Меню

Какая величина скалярная сила работа энергия импульс мощность

Механическая работа и мощность

Содержание

  1. Работа различных сил
  2. Работа силы упругости
  3. Работы силы трения покоя
  4. Знак работы силы
  5. Геометрический смысл работы
  6. Мощность
  7. Коэффициент полезного действия

Второй закон Ньютона в импульсной форме позволяет определить, как меняется скорость тела по модулю и направлению, если в течение некоторого времени на него действует определенная сила:

В механике также важно уметь вычислять изменение скорости по модулю, если при перемещении тела на некоторый отрезок на него действует некоторая сила. Воздействия на тела сил, приводящих к изменению модуля их скорости, характеризуется величиной, зависящей как от сил, так и от перемещений. Эту величину в механике называют работой силы.

Работа силы обозначается буквой А. Это скалярная физическая величина. Единица измерения — Джоуль (Дж).

Работа силы равна произведению модуля силы, модуля перемещения и косинусу угла между ними:

Механическая работа совершается, если:

  1. На тело действует сила.
  2. Под действием этой силы тело перемещается.
  3. Угол между вектором силы и вектором перемещения не равен 90 градусам (потому что косинус прямого угла равен нулю).

Внимание! Если к телу приложена сила, но под ее действием тело не начинает движение, механическая работа равна нулю.

Пример №1. Груз массой 1 кг под действием силы 30 Н, направленной вертикально вверх, поднимается на высоту 2 м. Определить работу, совершенной этой силой.

Так как перемещение и вектор силы имеют одно направление, косинус угла между ними равен единице. Отсюда:

Работа различных сил

Любая сила, под действием которой перемещается тело, совершает работу. Рассмотрим работу основных сил в таблице.

Модуль силы тяжести: F тяж = mg

Работа силы тяжести: A = mgs cosα

Модуль силы трения скольжения: F тр = μN = μmg

Работа силы трения скольжения: A = μmgs cosα

Модуль силы упругости: F упр = kx

Работа силы упругости:

Работа силы упругости

Работа силы упругости не может быть определена стандартной формулой, так как она может применяться только для постоянной по модулю силы. Сила же упругости меняется по мере сжатия или растяжения пружины. Поэтому берется среднее значение, равное половине суммы сил упругости в начале и в конце сжатия (растяжения):

Нужно также учесть, что перемещение тела под действием силы упругости равно разности удлинения пружины в начале и конце:

Перемещение и направление силы упругости всегда сонаправлены, поэтому угол между ними нулевой. А косинус нулевого угла равен 1. Отсюда работа силы упругости равна:

Работы силы трения покоя

Работы силы трения покоя всегда равна 0, так как под действием этой силы тело не сдвигается с места. Исключение составляет случай, когда покоящееся тело лежит на подвижном предмете, на который действует некоторая сила. Относительно системы координат, связанной с подвижным предметом, работа силы трения покоя будет нулевой. Но относительно системы отсчета, связанной с Землей, эта сила будет совершать работу, так как тело будет двигаться, оставаясь на поверхности движущегося предмета.

Пример №2. Груз массой 100 кг волоком перетащили на 10 м по плоскости, поверхность которой имеет коэффициент трения 0,4. Найти работу, совершенной силой трения скольжения.

A = μmgs cosα = 0,4∙100∙10∙10∙(–1) = –4000 (Дж) = –4 (кДж)

Знак работы силы

Знак работы силы определяется только косинусом угла между вектором силы и вектором перемещения:

  1. Если α = 0 о , то cosα = 1.
  2. Если 0 о o , то cosα > 0.
  3. Если α = 90 о , то cosα = 0.
  4. Если 90 о o , то cosα о , то cosα = –1.

Работа силы трения скольжения всегда отрицательна, так как сила трения скольжения направлена противоположно перемещению тела (угол равен 180 о ). Но в геоцентрической системе отсчета работа силы трения покоя будет отличной от нуля и выше нуля, если оно будет покоиться на движущемся предмете (см. рис. выше). В таком случае сила трения покоя будет направлена с перемещением относительно Земли в одну сторону (угол равен 0 о ). Это объясняется тем, что тело по инерции будет пытаться сохранить покой относительно Земли. Это значит, что направление возможного движения противоположно движению предмета, на котором лежит это тело. А сила трения покоя направлена противоположно направлению возможного движения.

