Меню

Как увеличить обороты переменного тока

Способы увеличения мощности электродвигателя

Бывает, что мощности электродвигателя недостаточно для обеспечения запуска и работы какого-либо устройства. Как увеличить мощность электродвигателя? Прежде всего, следует знать причину: почему не хватает мощности — а она кроется в параметрах тока, протекающего по обмоткам агрегата. Следовательно, нужно увеличить его значение, либо включив двигатель в сеть большей частоты (если это устройство переменного тока), либо внеся некоторые конструктивные изменения (при включении в бытовую сеть). Ниже мы рассмотрим последний случай.

Как повысить мощность электродвигателя в домашних условиях

Итак, для проведения работ вам следует «вооружиться»:

  • набором проводов разного сечения;
  • тестером;
  • частотным преобразователем;
  • источником тока с изменяемой ЭДС.

Сначала необходимо подключить электродвигатель к имеющемуся у вас источнику тока и изменяемой ЭДС и увеличить ее значение. Напряжение в обмотках должно увеличиваться соответственно и поравняться со значением ЭДС (если не принимать во внимание потери в подводящих проводниках, но они незначительны).

Для расчета увеличения мощности двигателя определите значение увеличения напряжения и возведите эту цифру в квадрат. Например, если напряжение на обмотках выросло в два раза (со 110В до 220В), мощность двигателя увеличилась в четыре раза.

Иногда самый рациональный способ повысить мощность электродвигателя – перемотать обмотку. Во многих моделях это медный проводник. Вам следует взять провод из того же материала и той же длины, но большего сечения. Мощность двигателя (и ток в проводе) увеличатся во столько же раз, во сколько снизится сопротивление обмотки. Следите за тем, чтобы напряжение на обмотках оставалось неизменным.

Расчет в этом случае тоже достаточно прост. Разделите большую цифру сечения провода на меньшую. Если провод сечением 0.5 мм заменен проводом сечением 0.75 мм, показатель мощности вырастает в 1.5 раза.

Если вы включаете асинхронный трехфазный двигатель в однофазную бытовую сеть, на первую обмотку подается фаза, на второй фаза сдвигается конденсатором, на третьей сдвиг фаз отсутствует. Именно последняя обмотка создает момент вращения в противоположном направлении (тормозящий момент). Увеличить полезную мощность двигателя в этом случае можно путем отключения третьей обмотки. Это приведет к исчезновению тормозящего момента, генерируемого при работе всех обмоток, и, соответственно, повышению мощности. Данный метод удобен в том случае, когда одна обмотка у двигателя уже сгорела – двух оставшихся вам вполне хватит для подключения и обеспечения работы агрегата.

Еще лучшего результата вы достигнете, поменяв местами выводы третьей обмотки и создав таким образом момент вращения в правильном направлении. В этом случае двигатель «выдаст» более 50% мощности от номинала. Эту обмотку рекомендуется подключать через конденсатор с правильно подобранной емкостью.

У асинхронного двигателя переменного тока мощность можно увеличить, присоединив к нему частотный преобразователь, который повысит частоту переменного тока в обмотках. Значение мощности в этом случае фиксируется с помощью тестера, поставленного на режим ваттметра. Существует два вида преобразователей частоты, отличающиеся принципом работы и устройством:

  • Приборы с непосредственной связью (выпрямители). Они не подходят для мощного оборудования, но с небольшим двигателем, использующимся в быту, способны «справиться». С помощью такого устройства осуществляется подключение обмотки к сети. Выходное напряжение, образованное им, имеет частоту от 0 до 30 Гц. При этом управлять скоростью вращения привода можно только в ограниченном диапазоне.
  • Приборы с промежуточным звеном постоянного тока. Они производят двухступенчатое преобразование энергии – выпрямление входного напряжения, его фильтрацию и сглаживание и последующую трансформацию в напряжение с требуемой частотой и амплитудой при помощи инвертора. В процессе преобразования КПД оборудования может быть несколько снижен. Благодаря возможности обеспечивать плавную регулировку оборотов и выдавать на выходе напряжение с достаточно высокой частотой, преобразователи данного типа более востребованы и широко применяются в быту и на производстве.

