Меню

Как узнать направление тока в контуре

Метод контурных токов для расчёта электрических цепей

При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов позволяет уменьшить количество решаемых уравнений.

Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

В методе контурных токов уравнения составляются на основании второго закона Кирхгофа, причём их равно $ N_<\textrm<в>>-N_<\textrm<у>>+1 $, где $ N_<\textrm<у>> $ – число узлов, $ N_<\textrm<в>> $ – число ветвей, т.е. количество совпадает с количеством уравнений, составляемых по второму закону Кирхгофа.

Опишем методику составления уравнений по методу контурных токов. Рассмотрим её на примере электрической цепи, представленной на рис. 1.

Электрическая схема метод контурных токов для расчёта электрической цепи

Рис. 1. Рассматриваемая электрическая цепь

Для начала необходимо задать произвольно направления контурных токов (рис. 2).

Электрическая схема метод контурных токов для расчёта электрической цепи направление контурных токов

Рис. 2. Задание направления контурных токов в электрической цепи

Количество уравнений, составляемых по методу контурных токов, равно 3. Здесь контур с источником тока так же не рассматривается.

Составим уравнение для контура «1 к.». В контуре «1 к.» контурный ток $ \underline_ <11>$ протекает по всем сопротивлениям $ R_ <2>$, $ \underline_ $, $ \underline_ $. Кроме того, через сопротивление $ R_ <2>$ протекает контурный ток смежного контура «2 к.» $ \underline_ <22>$, причём контурные токи $ \underline_ <11>$ и $ \underline_ <22>$ протекают в противоположных направлениях. Через индуктивное сопротивление $ \underline_ $ также протекает контурный ток $ \underline_ <33>$, причём контурные токи $ \underline_ <11>$ и $ \underline_ <33>$ также протекают в противоположных направлениях. Про составлении уравнения нужно сложить все падения напряжения (аналогично второму закону Кирхгофа), при этом необходимо учесть направление контурных токов: если контурные токи смежных контуров протекают в определённой ветви в одном направлении, то падение напряжения в этой ветви необходимо вносить со знаком «+», в противном случае – со знаком «-». Полученная сумма будет равна сумме ЭДС данного контура, при этом ЭДС берётся со знаком «+», если направление контурного тока совпадает с направлением ЭДС, в противном случае – со знаком «-».

Учитывая вышеизложенное, уравнение по методу контурных токов для контура «1 к.» будет выглядеть следующим образом:

$$ (R_ <2>+ \underline_ + \underline_) \cdot \underline_<11>— R_ <2>\cdot \underline_<22>— \underline_ \cdot \underline_ <33>= \underline_<1>. $$

Аналогично составим уравнение для контура «2 к.». Необходимо учесть, что уравнение для контура с источником тока не составляется, но ток от источника тока также необходимо учитывать в уравнение аналогично контурным токам других контуров. Само уравнение будет выглядеть следующим образом:

$$ -R_ <2>\cdot \underline_ <11>+ (R_ <2>+ R_ <4>+ \underline_) \cdot \underline_<22>— \underline_ \cdot \underline_ <1>= \underline_<2>. $$

Для контура «3 к.»:

$$ -\underline_ \cdot \underline_ <11>+ (R_ <1>+ R_ <3>+ \underline_ + \underline_) \cdot \underline_<33>— R_ <3>\cdot \underline_ <1>= \underline_<3>. $$

В приведённых выше уравнениях $ \underline_ = -\frac<1> <\omega C>$, $ \underline_ = \omega L $.

Таким образом, для того, чтобы найти искомые контурные токи, необходимо решить следующую систему уравнений, где слагаемые с силой тока источника тока перенесены в правую часть уравнений:

$$ \begin (R_ <2>+ \underline_ + \underline_) \cdot \underline_<11>— R_ <2>\cdot \underline_<22>— \underline_ \cdot \underline_ <33>= \underline_ <1>\\ -R_ <2>\cdot \underline_ <11>+ (R_ <2>+ R_ <4>+ \underline_) \cdot \underline_ <22>= \underline_ <2>+ \underline_ \cdot \underline_ <1>\\ -\underline_ \cdot \underline_ <11>+ (R_ <1>+ R_ <3>+ \underline_ + \underline_) \cdot \underline_ <33>= \underline_ <3>+ R_ <3>\cdot \underline_ <1>\end $$