Геометрический смысл работы

Механическая работа численно равна площади фигуры, ограниченной графиком с осями OF и OX.

Мощность

Мощность — физическая величина, показывающая, какую работу совершает тело в единицу времени. Мощность обозначается буквой N. Единица измерения: Ватт (Вт). Численно мощность равна отношению работы A, совершенной телом за время t:

Рассмотрим частные случаи определения мощности в таблице.

Мощность при равномерном прямолинейном движении тела

Работа при равномерном прямолинейном движении определяется формулой:

F т — сила тяги, s — перемещение тела под действием этой силы. Отсюда мощность равна:

Мощность при равномерном подъеме груза

Когда груз поднимается, совершается работа, по модулю равная работе силе тяжести. За перемещение в этом случае можно взять высоту. Поэтому:

Читайте также:  Двигатель фольксваген 2 4 нет мощности

Мгновенная мощность при неравномерном движении

Выше мы уже получили, что мощность при постоянной скорости равна произведению этой скорости на силу тяги. Но если скорость постоянно меняется, можно вычислить мгновенную мощность. Она равна произведению силы тяги на мгновенную скорость:

Мощность силы трения при равномерном движении по горизонтали

Мощность силы трения отрицательна так же, как и работа. Это связано с тем, что угол между векторами силы трения и перемещения равен 180 о (косинус равен –1). Учтем, что сила трения скольжения равна произведению силы нормальной реакции опоры на коэффициент трения:

Пример №3. Машина равномерно поднимает груз массой 10 кг на высоту 20 м за 40 с. Чему равна ее мощность?

Коэффициент полезного действия

Не вся работа, совершаемая телами, может быть полезной. В реальном мире на тела действует несколько сил, препятствующих совершению работы другой силой. К примеру, чтобы переместить груз на некоторое расстояние, нужно совершить работу гораздо большую, чем можно получить при расчете по формулам выше.

  • Работа затраченная — полная работа силы, совершенной над телом (или телом).
  • Работа полезная — часть полной работы силы, которая вызывает непосредственно перемещение тела.
  • Коэффициент полезного действия (КПД) — процентное отношение полезной работы к работе затраченной. КПД обозначается буквой «эта» — η. Единицы измерения эта величина не имеет. Она показывает эффективность работы механизма или другой системы, совершающей работу, в процентах.

КПД определяется формулой:

Работа может определяться как произведение мощности на время, в течение которого совершалась работа:

Поэтому формулу для вычисления КПД можно записать в следующем виде:

Частые случаи определения КПД рассмотрим в таблице ниже:

Источник



Блок 2. Импульс тела. Работа. Мощность. Энергия. Законы сохранения. Простые механизмы. КПД

Импульс тела (количество движения). Закон сохранения импульса.

1. Импульс тела – векторная физическая величина равная произведению массы тела на его скорость и имеющая направление скорости. P = mv.

2. Обычно при решении задач рассматривается замкнутая система тел – это такая система, для которой равнодействующая внешних сил равна нулю. Учитываются только внутренние силы, то есть силы взаимодействия между телами внутри системы: это силы упругости при ударе, силы трения при движении, гравитационные силы при рассмотрении взаимодействия тел во Вселенной, кулоновские силы электрического взаимодействия, магнитные силы и т. д.

3. Закон сохранения импульса. Векторная сумма импульсов тел замкнутой системы до взаимодействия равна векторной сумме импульсов тел этой системы после взаимодействия. Реактивное движение – это движение, возникающее при отделении от тела некоторой его части с какой-то скоростью. Выстрел, ракета, осьминог, надувной шарик и т. д.

Работа. Мощность. Энергия. Простые механизмы. КПД.

1. Если тело перемещается под действием силы, то говорят, что оно совершает работу. Механической работой называется величина численно равная произведению модуля силы на модуль перемещения и на косинус угла между векторами силы и перемещения A = F S cos α.Измеряется работа в Дж (Джоуль). В зависимости от угла между векторами перемещения и силы, работа может быть отрицательной и даже равной нулю.