Произведя необходимые расчеты и выбрав наиболее эффективный в вашем случае способ, вы сможете заставить двигатель работать с нужной вам мощностью. Не забывайте о мерах предосторожности.

Увеличение оборотов электродвигателя

Увеличение оборотов электродвигателя также ведет к повышению его мощности. При выборе способа увеличения оборотов учитывайте тип агрегата, особенности модели и область ее применения.

Для повышения частоты вращения коллекторного двигателя следует или уменьшить нагрузку на вал, или увеличить напряжение питания. Обратите внимание на следующие нюансы:

  • Мощность двигателя должна держаться в рамках номинала.
  • Работа коллекторного двигателя с последовательным возбуждением без нагрузки, если не снижено питание, чревата его выходом из строя, так как он может разогнаться до слишком большой скорости.
  • Увеличение оборотов с помощью шунтирования обмотки возбуждения часто приводит к сильному перегреву мотора.

Вышеуказанный способ подходит и для электродвигателей с электронным управлением обмотками (в них используется обратная связь), поскольку их свойства очень схожи с коллекторными моделями (главное различие – невозможность осуществления реверса путем переполюсовки). Все перечисленные ограничения должны соблюдаться при работе с двигателями данного типа.

В асинхронном двигателе, подключаемом непосредственно к сети, частоту вращения регулируют, изменяя напряжение питания. Этот способ не слишком эффективен, поскольку коэффициент полезного действия сильно меняется из-за нелинейного характера зависимости скорости от напряжения. К синхронному двигателю данный метод применять нельзя.

Трехфазный инвертор позволяет регулировать обороты электродвигателей обоих типов (синхронного и асинхронного). Прибор должен обеспечивать уменьшение напряжения при снижении частоты.

Зная, как сделать мощнее электродвигатель, вы сможете заставить оборудование, к которому он подключен, работать с гораздо большей эффективностью и КПД. Естественно, перед началом работ следует четко представлять себе номинальную мощность двигателя. Данные можно найти в паспорте или на табличке, прикрепленной к корпусу агрегата. Если они отсутствуют (или не читаемы), воспользуйтесь одним из способов определения мощности, описанных в предыдущих статьях.

Работая с электродвигателем, соблюдайте правила техники безопасности. Не допускайте его перегрева и следите, чтобы он эксплуатировался в подходящих условиях. При поломке агрегата или первых признаках неисправности проведите технический осмотр и устраните неполадки. Если проблема слишком серьезная, и вы не можете справиться с ней самостоятельно, обратитесь к специалисту. Срок службы двигателя зависит от множества факторов, но в ваших силах свести к минимуму возможность поломки и сделать так, чтобы устройство работало долго и эффективно.

Источник

Как увеличить обороты электромотора

Как увеличить обороты электромотора. Способ увеличения оборотов электромотора зависит от его типа и от сферы применения двигателя. Он может заключаться в модификации параметров питания либо нагрузки на вал мотора.

Как увеличить обороты электромотора

Если электродвигатель – коллекторный, для повышения его частоты вращения надо либо повысить напряжение питания, либо понизить нагрузку на вал.

  • в первую очередь, мощность, выделяемая мотором, не должна ни в коем случае превышать ту, на которую изначально рассчитан агрегат.
  • А во-вторых, коллекторные электромоторы, в особенности с последовательным возбуждением, при функционировании вообще без нагрузки без уменьшения напряжения питания могут разгоняться до недопустимо высокой скорости. И то, и другое может привести к выходу мотора из строя.
Шунтирование обмотки является способом повышения оборотов

прибегать к которому можно далеко не всегда — это может вызвать сильный перегрев двигателя.

Частота вращения асинхронного электродвигателя 1500 об мин, питаемого от сети, также может регулироваться путем перемены напряжения питания.

