Меню

Каким образом организуют защиту от блуждающих токов при подземной коррозии закрывают протектор

Блуждающие токи, защита от блуждающих токов

Блуждающие токи, защита от блуждающих токовТоковедущие элементы транспортной инфраструктуры, например рельсы поездов и трамваев, не имеют надежной электрической изоляции от земли. А поскольку ток возвращается по рельсам на тяговую подстанцию, то часть этого тока проходит и по земле.

Заземленные сильноточные установки, а также утечки от линий электропередач аналогичным образом способствуют возникновению токов по земле. Такие токи, попросту уводящие электричество в землю, не имеют постоянной формы, амплитуды и направления, их пути распространения по земле разнообразны, потому они и называются блуждающими токами .

Блуждающие токи — вредные электрические токи в земле при использовании её в качестве токопроводящей среды (например, в установках электросвязи, системах электроснабжения трамваев, рудничной электровозной откатки и др.). Под их действием возникает электролиз и происходит быстрое окисление и разрушение металлических подземных устройств (оболочек кабелей, трубопроводов, строительных конструкций).

Трамвай

Понятно, что в этих случаях земля играет роль токопроводящей среды, и не только грунт является здесь проводником, но и металлические конструкции, находящиеся полностью или частично под землей, такие как трубопроводы, кабельные линии, опоры контактных сетей и т.д. Даже просто соприкасающиеся с землей металлические конструкции подвержены действию блуждающих токов.

По отношению к расположенным в земле токопроводящим конструкциям, сама земля имеет потенциал более низкий. И если, например, сильноточная установка использует заземление или ток от нее отводится в землю, то он идет по пути наименьшего сопротивления, то есть проходит по находящимся в земле металлоконструкциям, что приводит к возникновению на них коррозии.

Это же касается и тягового тока протекающего по ходовым рельсам. Разность потенциалов между рельсами и землей, с учетом отсутствия изоляции, обуславливает протекание части тяговых токов по земле с аналогичными, для попадающихся на пути этих токов металлических конструкций, последствиями.

Трубопровод

Встречая на своем пути канализационную трубу, газопровод, или оболочку кабеля, которые имеют намного меньшее удельное сопротивление, чем окружающий их грунт, блуждающие токи натекают на них, и такие места называются катодными зонами. Пройдя по металлическому пути малого сопротивления, блуждающий ток выходит из него, и это место называется анодной зоной, здесь и происходит вызывающая коррозию электрохимическая реакция.

Аналогичная коррозия имеет место и в анодной зоне при входе тока в землю из самого источника блуждающего тока, например из самих рельс, и рельсы тоже поэтому страдают. Таким образом, рельсы разрушаются в местах выхода из них токов в землю, а подземные коммуникации – в местах возвращения тока в рельсы.

Электрокоррозия

Проблема в том, что когда утечка блуждающего тока имеет постоянный характер, металл постепенно будет разрушаться, и такая электрокоррозия может быть довольно интенсивной. Новые стальные трубопроводы могут прийти в негодность за три года, а кабели связи повреждаются еще быстрее. Аналогичным образом разрушаются рельсовые скрепления на мостах и рельсы различного назначения. Особенно опасны в коррозийном отношении источники постоянного или выпрямленного токов. В анодных зонах скорость разрушения металла может достигать 10 мм в год.

Как правило, металлические конструкции оснащены специальным защитным покрытием, призванным уберечь от коррозии, однако в случае повреждения покрытия порча коммуникаций неизбежна, и в местах небольших анодных зон возникают характерные язвы и дыры.
Для борьбы с описанными негативными явлениями специалисты проводят электроразведку, используя специализированное оборудование. Места повреждений изоляции определяют специальным искателем и применяют электрический дренаж — отвод электричества от трубопроводов к источнику тока.

Схема установки поляризованного дренажа

Схема установки поляризованного дренажа: 1 — защищаемый газопровод, 2 — дренажный кабель, 3 — дренажная установка (вентильного типа), 4 — реостат, 5 — вентильный (выпрямительный) элемент, 6 — амперметр, 7 — предохранитель, 8 — генератор тяговой подстанции, 9 — фидер питающий, 10 — контактный троллейный провод, 11 — пути движения блуждающих токов

В простейшем случае защитные мероприятия сводятся к следующему. Для предотвращения стекания токов с установок, подверженных потенциально опасному воздействию, в окружающий грунт, делают кабельное соединение между защищаемым сооружением и какой-либо точкой установки — источником блуждающих токов, имеющей достаточно отрицательный потенциал. Теперь ток, протекавший ранее через грунт, возвращается к своему источнику по кабельному соединению, не вызывая опасности коррозии.

Для защиты стальных трубопроводов от воздействия блуждающих токов применяют катодную защиту . Она осуществляется при помощи постоянного электрического тока внешнего источника. Отрицательный полюс источника тока подключается к защищаемому трубопроводу, а положительный к специальному заземлению – аноду. Схема катодной защиты — Как защитить металлические оболочки кабелей от коррозии

Для уменьшения блуждающих токов связанных с рельсами, увеличивают проводимость рельсовых путей и повышают переходное сопротивление между рельсами и землёй. Для этого на главных путях укладывают рельсы тяжёлых типов, осуществляют переход на бесстыковой путь, а рельсовые стыки шунтируют медными перемычками повышенного сечения, многопутные участки соединяют параллельно.