В данном случае это система из 3 уравнений с 3 неизвестными. Для решения данной системы уравнений удобно пользоваться Matlab. Для этого представим эту систему уравнений в матричной форме:

$$ \begin R_ <2>+ \underline_ + \underline_ & -R_ <2>& -\underline_ \\ -R_ <2>& R_ <2>+ R_ <4>+ \underline_ & 0 \\ -\underline_ & 0 & R_ <1>+ R_ <3>+ \underline_ + \underline_ \end \cdot \begin \underline_ <11>\\ \underline_ <22>\\ \underline_ <33>\end = \begin \underline_ <1>\\ \underline_ <2>+ \underline_ \cdot \underline_ <1>\\ \underline_ <3>+ R_ <3>\cdot \underline_ <1>\end $$

Для решения данной системы уравнений воспользуемся следующим скриптом Matlab:

В результате получим вектор-столбец $ \underline<\bold> $ токов из трёх элементов, состоящий из искомых контурных токов, при этом

Далее в схеме по рис. 2 расставим направления токов в ветвях (рис. 3).

Читайте также:  Машины постоянного тока генераторы двигатели обратимость машин

Электрическая схема метод контурных токов для расчёта электрической цепи определение токов в ветвях

Рис. 3. Задание направления токов в электрической цепи

Для определения токов в ветвях необходимо рассмотреть все контурные токи, которые протекают через данную ветвь. Видим, что через ветвь, где протекает ток $ \underline_ <1>$, проходит только один контурный ток $ \underline_ <11>$, и он сонаправлен, отсюда

Через ветвь, где протекает ток $ \underline_ <2>$, проходят контурные токи $ \underline_ <11>$ и $ \underline_ <22>$, причём ток $ \underline_ <11>$ совпадает с принятым направлением тока $ \underline_ <2>$, а ток $ \underline_ <22>$ – не совпадает. Те контурные токи, которые совпадают с принятым направлением, берутся со знаком «+», те, которые не совпадают – со знаком «-». Отсюда

Аналогично для других ветвей

$$ \underline_ <5>= \underline_<22>— \underline_<1>, $$

$$ \underline_ <7>= \underline_<33>— \underline_<1>, $$

Итак, метод контурных токов позволяет рассчитывать меньшее количество сложных уравнений для расчёта аналогичной электрической цепи по сравнению с законами Кирхгофа.

Список использованной литературы

  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.

Рекомендуемые записи

Расчёт матриц передачи многополюсников различной формы осуществляется достаточно просто. Матрицы передачи — это математическое описание рассматриваемой…

Во время работы электроэнергетических систем могут возникнуть не только режимы коротких замыканий, но и обрывы. Метод…

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие…

Источник

§ 40. Направление индукционного тока. Правило Ленца

В предыдущем параграфе были рассмотрены опыты по получению индукционного тока и установлена причина его возникновения.

Как же направлен индукционный ток? Для ответа на этот вопрос воспользуемся прибором, изображённым на рисунке 123. Он представляет собой узкую алюминиевую пластинку с алюминиевыми кольцами на концах. Одно кольцо сплошное, другое имеет разрез. Пластинка с кольцами помещена на стойку и может свободно вращаться вокруг вертикальной оси.

При приближении к сплошному кольцу любого полюса магнита кольцо отталкивается от него

Рис. 123. При приближении к сплошному кольцу любого полюса магнита кольцо отталкивается от него

Возьмём полосовой магнит и внесём его в кольцо с разрезом — кольцо останется на месте. Если же вносить магнит в сплошное кольцо, то оно будет отталкиваться, уходить от магнита, поворачивая при этом всю пластинку. Результат будет точно таким же, если магнит будет повёрнут к кольцам не северным полюсом (как показано на рисунке), а южным. Объясним наблюдаемые явления.

При приближении к кольцу любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток увеличивается (рис. 124). При этом в сплошном кольце возникает индукционный ток, а в кольце с разрезом тока не будет.

Возникновение индукционного тока в сплошном кольце при приближении к кольцу магнита

Рис. 124. Возникновение индукционного тока в сплошном кольце при приближении к кольцу магнита

Ток в сплошном кольце создаёт в пространстве магнитное поле, благодаря чему кольцо приобретает свойства магнита. Взаимодействуя с приближающимся полосовым магнитом, кольцо отталкивается от него. Из этого следует, что кольцо и магнит обращены друг к другу одноимёнными полюсами, а векторы магнитной индукции (Вк и Вм) их полей направлены в противоположные стороны (рис. 125). Зная направление вектора индукции магнитного поля кольца, можно по правилу правой руки (см. рис. 97) определить направление индукционного тока в кольце. Отодвигаясь от приближающегося к нему магнита, кольцо противодействует увеличению проходящего сквозь него внешнего магнитного потока.