устройство асинхронного электродвигателя

устройство асинхронного электродвигателя

Подобный способ крайне неэффективен:

  • скорость от напряжения зависит очень нелинейно,
  • сильно изменяется коэффициент полезного действия.

Для моторов же синхронного типа данный способ и вовсе непригоден. Лучше использовать трехфазный инвертор.

Он дает возможность регулировки частоты вращения и асинхронных, и синхронных электромоторов изменением частоты.

Как увеличить обороты электромотора

Выбирайте такой прибор, чтобы он обеспечивал одновременное уменьшение и напряжения при уменьшении частоты для учета уменьшения индуктивного сопротивления обмоток.

Предлагаются инверторы и для однофазных моторов с магнитным шунтом, и 2-фазных конденсаторных двигателей.

Двигатели с электроуправлением обмотками, в которых используют обратную связь, нередко очень близки по свойствам к коллекторным — разве что не допускают переполюсовкой реверса.

Если имеющийся электродвигатель обладает подобными свойствами, попробуйте повысить скорость его вращения способом, что и для коллекторного мотора. При этом все ограничения распространяются и на данный вид электродвигателей.

Читайте также:  Проверка первичным током от постороннего

Источник

Способы увеличения частоты тока

Наиболее популярным на сегодняшний день методом увеличения (или уменьшения) частоты тока является применение частотного преобразователя. Частотные преобразователи позволяют получить из однофазного или трехфазного переменного тока промышленной частоты (50 или 60 Гц) ток требуемой частоты, например от 1 до 800 Гц, для питания однофазных или трехфазных двигателей.

Наряду с электронными частотными преобразователями, с целью увеличения частоты тока, применяют и электроиндукционные частотные преобразователи, в которых например асинхронный двигатель с фазным ротором работает частично в режиме генератора. Еще есть умформеры — двигатели-генераторы, о которых также будет рассказано в данной статье.

Способы увеличения частоты тока

Электронные преобразователи частоты

Электронные преобразователи частоты позволяют плавно регулировать скорость синхронных и асинхронных двигателей благодаря плавному повышению частоты на выходе преобразователя до заданного значения. Наиболее простой подход обеспечивается заданием постоянной характеристики V/f, а более прогрессивные решения используют векторное управление.

Частотные преобразователи, обычно, включают в себя выпрямитель, который преобразует переменный ток промышленной частоты в постоянный; после выпрямителя стоит инвертор, в простейшем виде — на базе ШИМ, который преобразует постоянное напряжение в переменный ток нагрузки, причем частота и амплитуда задаются уже пользователем, и эти параметры могут отличаться от сетевых параметров на входе в большую или в меньшую сторону.

Выходной блок электронного преобразователя частоты чаще всего представляет собой тиристорный или транзисторный мост, состоящий из четырех или из шести ключей, которые и формируют требуемый ток для питания нагрузки, в частности — электродвигателя. Для сглаживания помех в выходном напряжении, на выходе добавляют EMC-фильтр.

Как говорилось выше, электронный преобразователь частоты использует для своей работы в качестве ключей тиристоры или транзисторы. Для управления ключами применяется микропроцессорный модуль, служащий контроллером, и одновременно выполняющий ряд диагностических и защитных функций.

Между тем, частотные преобразователи бывают все таки двух классов: с непосредственной связью, и с промежуточным звеном постоянного тока. При выборе между этими двумя классами взвешивают достоинства и недостатки того и другого, и определяют целесообразность того или иного для решения насущной задачи.

Частотный преобразователь

С непосредственной связью

Преобразователи с непосредственной связью отличаются тем, что в них используется управляемый выпрямитель, в котором группы тиристоров поочередно отпираясь коммутируют нагрузку, например обмотки двигателя, прямо к питающей сети.

В результате на выходе получаются кусочки синусоид сетевого напряжения, а эквивалентная частота на выходе (для двигателя) становится меньше сетевой, в пределах 60% от нее, то есть от 0 до 36 Гц для 60 Гц входа.