Рельсы укладывают на щебёночном или гравийном балласте, устанавливают изолирующие детали между рельсами и арматурой железобетонных шпал, а деревянные шпалы пропитывают масляными антисептиками и т.д.

Источник

Блуждающие токи. Коррозия блуждающими токами.

Разрушение металла в зависимости от почвы. Подземная коррозия трубопроводов.

Металлические изделия служат нам не только в атмосферных условиях, но часто находятся в земле. Трубопроводы, по которым текут вода, газ, нефть, очень часто делают из металла и прокладывают под землей. Под землей также размещают кабели, по которым подают электрический ток или осуществляют телеграфно-телефонную связь. Почва, как вам известно, представляет собой смесь различных веществ. В ее состав входят минералы и различные органические вещества, являющиеся продуктами гниения. Почвенная вода всегда содержит растворы солей и кислот, т. е. она электролит. Вот почему так тщательно покрывают изоляционными материалами металлические трубы, прежде чем они будут зарыты в почву. Правда, по своим свойствам почва может быть различна. При раскопке трубопроводов в окрестностях Батуми, проложенных в 1878 г., т. е. труб, которые пролежали в почве около ста лет, выяснилась интересная картина. На отдельных участках не осталось и следа от металлических труб, так как они полностью были разрушены. В то же время в тех местах, где трубы проходили по глинистой почве, они полностью сохранились. Вид их был такой, как будто бы они только что были зарыты в землю. Следовательно, в глинистой почве не было доступа к металлу электролитов и кислорода, способствующих разрушению металла. Трубы здесь были изолированы самой почвой. Вот такую же роль играет покрытие труб различного рода смолами. Однако в больших городах такого рода покрытия не всегда сохраняют металл от разрушения. Коварную роль здесь играет электрический ток.

Читайте также:  Устройство двигателя постоянного тока с возбуждением постоянными магнитами

Причина попадания электрических токов в почву?

В основном электрические токи, или как их еще называют «блуждающие», появляются в больших городах, причинами попадания в почву являются:

городской транспорт (трамваи, метро);

заводы и предприятия, которые используют на своем производстве электросварочные аппараты, электролизные ванны.

В общем можно сказать, что блуждающие токи появляются там, где используют установки постоянного тока.

Находящиеся под землей кабельные сети, трубопроводы и разные металлические сооружения, подвергаются сильной коррозии, в районах расположения электротяговых устройств постоянного тока, поскольку в таких случаях в качестве обратного провода используют рельсы, зачастую не имеющие достаточной электрической изоляции относительно земли. Таким образом ток оказывается в почве.

Несмотря на то, что в почве находятся растворы солей, она оказывает хорошее сопротивление блуждающим токам. В случае же наличия металлических проводников, какими будут являться трубы, блуждающий ток устремляется в трубы. Ток не вызывает разрушении при входе в металлическую конструкцию под землей, а при выходе из нее, он разрушает металл.

Зоны блуждающих токов

Чтобы узнать, как ведут себя блуждающие токи, рассмотрим простую схему коррозии подземного трубопровода (рис. 1) в случае, когда обратный ток протекает по рельсам.

bluzhdayushhie-toki-korroziya-bluzhdayushhimi-tokami

Рис.1. Коррозия трубопровода блуждающим током.

В рабочий воздушный провод поступает электрический ток от положительного полюса и по рельсам возвращается обратно к отрицательному полюсу. На некоторых участках пути, рельсы соприкасаются с почвой и часть тока уходит в почву. Также в случае пролегания вблизи рельс стального трубопровода, ток уже потечет не по почве, а по трубе. Итак, путь прохождения блуждающего тока делится на три части:

— Катодная зона, она не является опасной в коррозионном отношении, на этом участке блуждающий ток переходит на трубопровод из почвы.

— Зона, где ток протекает по трубопроводу. На этом участке нет переходов тока. Такая зона тоже не является опасной.

— Анодная зона. На этом участке происходит переход тока из металлического трубопровода в почву. Тут и возникает коррозия трубопровода, которая зависит от величины блуждающего тока. На этом участке возможно появление глубоких язв коррозии и даже разрывов в трубе.

bluzhdayushhie-toki-korroziya-bluzhdayushhimi-tokami

Рис. 2. Чугунная труба, пострадавшая от коррозии вследствие блуждающих токов.