2. Если тело способно совершать работу, то оно обладает энергией. Физическая величина, характеризующая способность тела совершать работу называется энергией [E] – Дж.

3. Потенциальная энергия тела – энергия взаимодействия.Потенциальной энергией обладают тела, поднятые над Землёй, упруго деформированные тела. Eр = mgh, Eр = k x 2 /2.

4. Кинетическая энергия тела – энергия движения. Ек = mv2 2 /2

5. Полная механическая энергия системы рана сумме её кинетической и потенциальной энергий.

6. Закон сохранения механической энергии: Если в замкнутой системе не действуют силы трения, то полная механическая энергия системы сохраняется при любых взаимодействиях тел системы.

7. Закон сохранения энергии — основной закон Природы .Энергия никуда не исчезает и из ничего не возникает. Она лишь передаётся от одного тела к другому, или превращается из одного вида в другой.

8. Мощность – физическая величина, характеризующая скорость выполнения работы. P = A/t (Ватт)

9. Средняя мощность P = A/t .Мгновенная мощность P = Fv

10. Простые механизмы – это устройства, предназначенные для облегчения выполнения работы. Все простые механизмы: рычаг, блок, ворот, наклонная плоскость, клин, винт не дают выигрыша в работе: во сколько раз мы выигрываем в силе, во столько раз проигрываем в расстоянии. Это «Золотое правило механики».Зато они дают выигрыш в силе, например, подвижный блок даёт выигрыш в силе в два раза. Огромное применение получил рычаг — тело, имеющее ось вращения.Рычаг применяется в ножницах, в щипцах, для подъёма воды из колодцев, в гвоздодёрах, в подъёмных кранах.Рычаг находится в равновесии, если алгебраическая сумма всех моментов сил, действующих на тело, равна 0. Момент силывеличина, равная произведению силы на её плечо. Плечо силы – это кратчайшее расстояние от оси вращения до направления действующей силы. M = Fdмомент силы. M>0, если сила вращает тело по часовой стрелке. M 2 +5t – 2. 16 Н

Читайте также:  Мощность энергосберегающих ламп по сравнению с электрическими

3. Мотоциклист, двигаясь по хорошей дороге с постоянной скоростью 108 км/ч, проехал 4 / 7 всего пути. Оставшуюся часть пути по плохой дороге он проехал со скоростью 15 м/с. Какая средняя скорость на всём пути у мотоциклиста? Ответ: 21 м/с.

4. Как при свободном падении тела из состояния покоя увеличивается скорость за третью секунду; за три секунды? Ответ: на10 м/с; на 30 м/с.

5. От берега отплывает плот массой 150 кг со скоростью 2 м/с. С берега на него прыгает человек, массой 50 кг со скоростью 6 м/с. С какой скоростью будет двигаться человек вместе с плотом?? Ответ: 3 м/с.

6. Камень, брошенный вертикально вверх со скоростью 10 м/с, упал на землю. Сколько времени камень находился в полёте. Трение пренебрежимо мало. Ответ: 2 с.

7. На рисунке приведён график зависимости скорости тела от времени. Чему равна равнодействующая сила, действующая на тело, если масса тела 1 кг. Ответ: 1 Н.

8. С какой скоростью двигался поезд массой 150 т, если под действием силы сопротивления 150 кН он прошёл с момента начала торможения до остановки 50 м. Ответ: 10 м/с.

9. Парашютист спускается, двигаясь равномерно и прямолинейно. Объясните, действие каких сил компенсируется. Ответ: действие Земли и действие воздуха.

10. Два астероида равной массы находятся на некотором расстоянии друг от друга и притягиваются с силой F. С какой силой будут притягиваться астероиды, если их массы будут в 2 раза больше, а расстояние между их центрами в два раза меньше. Ответ: 16F.

11. Радиус Земли равен 6400 км. На каком расстоянии от поверхности Земли сила притяжения к ней космического корабля станет в 9 раз меньше чем на поверхности Земли? Ответ: На расстоянии 2 земных радиусов.

12. На вагонетку массой 800 кг, катящуюся со скоростью 0,2 м/с. Насыпали 200 кг гравия. На сколько при этом уменьшилась скорость вагонетки? Ответ: 0,04 м/с.