Такие характеристики не позволяют в широких пределах варьировать параметры оборудования в промышленности, от того и спрос на данные решения низок. Кроме этого незапираемые тиристоры сложно управляются, стоимость схем становится выше, да и помех на выходе много, требуются компенсаторы, и как следствие габариты высокие, а КПД низкий.

С звеном постоянного тока

Гораздо лучше в этом отношении частотные преобразователи с ярко выраженным звеном постоянного тока, где сначала переменный сетевой ток выпрямляется, фильтруется, а затем снова схемой на электронных ключах преобразуется в переменный ток нужной частоты и амплитуды. Здесь частота может быть значительно выше. Безусловно, двойное преобразование несколько снижает КПД, зато выходные параметры по частоте как раз соответствуют требованиям потребителя.

Чтобы на обмотках двигателя получить чистый синус, используют схему инвертора, в котором напряжение нужной формы получается благодаря широтно-импульсной модуляции (ШИМ). Электронными ключами здесь служат запираемые тиристоры или IGBT-транзисторы.

Тиристоры выдерживают большие импульсные токи, по сравнению с транзисторами, поэтому все чаще прибегают именно к тиристорным схемам, как в преобразователях с непосредственной связью, так и в преобразователях с промежуточным звеном постоянного тока, КПД получается до 98%.

Справедливости ради отметим, что электронные преобразователи частоты для питающей сети являются нелинейной нагрузкой, и порождают в ней высшие гармоники, это ухудшает качество электроэнергии.

С целью преобразования электроэнергии из одной ее формы в другую, в частности — для повышения частоты тока без необходимости прибегать к электронным решениям, применяют так называемые умформеры — двигатели-генераторы. Такие машины функционируют подобно проводнику электроэнергии, однако на самом деле прямого преобразования электроэнергии, как например в трансформаторе или в электронном частотном преобразователе, как такового не происходит.

Здесь доступны следующие возможности:

постоянный ток может быть преобразован в переменный более высокого напряжения и требуемой частоты;

постоянный ток может быть получен из переменного;

прямое механическое преобразование частоты с повышением или понижением оной;

получение трехфазного тока требуемой частоты из однофазного тока сетевой частоты.

В каноническом виде мотор-генератор представляет собой электродвигатель, вал которого напрямую соединен с генератором. На выходе генератора устанавливают стабилизирующее устройство для улучшения частотных и амплитудных параметров получаемой электроэнергии.

Мотор-генератор (умформер)

В некоторых моделях умформеров якорь содержит обмотки и моторные и генераторные, которые гальванически развязаны, и выводы которых соединены соответственно с коллектором и с выходными контактными кольцами.

В других вариантах встречаются общие обмотки для обоих токов, например для преобразования числа фаз коллектора с контактными кольцами нет, а просто от обмотки статора делаются отводы для каждой из выходных фаз. Так асинхронная машина преобразует однофазный ток в трехфазный (тождественно в принципе увеличению частоты).

Итак, мотор-генератор позволяет преобразовать род тока, напряжение, частоту, количество фаз. До 70-х годов в военной технике СССР использовались преобразователи данного типа, где они питали, в частности, устройства на лампах. Однофазные и трехфазные преобразователи питались постоянным напряжением 27 вольт, а на выходе получалось переменное напряжение 127 вольт 50 герц однофазное или 36 вольт 400 герц трехфазное.

Мощность таких умформеров достигала 4,5 кВА. Подобные машины использовались и в электровозах, где постоянное напряжение 50 вольт преобразовывалось в переменное 220 вольт частотой до 425 герц для питания люминесцентных ламп, и 127 вольт 50 герц для питания бритв пассажиров. Первые ЭВМ часто использовали для своего питания умформеры.

По сей день кое-где еще можно встретить умформеры: на троллейбусах, в трамваях, в электропоездах, где их устанавливали с целью получения низкого напряжения для питания цепей управления. Но нынче они уже вытеснены почти полностью полупроводниковыми решениями (на тиристорах и транзисторах).

