители заряда в каждой из областей.

Давайте чуть подробнее разберем этот процесс… Один из электронов переходит из области n-типа и “занимает” свободное место, то есть дырку в области p-типа. На первоначальном месте этого электрона в области n-типа появляется дырка (ведь электрона там больше нет). И в итоге получается, что в p-области вблизи перехода скапливаются электроны, а в n-области наоборот дырки. Не забываем, что дырка – это не реально существующая частица, а условный(!) положительный заряд.

Но этот процесс не продолжается бесконечно по одной простой причине. Из-за того, что на границе формируются два новых слоя, возникает дополнительное электрическое поле, которое они порождают. Под действием этого поля возникает так называемый дрейфовый ток, направленный противоположно диффузионному току. И при определенной концентрации частиц около границы перехода между этими токами возникает равновесие и процесс останавливается:

Дрейфовый ток p-n перехода.

Строго говоря, p-n переход – это именно область, в которой практически отсутствуют свободные носители заряда (обедненная область). Для того, чтобы выйти из этого положения равновесия, мы можем приложить к переходу внешнее напряжения. Различают прямое и обратное смещение.

При прямом смещении положительный потенциал подается на область p-типа, а отрицательный, соответственно, на область n-типа:

Прямое смещение.

В этом случае внешнее электрическое поле (от источника напряжения) направлено противоположно тому полю, которое существует внутри перехода. В результате диффузионный ток начинает преобладать над дрейфовым, поскольку такое внешнее поле приводит к движению дырок из p-области в n-область и электронов в обратном направлении.

Вот так и возникает прямой ток, направление которого противоположно движению электронов.

Обратное же смещение выглядит так:

Обратное смещение p-n перехода.

Такое подключение приводит лишь к увеличению областей, в которых отсутствуют свободные носители заряда. Действительно, под действием электрического поля при обратном смещении свободные электроны и дырки будут удаляться от границы слоев.

В результате диффузионный ток будет максимально уменьшен и преобладать будет ток дрейфовый. В таком случае протекающий ток называют обратным (его величина очень мала по сравнению с прямым током).

Полупроводниковое устройство, внутри которого сформирован один такой p-n переход, и называют диодом. А его выводы (электроды) получили названия анод и катод. На принципиальных электрических схемах полупроводниковый диод обозначается следующим образом:

Полупроводниковый диод.

Ключевой характеристикой диода является вольт-амперная характеристика (ВАХ). Она представляет из себя зависимость протекающего через диод тока от приложенного к нему напряжения:

Вольт-амперная характеристика диода.

Как видите, здесь все в точности соответствует тому, что мы обсудили при разборе p-n перехода. Правая ветвь графика относится к прямому смещению перехода. При увеличении напряжения увеличивается и протекающий прямой ток. Обратите внимание, что при прямом включении напряжение должно достигнуть определенного значения для того, чтобы диод стал хорошо пропускать ток. Если напряжение меньше этого значения (пусть и создает прямое смещение), то способность диода пропускать ток будет низкой.

При обратном смещении (левая ветвь характеристики) ток достигает некоторого значения и перестает увеличиваться. Это процесс протекания незначительного обратного тока. Если продолжать увеличивать напряжение, то произойдет пробой p-n перехода (про ситуацию пробоя мы еще обязательно поговорим в статье, посвященной стабилитронам 🙂 ).

Таким образом, можно сказать, что диод пропускает ток в одном направлении и препятствует протеканию тока в обратном направлении.

И на этом, пожалуй, на сегодня закончим, рассмотрели мы основные процессы, протекающие в p-n переходе и полупроводниковом диоде. Совсем скоро, буквально в одной из следующих статей, разберем основные примеры использования диодов. Будем рады видеть вас на нашем сайте снова!

Источник

Физика работы светочувствительных PN-переходов

В данной статье мы углубимся в физику полупроводников, чтобы лучше понять работу фотодиодов.

Данная статья является второй частью в серии о фотодиодах, устройствах, которые создают электрические сигналы в ответ на окружающее освещение, лазерные сигналы или свет, сфокусированный объективом камеры. В первой статье мы обсудили природу света и PN-переходы. Теперь рассмотрим физику работы светочувствительных PN-переходов.