Определение направления индукционного тока в кольце

Рис. 125. Определение направления индукционного тока в кольце

Теперь посмотрим, что произойдёт при уменьшении внешнего магнитного потока сквозь кольцо. Для этого, удерживая кольцо рукой, внесём в него магнит. Затем, отпустив кольцо, начнём удалять магнит. В этом случае кольцо будет следовать за магнитом, притягиваться к нему (рис. 126). Значит, кольцо и магнит обращены друг к другу разноимёнными полюсами, а векторы магнитной индукции их полей направлены в одну сторону (рис. 127). При одинаковом направлении Вк и Вм магнитное поле тока будет противодействовать уменьшению внешнего магнитного потока, проходящего сквозь кольцо.

При удалении магнита от сплошного кольца оно, притягиваясь, следует за магнитом

Рис. 126. При удалении магнита от сплошного кольца оно, притягиваясь, следует за магнитом

Направление индукционного тока в кольце меняется при изменении направления движения магнита относительно кольца

Рис. 127. Направление индукционного тока в кольце меняется при изменении направления движения магнита относительно кольца

Читайте также:  2 а ток өтетін тізбек бөлігінің ток қуатын анықтаңдар бөлік соңындағы потенциалдар айырымы 12 в

Мы видим, что для определения направления индукционного тока прежде всего необходимо узнать, как направлен вектор магнитной индукции созданного этим током магнитного поля (в центре кольца). На основании результатов рассмотренных опытов (в одном из них внешний магнитный поток увеличивался, а в другом — уменьшался) было сформулировано правило, которое в современной формулировке звучит так:

  • возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешнего магнитного потока, которое вызвало этот ток

Данное правило было установлено в 1834 г. российским учёным Эмилием Христиановичем Ленцем, в связи с чем называется правилом Ленца.

Источник

Как узнать направление тока в контуре

Направление индукционного тока

При внесении в катушку магнита в ней возникает индукционный ток. Если к катушке присоединить гальванометр, то можно заметить, что направление тока будет зависеть от того приближаем ли мы магнит или удаляем его.

Магнит будет взаимодействовать с катушкой либо притягиваясь, либо отталкиваясь от нее. Это будет возникать вследствие того, что катушка с проходящим по ней током, будет подобна магниту с двумя полюсами. Направление индуцируемого тока будет определять, где у катушки будет находиться какой из полюсов.

Если приближать к катушке магнит, то в ней будет возникать индукционный ток такого направления, что катушка обязательно будет отталкиваться от магнита. Если мы будет удалять магнит от катушки, то при этом в катушке возникнет такой индукционный ток, что она будет притягиваться к магниту.

Стоит отметить, что не важно каким полюсом мы подносим или убираем магнит, всегда при подносе катушка будет отталкиваться, а при удалении притягиваться. Различие состоит в том, что при приближении магнита к катушке магнитный поток, который будет пронизывать катушку, увеличивается, так как у полюса магнита кучность линий магнитной индукции увеличивается. А при удалении магнита, магнитный поток, пронизывающий катушку, будет уменьшаться.

Узнать направление индукционного тока можно. Для этого существует правило Ленца. Оно основано на законе сохранения. Рассмотрим следующий опыт.

Так как должен выполняться закон сохранения, должно возникнуть магнитное поле, которое будет препятствовать изменению магнитного потока. В нашем случае магнитный поток увеличивался, следовательно, ток должен течь в таком направлении, чтобы линии вектора магнитной индукции, создаваемые катушкой, были направлены в противоположном направлении линиям магнитной индукции, создаваемым магнитом.

То есть они должны в нашем случае быть направлены вверх. Теперь воспользуемся правилом буравчика. Направляем большой палец правой руки по необходимому нам направлению линий магнитной индукции, то есть — вверх. Тогда остальные пальцы укажут, в какую сторону должен быть направлен индукционный ток. В нашем случае, слева на право.

Аналогичный процесс происходит при удалении магнита. Убираем магнит, магнитный поток уменьшается, следовательно, должно возникнуть поле которое будет увеличивать магнитный поток. То есть поле линии магнитной индукции, которого будут сонаправлены с линиями магнитной индукции, создаваемыми постоянным магнитом. В нашем случае эти лини направлены вниз. Опять пользуемся правилом буравчика и определяем направление индукционного тока.

Правило Ленца.

Согласно правилу Ленца возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Более кратко это правило можно сформулировать следующим образом: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей.