Преобразователи типа мотор-генератор ценны рядом достоинств. Во-первых это надежная гальваническая развязка выходной и входной силовых цепей. Во-вторых, на выходе получается чистейший синус без помех, без шумов. Устройство очень просто по своей конструкции, от того и обслуживание довольно бесхитростно.

Это легкий способ получения трехфазного напряжения. Инерция ротора сглаживает броски тока при резком изменении параметров нагрузки. И конечно, здесь очень просто осуществлять рекуперацию электроэнергии.

Не обошлось и без недостатков. Умформеры имеют движущиеся части, от того и ресурс их ограничен. Масса, вес, обилие материалов, и как следствие — высокая стоимость. Шумная работа, вибрации. Необходимость в частой смазке подшипников, чистке коллекторов, замене щеток. КПД в пределах 70%.

Несмотря на недостатки, механические моторы-генераторы по сей день применяются в электроэнергетической отрасли для преобразования больших мощностей. В перспективе моторы-генераторы вполне могут помочь согласованию сетей с частотами 60 и 50 Гц, либо для обеспечения сетей с повышенными требованиями по качеству электроэнергии. Питание обмоток ротора машины в данном случае возможно от твердотельного преобразователя частоты небольшой мощности.

Источник

Регулировка оборотов электродвигателя 220В, 12В и 24В

Для плавности увеличения и уменьшения скорости вращения вала существует специальный прибор – регулятор оборотов электродвигателя 220в. Стабильная эксплуатация, отсутствие перебоев напряжения, долгий срок службы – преимущества использования регулятора оборотов двигателя на 220, 12 и 24 вольт.

Способы изменения вращения зависят от модели электрической машины. Характеристики электрических машин отличаются: постоянного и переменного тока, однофазные, трехфазные. Поэтому говорить нужно о каждом случае отдельно.

Простейший вариант

Простейший вариант изменения оборотов электродвигателяЛегче всего изменять обороты электродвигателя постоянного тока. Они меняются простым изменением напряжения питания. Причем неважно где: на якоре или на возбуждении, но это касается только маломощных машин с минимальной нагрузкой. В основном управление скоростью вращения производят по цепи якоря. Более того, здесь возможно реостатное регулирование, если мощность мотора небольшая, или есть довольно мощный реостат.

Это самый неэкономичный вариант. Механические характеристики двигателя с независимым возбуждением самые невыгодные из-за больших потерь, результатом чего является падение механической мощности, КПД.

Еще одна возможность – введение реостата в обмотку возбуждения. Рассматривая характеристики двигателя с независимым возбуждением, увидим, что регулирование скорости вращения возможно только в сторону увеличения оборотов. Это происходит ввиду насыщения обмотки.

Читайте также:  Как подсоединить амперметр в цепь постоянного тока

Итак, реостатное регулирование скорости вращения аппарата независимого возбуждения оправдано в системах с минимальной нагрузкой. Лучше всего, когда работа при таком включении буде периодической.

В цепи якоря

Схема подключения цепи якоря к источнику напряжения

Это лучший вариант регулирования скорости мотора с независимым возбуждением. Частота вращения прямо пропорциональна подводимому к якорю напряжению. Механические характеристики не меняют своего угла наклона, а перемещаются параллельно друг другу.

Для осуществления этой схемы нужно цепь якоря подключить к источнику напряжения, которое можно менять.

Это возможно в электрических машинах малой или средней мощности. Двигатель большой мощности целесообразно подключить в схему с генератором напряжения независимого возбуждения.

Схема «двигатель-генератор»

В качестве привода для генератора используют обычный трехфазный асинхронник. Чтобы уменьшить обороты, достаточно на якоре понизить напряжение. Оно меняется от номинального и вниз. Эта схема имеет название «двигатель-генератор». Таким образом можно менять параметры на двигателе 220в.

Для низкого напряжения

Управление агрегатами на 12в проще из-за более низкого напряжения и как следствие, более доступных деталей. Вариантов подобных схем множество, поэтому важно понять сам принцип.