В следующих нескольких частях этой серии мы рассмотрим:

Кремниевый PN-переход

Когда кусок кремния N-типа находится в контакте с куском кремния P-типа, происходят интересные вещи: диффузионный ток течет из P-области в N-область, образуется обедненная область, и дрейфовый ток течет из N-области в P-область.

Читайте также:  Отличие линейного тока от фазного

Диффузионный ток

Основными носителями в P-области являются дырки, а в N-области основные носители – свободные электроны. Эти носители подвержены диффузии, т.е. склонности частиц переходить от области с более высокой концентрацией к области с более низкой концентрацией. Дырки диффундируют через переход от P-области к N-области, и электроны также диффундируют через переход от N-области к P-области. Эти движения носителей заряда представляют собой форму электрического тока; мы называем это диффузионным током.

Диффузионный ток характеризуется как ток, протекающий из P-области в N-область, потому что обычный ток течет в том же направлении, что и положительные носители заряда, даже если положительные носители заряда фактически не присутствуют в цепи.

Рисунок 1 Диффузионный ток Рисунок 1 – Диффузионный ток

В данном случае дырки находятся в движении, поэтому у нас на самом деле есть положительные носители заряда, и, таким образом, этот ток более согласован с понятием тока с общепринятой точки зрения, чем ток в схемах, не содержащих диодов или транзисторов.

Обедненная область

У нас есть свободные электроны на стороне N-области и дырки на стороне P-области. Когда свободные электроны диффундируют через переход, они встречаются с дырками на другой стороне. Электроны, так сказать, «падают» в дырки, и вблизи перехода происходит рекомбинация.

Это приводит к образованию области с общим отрицательным зарядом рядом с переходом на стороне P-области, поскольку рекомбинация устраняет дырки, которые ранее уравновешивали связанные отрицательные заряды в полупроводнике P-типа. То же самое происходит с другой стороны, в полупроводнике N-типа, за исключением того, что там связанные заряды положительны.

Рисунок 2 Диффузионный ток и обедненная область Рисунок 2 – Диффузионный ток и обедненная область

Мы называем эту область обедненной, потому что участки общего положительного и отрицательного заряда по обе стороны от перехода возникают в результате истощения основных носителей заряда, что, в свою очередь, является результатом диффузионного тока и рекомбинации.

Дрейфовый ток

Добавление примеси – не единственный источник свободных носителей заряда в полупроводнике. Тепловая энергия вызывает случайную генерацию электронно-дырочных пар, что приводит к наличию неосновных носителей, то есть электронов в P-области и дырок в N-области.

Если дырка в N-области или свободный электрон в P-области пробивается в обедненную область, электрическое поле обедненной области будет усиливать это движение к другой стороне перехода. Это дрейфовый ток: неосновные носители, движущиеся через переход под действием электрического поля. Он течет из N-области в P-область.

Рисунок 3 Диффузионный ток и дрейфовый ток Рисунок 3 – Диффузионный ток и дрейфовый ток

То есть через диод ток протекает непрерывно, даже если он полностью отключен от источников питания и других компонентов? Конечно, нет. РN-переход естественным образом поддерживает равновесие между диффузионным и дрейфовым токами. Они текут в противоположных направлениях с одинаковой величиной, поэтому итоговый ток равен нулю.

Светочувствительные PN-переходы

Когда переход подвергается воздействию света, у нас появляется дополнительный источник подвижных носителей заряда, а именно энергия, доставляемая входящими фотонами. Если фотон генерирует пару электрон-дырка внутри или около обедненной области, электрическое поле обедненной области может протолкнуть эти свободные носители заряда через переход.

Это то, что мы называем фототоком: ток, возникающий в результате движения индуцированных светом носителей заряда.

Рисунок 4 Фототок Рисунок 4 – Фототок

Фототок – это обратный ток. Подобно дрейфовому току, он течет из N-области в P-область, и обратите внимание, как он пересекает переход под действием электрического поля обедненной области, точно так же, как это делает дрейфовый ток. Мы вернемся к дрейфовому току позже, когда будем обсуждать темновой ток.