Применять правило Ленца для нахождения направления индукционного тока в контуре надо так:

1. Определить направление линий магнитной индукции вектора В внешнего магнитного поля.

2. Выяснить, увеличивается ли поток вектора магнитной индукции этого поля через поверхность, ограниченную контуром ( Δ Ф > 0), или уменьшается ( Δ Ф

3. Установить направление линий магнитной индукции вектора В’ магнитного поля индукционного тока. Эти линии должны быть согласно правилу Ленца направлены противоположно линиям магнитной индукции вектора В’ при Δ Ф > 0 и иметь одинаковое с ними направление при Δ Ф

4. Зная направление линий магнитной индукции вектора В’ , найти направление индукционного тока, пользуясь правилом буравчика.

Направление индукционного тока определяется с помощью закона сохранения энергии. Индукционный ток во всех случаях направлен так, чтобы своим магнитным полем препятствовать изменению магнитного потока, вызывающего данный индукционный ток.

Читайте также:  Ги 46б ток покоя

Вихревое электрическое поле .

Причина возникновения электрического тока в неподвижном проводнике — электрическое поле.

Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым.Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока

Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

индукционное электрическое поле

(вихревое электрическое поле )

1. создается неподвижными электрическими зарядами

1. вызывается изменениями магнитного поля

2. силовые линии поля разомкнуты -потенциальное поле

2. силовые линии замкнуты — вихревое поле

3. источниками поля являются электрические заряды

3. источники поля указать нельзя

4. работа сил поля по перемещению пробного заряда по замкнутому пути равна нулю.

4. работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции

Источник



Как узнать направление тока в контуре

«Физика — 11 класс»

Направление индукционного тока

Направление индукционного тока, возникающего в катушке, зависит от того, приближается магнит к катушке или удаляется от нее.

Возникающий индукционный ток может притягивать или отталкивать магнит, т.к. катушка становится подобной магниту с двумя полюсами — северным и южным.
На основе закона сохранения энергии можно предсказать, в каких случаях катушка будет притягивать магнит, а в каких отталкивать его.

Взаимодействие индукционного тока катушки с магнитом.

В чем состоит различие двух опытов: приближение магнита к катушке и его удаление?

Если магнит приближать к катушке

Число линий магнитной индукции, пронизывающих витки катушки, или, что то же самое, магнитный поток, увеличивается.
Катушка становится подобной магниту, обращенному одноименным полюсом к приближающемуся к ней магниту.
Линии индукции ‘ магнитного поля, созданного возникшим в катушке индукционным током, выходят из верхнего конца катушки.
В катушке появляется индукционный ток такого направления, что магнит обязательно отталкивается.
Для сближения магнита и катушки нужно совершить положительную работу.

Если магнит удалять от катушки

Число линий магнитной индукции, пронизывающих витки катушки, или, что то же самое, магнитный поток, уменьшается.
Линии индукции ‘ магнитного поля, созданного возникшим в катушке индукционным током, входят в верхний конец катушки.
Катушка с током становится аналогична магниту, северный полюс которого находится снизу.
В катушке возникает ток такого направления, что проявляется притягивающая магнит сила.

Аналогично можно рассмотреть опыт, когда на концах стержня, который может свободно вращаться вокруг вертикальной оси, закреплены два проводящих алюминиевых кольца (одно из них с разрезом).

С разрезанным кольцом магнит не взаимодействует, так как разрез препятствует возникновению в кольце индукционного тока.
Отталкивает или притягивает другое кольцо магнит, зависит от направления индукционного тока, возникающего в кольце.
Поэтому закон сохранения энергии позволяет сформулировать правило, определяющее направление индукционного тока.

Правило Ленца

Существует правило, позволяющее определить направление индукционного тока, которое было установлено русским физиком Э. X. Ленцем:

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

или более кратко:

Индукционный ток направлен так, чтобы препятствовать причине, его вызывающей.

При увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует усилению магнитного потока через витки катушки.
Ведь линии индукции ‘ этого поля направлены против линий индукции поля, изменение которого порождает электрический ток.
Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с индукцией ‘ увеличивающее магнитный поток через витки катушки.

Применение правила Ленца:

1. Определить направление линий магнитной индукции внешнего магнитного поля.

2. Выяснить, увеличивается ли поток вектора магнитной индукции этого поля через поверхность, ограниченную контуром (ΔФ > 0), или уменьшается (ΔФ 0 и иметь одинаковое с ними направление при ΔФ По следам «английских ученых»

Источник