Такой двигатель имеет ротор, щеточный механизм и магниты. На выходе у него всего два провода, контролирование скорости идет по ним. Питание может быть 12, 24, 36в, или другое. Что нужно – это его менять. Лучше, когда в пределах от нуля до максимума. В более простых вариантах 12–0в не получится, другие варианты дают такую возможность.

Кто-то паяет радиоэлементы навесным монтажом, кто-то набирает печатную плату – это уже зависит от желания и возможностей каждого человека.

Схема для низкого напряжения

Этот вариант подойдет, если точность неважна: например, вентилятор. Напряжение меняется от 0 до 12 вольт, пропорционально меняется крутящий момент.

Другой вариант – со стабилизацией оборотов независимо от нагрузки на валу.

Схема со стабилизацией оборотов независимо от нагрузки на валу

Питание 12 вольт, схема очень проста. Двигатель набирает обороты плавно, и также плавно их сбавляет так как напряжение на выходе меняется в пределах 12–0в. Как результат – можно убрать крутящий момент практически до нуля. Если потенциометр крутить в обратном направлении, мотор так же постепенно набирает обороты до максимума. Микросхема очень распространенная, ее характеристики тоже подробно описаны. Питание 12–18в.

Есть еще один вариант, только это уже не для 12, а для 24в питания.

Схема со стабилизацией оборотов независимо от нагрузки на валу на 24В

Двигатель постоянного тока, питание – переменное, так как стоит диодный мост. При желании можно мост выбросить и запитывать постоянкой от своего блока питания.

От сети

Однофазные электродвигатели переменного тока также позволяют регулировать вращение ротора.

Коллекторные машины

Схема для изменения оборотов на коллекторных машинах

Такие моторы стоят на электродрелях, электролобзиках и другом инструменте. Чтобы уменьшить или увеличить обороты, достаточно, как и в предыдущих случаях, изменять напряжение питания. Для этой цели также есть свои решения.

Конструкция подключается непосредственно к сети. Регулировочный элемент – симистор, управление которого осуществляется динистором. Симистор ставится на теплоотвод, максимальная мощность нагрузки – 600 Вт.

Если есть подходящий ЛАТР, можно все это делать при помощи его.

Двухфазный двигатель

Схема на двухфазный двигатель

Аппарат, имеющий две обмотки – пусковую и рабочую, по своему принципу является двухфазным. В отличие от трехфазного имеет возможность менять скорость ротора. Характеристика крутящегося магнитного поля у него не круговая, а эллиптическая, что обусловлено его устройством.

Есть две возможности контролирования числа оборотов:

  1. Менять амплитуду напряжения питания (Uy),
  2. Фазное – меняем емкость конденсатора.

Такие агрегаты широко распространены в быту и на производстве.

Обычные асинхронники

Электрические машины трехфазного тока, несмотря на простоту в эксплуатации, обладают рядом характеристик, которые нужно учитывать. Если просто изменять питающее напряжение, будет в небольших пределах меняться момент, но не более. Чтобы в широких пределах регулировать обороты, необходимо довольно сложное оборудование, которое просто так собрать и наладить сложно и дорого.

Схема работы преобразователя частоты

Для этой цели промышленностью налажен выпуск частотных преобразователей, помогающих менять обороты электродвигателя в нужном диапазоне.

Асинхронник набирает обороты в согласии с выставленными на частотнике параметрами, которые можно менять в широком диапазоне. Преобразователь – самое лучшее решение для таких двигателей.

Выбираем устройство

Для того чтобы подобрать эффективный регулятор необходимо учитывать характеристики прибора, особенности назначения.

  1. Для коллекторных электродвигателей распространены векторные контроллеры, но скалярные являются надёжнее.
  2. Важным критерием выбора является мощность. Она должна соответствовать допустимой на используемом агрегате. А лучше превышать для безопасной работы системы.
  3. Напряжение должно быть в допустимых широких диапазонах.
  4. Основное предназначение регулятора преобразовывать частоту, поэтому данный аспект необходимо выбрать соответственно техническим требованиям.
  5. Ещё необходимо обратить внимание на срок службы, размеры, количество входов.