13. Определите ускорение свободного падения на планете, масса которой в 3 раза меньше массы Земли, а радиус в 2 раза меньше земного радиуса. Ответ: 4g/3 = 13,3 м/с 2 .

14. Сравните силы притяжения Луны к Земле и Земли к Луне. Ответ: одинаковы.

15. Игрок в керлинг в некоторый момент толкает биту . Скорость биты при этом стала 6 м/с. Масса биты 20 кг, а игрока 80 кг. Какова скорость игрока после толчка? Трение коньков о лёд не учитывать. Ответ: 1,5 м/с.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование

Как сказал.

Стремись не к тому, чтобы добиться успеха, а к тому, чтобы твоя жизнь имела смысл.

Альберт Эйнштейн

Тестирование

Урок 11. Лекция 11. Работа. Мощность. Энергия. Закон сохранения энергии

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.

Если на тело действует сила и тело под действием этой силы перемещается, то говорят, что сила совершает работу.

Механическая работа – это скалярная величина, равная произведению модуля силы, действующей на тело, на модуль перемещения и на косинус угла между вектором силы и вектором перемещения (или скорости).

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α N=A/t

В Международной системе (СИ) единица мощности называется ватт (Вт). Ватт равен мощности силы, совершающей работу в 1 Дж за время 1 с.

Внесистемная единица мощности 1 л.с.=735 Вт

Связь между мощностью и скоростью при равномерном движении:

N=A/t так как A=FScosα тогда N=(FScosα)/t, но S/t = v следовательно

Читайте также:  Хлебопечки с хорошей мощностью

N=Fvcos α

В технике используются единицы работы и мощности:

1 Вт·с = 1 Дж; 1Вт·ч = 3,6·10 3 Дж; 1кВт·ч = 3,6·10 6 Дж

Если тело способно совершить работу, то говорят, что оно обладает энергией.

Механическая энергия тела – это скалярная величина, равная максимальной работе, которая может быть совершена в данных условиях.

Обозначается Е Единица энергии в СИ [1Дж = 1Н*м]

Механическая работа есть мера изменения энергии в различных процессах А = ΔЕ.

Различают два вида механической энергии – кинетическая Ек и потенциальная Еp энергия.

Полная механическая энергия тела равна сумме его кинетической и потенциальной энергий

Е = Ек + Еp

Кинетическая энергия – это энергия тела, обусловленная его движением.

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела:

Кинетическая энергия – это энергия движения. Кинетическая энергия тела массой m, движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

Если тело движется со скоростью , то для его полной остановки необходимо совершить работу

Наряду с кинетической энергией или энергией движения в физике важную роль играет понятиепотенциальной энергии или энергии взаимодействия тел.

Потенциальная энергияэнергия тела, обусловленная взаимным расположением взаимодействующих между собой тел или частей одного тела.

Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями. Такие силы называются консервативными. Работа консервативных сил на замкнутой траектории равна нулю.

Свойством консервативности обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.

Потенциальная энергия тела в поле силы тяжести (потенциальная энергия тела, поднятого над землёй):

Ep = mgh

Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень.

Понятие потенциальной энергии можно ввести и для упругой силы. Эта сила также обладает свойством консервативности. Растягивая (или сжимая) пружину, мы можем делать это различными способами.

Можно просто удлинить пружину на величину x, или сначала удлинить ее на 2x, а затем уменьшить удлинение до значения x и т. д. Во всех этих случаях упругая сила совершает одну и ту же работу, которая зависит только от удлинения пружины x в конечном состоянии, если первоначально пружина была недеформирована. Эта работа равна работе внешней силы A, взятой с противоположным знаком :

где k – жесткость пружины.

Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, то есть сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Потенциальной энергией пружины (или любого упруго деформированного тела) называют величину

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x1, тогда при переходе в новое состояние с удлинением x2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком:

Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Если тела, составляющие замкнутую механическую систему, взаимодействуют между собой только силами тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком:

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:

Следовательно Ek2 – Ek1 = –(Ep2 – Ep1) или Ek1 + Ep1 = Ek2 + Ep2.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона.

Сумму E = Ek + Ep называют полной механической энергией.

Полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию, и наоборот, или переход энергии от одного тела к другому.

Е = Ек + Еp = const

Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

Источник