Обедненная область фотодиодов

Как было указано выше, электронно-дырочные пары, генерируемые светом, вносят вклад в фототок, только если они находятся в обедненной области или рядом с ней. Это говорит о том, что мы можем сделать фотодиод более чувствительным, увеличив ширину обедненной области: с более широкой обедненной областью та же самая интенсивность падающего света будет генерировать больший фототок, поскольку большее количество генерируемых светом носителей заряда будет находиться в пределах досягаемости электрического поля, которое толкает их через PN-переход.

Есть еще один способ, которым обедненная область влияет на работу фотодиода. Обедненная область действует в диоде как конденсатор, а в фотодиоде эта емкость ограничивает способность устройства реагировать на быстрые изменения освещенности.

Таким образом, обедненная область связана с двумя важными моментами проектирования систем на основе фотодиодов. Я вернусь к этим темам в следующей статье.

Резюме

Диффузионный ток в PN-переходе течет в прямом направлении и создает обедненную область. Электрическое поле в этой обедненной области создает компенсирующий ток, называемый дрейфовым током, который течет в обратном направлении. Базовые знания о дрейфовом токе и обедненной области помогают нам понять важные аспекты реализации фотодиодов.

Источник



P-N переход: подробно простым языком

P-N переход — точка в полупроводниковом приборе, где материал N-типа и материал P-типа соприкасаются друг с другом. Материал N-типа обычно упоминается как катодная часть полупроводника, а материал P-типа — как анодная часть.

Схема P-N переходаСхема P-N перехода

Когда между этими двумя материалами возникает контакт, то электроны из материала n-типа перетекают в материал p-типа и соединяются с имеющимися в нем отверстиями. Небольшая область с каждой стороны линии физического соприкосновения этих материалов почти лишена электронов и отверстий. Эта область в полупроводниковом приборе называется обедненной областью.

Эта обедненная область является ключевым звеном в работе любого прибора, в котором есть P-N переход. Ширина этой обедненной области определяет сопротивление протеканию тока через P-N переход, поэтому сопротивление прибора, имеющего такой P-N переход, зависит от размеров этой обедненной области. Ее ширина может изменяться при прохождении какого-либо напряжения через этот P-N переход. В зависимости от полярности приложенного потенциала P-N переход может иметь либо прямое смещение, либо обратное смещение. Ширина обедненной области, или сопротивление полупроводникового прибора, зависит как от полярности, так и от величины поданного напряжения смещения.

Прямой P-N переход

Когда P-N переход прямой (с прямым смещением), то тогда на анод подается положительный потенциал, а на катод — отрицательный. Результатом этого процесса является сужение обедненной области, что уменьшает сопротивление движению тока через P-N переход.

Если потенциал увеличивается, то обедненная область будет продолжать уменьшаться, тем самым еще больше понижая сопротивление протеканию тока. В конце концов, если подаваемое напряжение окажется достаточно велико, то обедненная область сузится до точки минимального сопротивления и через P-N переход, а вместе с ним и через весь прибор, будет проходить максимальный ток. Когда P-N переход имеет соответствующее прямое смещение, то он обеспечивает минимальное сопротивление проходящему через него потоку тока.

Прямой P-N переход

Обратный P-N переход

Когда P-N переход обратный (с обратным смещением), то отрицательный потенциал подается на анод, а положительный — на катод.

Это приводит к тому, что в результате обедненная область расширяется, а это вызывает увеличение сопротивления протеканию тока. Когда на P-N переходе создается обратное смещение, то имеет место максимальное сопротивление протеканию тока, а данный переход действует в основном как разомкнутая цепь.

Обратный P-N переход

При определенном критическом значении напряжения обратного смещения сопротивление протеканию тока, которое возникает в обедненной области, оказывается преодоленным и происходит стремительное нарастание тока. Значение напряжения обратного смещения, при котором ток быстро нарастает, называется пробивным напряжением.

Источник