Прибор триак

Устройство симистр (триак) используется для регулирования освещением, мощностью нагревательных элементов, скоростью вращения.

Схема прибора триак

Схема контроллера на симисторе содержит минимум деталей, изображенных на рисунке, где С1 – конденсатор, R1 – первый резистор, R2 – второй резистор.

С помощью преобразователя регулируется мощность методом изменения времени открытого симистора. Если он закрыт, конденсатор заряжается посредством нагрузки и резисторов. Один резистор контролирует величину тока, а второй регулирует скорость заряда.

Когда конденсатор достигает предельного порога напряжения 12в или 24в, срабатывает ключ. Симистр переходит в открытое состояние. При переходе напряжения сети через ноль, симистр запирается, далее конденсатор даёт отрицательный заряд.

Преобразователи на электронных ключах

Тиристорные регуляторы мощности являются одними из самых распространенных, обладающие простой схемой работы.

Тиристор ку202н и его схема

Тиристор, работает в сети переменного тока.

Отдельным видом является стабилизатор напряжения переменного тока. Стабилизатор содержит трансформатор с многочисленными обмотками.

Схема стабилизатора постоянного тока

Схема стабилизатора постоянного тока

Зарядное устройство 24 вольт на тиристоре

Зарядное устройство 24 вольт на тиристоре

Принцип действия заключаются в заряде конденсатора и запертом тиристоре, а при достижении конденсатором напряжения, тиристор посылает ток на нагрузку.

Процесс пропорциональных сигналов

Сигналы, поступающие на вход системы, образуют обратную связь. Подробнее рассмотрим с помощью микросхемы.

Микросхема TDA 1085

Микросхема TDA 1085

Микросхема TDA 1085, изображенная выше, обеспечивает управление электродвигателем 12в, 24в обратной связью без потерь мощности. Обязательным является содержание таходатчика, обеспечивающего обратную связь двигателя с платой регулирования. Сигнал стаходатчика идёт на микросхему, которая передаёт силовым элементам задачу – добавить напряжение на мотор. При нагрузке на вал, плата прибавляет напряжение, а мощность увеличивается. Отпуская вал, напряжение уменьшается. Обороты будут постоянными, а силовой момент не изменится. Частота управляется в большом диапазоне. Такой двигатель 12, 24 вольт устанавливается в стиральные машины.

Своими руками можно сделать прибор для гриндера, токарного станка по дереву, точила, бетономешалки, соломорезки, газонокосилки, дровокола и многого другого.

Микросхема U2008B

Промышленные регуляторы, состоящие из контроллеров 12, 24 вольт, заливаются смолой, поэтому ремонту не подлежат. Поэтому часто изготавливается прибор 12в самостоятельно. Несложный вариант с использованием микросхемы U2008B. В регуляторе используется обратная связь по току или плавный пуск. В случае использования последнего необходимы элементы C1, R4, перемычка X1 не нужна, а при обратной связи наоборот.

При сборе регулятора правильно выбирать резистор. Так как при большом резисторе, на старте могут быть рывки, а при маленьком резисторе компенсация будет недостаточной.

Важно! При регулировке контроллера мощности нужно помнить, что все детали устройства подключены к сети переменного тока, поэтому необходимо соблюдать меры безопасности!

Регуляторы оборотов вращения однофазных и трехфазных двигателей 24, 12 вольт представляют собой функциональное и ценное устройство, как в быту, так и в промышленности.

Измерения

Понятно, что число оборотов нужно как-то определять. Для этого используют тахометры. Они показывают число вращения на данный момент. Обычным мультиметром просто так измерить скорость не получится, разве что на автомобиле.

Как видно, на электрических машинах можно менять различные параметры, подстраивая их под нужды производства и домашнего хозяйства.

Источник



Управление скоростью вращения однофазных двигателей

Изменение оборотов асинхронного двигателя

Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

Читайте также:  Вентиляторы переменного тока ac 220v

Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки — рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

Схема обмоток конденсаторного электромотораКонденсаторный двигатель с фазосдвигающей обмоткой

Регулировать скорость вращения таких двигателей необходимо, например, для:

  • изменения расхода воздуха в системе вентиляции
  • регулирования производительности насосов
  • изменения скорости движущихся деталей, например в станках, конвеерах

В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

Способы регулирования

Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

Рассмотрим способы с изменением электрических параметров:

  • изменение напряжения питания двигателя
  • изменение частоты питающего напряжения

Регулирование напряжением

Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

n1 скорость вращения магнитного поля

n2 — скорость вращения ротора

При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.

Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.

При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

На практике для этого применяют различные схемы регуляторов.

Автотрансформаторное регулирование напряжения

Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

Регулировка скорости асинхронного двигателя

На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

Преимущества данной схемы:

      • неискажённая форма выходного напряжения (чистая синусоида)
      • хорошая перегрузочная способность трансформатора

Недостатки:

      • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
      • все недостатки присущие регулировке напряжением

Регулирование напряжением скорости вращения двигателяУправление скоростью двигателя трансформатором

Тиристорный регулятор оборотов двигателя

В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

Принципиальная электронная схема регулятора оборотов двигателя вентилятора

Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

Таким образом изменяется среднеквадратичное значение напряжения.

Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

  • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
  • добавляют на выходе конденсатор для корректировки формы волны напряжения
  • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
  • используют тиристоры с током в несколько раз превышающим ток электромотора

Достоинства тиристорных регуляторов:

      • низкая стоимость
      • малая масса и размеры

Недостатки:

      • можно использовать для двигателей небольшой мощности
      • при работе возможен шум, треск, рывки двигателя
      • при использовании симисторов на двигатель попадает постоянное напряжение
      • все недостатки регулирования напряжением

Используется для изменения оборотов вентилятораУстройство тиристорного регулятора

Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

Транзисторный регулятор напряжения

Как называет его сам производитель — электронный автотрансформатор или ШИМ-регулятор.

Электронный трансформатор для двигателя вентилятора

Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

Электронная схема трансформатора регулировки вращения двигателя

Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

Выходной каскад такой же как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

Плюсы электронного автотрансформатора:

        • Небольшие габариты и масса прибора
        • Невысокая стоимость
        • Чистая, неискажённая форма выходного тока
        • Отсутствует гул на низких оборотах
        • Управление сигналом 0-10 Вольт

Слабые стороны:

        • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
        • Все недостатки регулировки напряжением

Частотное регулирование

Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

Однофазные двигатели могут управляться:

  • специализированными однофазными ПЧ
  • трёхфазными ПЧ с исключением конденсатора

Преобразователи для однофазных двигателей

В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.

Это модель Optidrive E2

Частотный преобразователь для однофазных двигателей

Для стабильного запуска и работы двигателя используются специальные алгоритмы.

При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

f — частота тока

С — ёмкость конденсатора

В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

Преобразователь частоты для однофазного двигателя

Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.

Преимущества специализированного частотного преобразователя:

        • интеллектуальное управление двигателем
        • стабильно устойчивая работа двигателя
        • огромные возможности современных ПЧ:
          • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
          • многочисленные защиты (двигателя и самого прибора)
          • входы для датчиков (цифровые и аналоговые)
          • различные выходы
          • коммуникационный интерфейс (для управления, мониторинга)
          • предустановленные скорости
          • ПИД-регулятор

Минусы использования однофазного ПЧ:

        • ограниченное управление частотой
        • высокая стоимость

Использование ЧП для трёхфазных двигателей

Частотный преобразователь Тошиба

Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

Из однофазного двигателя удаляют конденсатор

Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

Расположение обмоток

Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

При работе без конденсатора это приведёт к:

  • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
  • разному току в обмотках

Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

Преимущества:

          • более низкая стоимость по сравнению со специализированными ПЧ
          • огромный выбор по мощности и производителям
          • более широкий диапазон регулирования частоты
          • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

Недостатки метода:

          • необходимость предварительного подбора ПЧ и двигателя для совместной работы
          • пульсирующий и пониженный момент
          • повышенный нагрев
          • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

Источник