Известны случаи протекания по трубопроводу тока силой до 300 а. Зная силу тока, можно по закону Фарадея подсчитать разрушение металла. Так, например, ток силой до 1 а в течение года разрушает около 9 кг железа, 11 кг меди и 34 кг свинца. Эти цифры показывают, к какому разрушению подземных сооружений может привести блуждающий ток, учитывая, что радиус Действия блуждающего тока, входящего в землю с рельсов электрифицированных железных дорог, определяется иногда несколькими десятками километров. Вот почему в больших городах, где имеется много подземных сооружений, а также разветвленная система подземных сооружений и наземных проводников постоянного электрического тока, необходимо тщательно защищать подземное хозяйство от губительного действия блуждающих токов. Руководители городского хозяйства при постройке новых подземных сооружений должны строго учитывать этого врага металлических изделий, который может нанести непоправимый ущерб и даже бедствие городскому хозяйству. Например, разрушенная блуждающим током труба газопровода может вызвать выход газа из трубы, в которой он протекает, что связано с опасностью возникновения пожара. Нужно сказать, что такие случаи принесли большой ущерб не только городскому хозяйству, по и населению.

На рисунке 2 приведена фотография трубы, пострадавшей от коррозии блуждающим током. Как видите, блуждающий ток разрушил трубу так, что в ней образовались сквозные отверстия.

С действием блуждающих токов можно ознакомиться на простом опыте. Соберите установку по схеме,
изображенной на рисунке 3. Здесь медный провод АВ соединен с источником постоянного тока и погружен в 5-процентный раствор поваренной соли в таком количестве желатины, чтобы получилась студенистая масса. К желатине добавьте несколько капель концентрированного раствора красной кровяной соли. Ниже медного провода в желатину погрузите железную пластинку, как это показано на рисунке.

bluzhdayushhie-toki-korroziya-bluzhdayushhimi-tokami

Рис.3. Лабораторный эксперимент для обнаружения блуждающих токов

В цепь постоянного тока включают сопротивление (реостат). Когда сопротивление проводника мало, то весь ток потечет к проводнику и не попадет на железную пластинку. Но если увеличить сопротивление проводника при помощи реостата, то часть тока пойдет по пути наименьшего сопротивления, т. е. через раствор и пластинку. На месте выхода блуждающего тока с железной пластинки обнаружится посинение, указывающее на разрушение железной пластинки, т. е. ее растворение, с образованием ионов железа, которые, взаимодействуя с красной кровяной солью, образует железосинеродистое железо, имеющее синюю окраску. Желатина вводится для того, чтобы образовавшееся синее пятно не расплывалось.

Защита от блуждающих токов при подземной коррозии.

Для борьбы с блуждающими токами в настоящее время разработан ряд мероприятий. Нетрудно понять, что эти мероприятия сводятся к сравнительно простым способам. К таким способам относится тщательная изоляция токонесущих систем, а с другой стороны — так называемый электродренаж. Он заключается в отводе тока по специальным проводам от подземных сооружений на отрицательный полюс электростанции.

Для защиты от коррозии трубопроводов, прокладываемых в земле, обычно применяют битумные покрытия, а для кабеля джутовую обмотку, пропитанную битумными составами.

Кроме этих методов, применяют так называемую катодную защиту.

Источник

Блуждающие токи

Блуждающие токи — электрический ток, возникающий в толще грунта, при использовании его в качестве токопроводящей среды. Простейший пример, при пробое изоляции электрических силовых кабелей происходит утечка на землю. Грунт обладает высоким удельным сопротивлением, поэтому, если в процессе растекания заряда на его пути встречается металлический трубопровод, возникает электрический ток, который начинает двигаться по пути наименьшего сопротивления.

Опасность связана с тем, что в месте выхода блуждающего тока из металлического проводника активизируются коррозионные процессы. Причём ущерб, получаемый в данном случае, достигает такой величины, что приходится продумывать и реализовать системы защиты от воздействия.

  1. Виды и появления блуждающих токов
  2. Причина появления тока в домашнем быту
  3. Как измерить величину блуждающего тока
  4. Коррозия от блуждающих токов
  5. Способы устранения
  6. Активная и пассивная защита
  7. Защита полотенцесушителей
  8. Защита водопроводных труб
  9. Защита газопроводов

Виды и появления блуждающих токов

Одна из причин связана с массовым применением рельсового электротранспорта. Электрифицированные ЖД магистрали, трамваи и метро, рудничная локомотивная контактная откатка становятся причиной появления блуждающих токов и наносят ущерб газовым трубопроводам, водопроводным линиям, бронированным кабельным сетям, металлоконструкциям.

блуждающие токи в водопроводе

Общая схема происходящего в этом случае следующая:

  1. Рельсовый путь используется в качестве проводника, по которому ток возвращается к обратному фидеру тяговой подстанции.
  2. На участках, которые плохо изолированы от земной поверхности, происходит утечка части энергии в грунт. Так как потенциал в этой точке максимален, появляется блуждающий ток, который движется в зону с небольшим потенциалом. А таким участком и становится труба или кабель в оплётке, любая металлическая конструкция, расположенная в земле.
  3. Пройдя по металлу, как по пути наименьшего сопротивления, в зону, где потенциал существенно уменьшается, ток выходит в грунт и возвращается в рельсовый путь.
Читайте также:  47pft6569 60 уменьшить ток подсветки

В результате таких процессов в анодных зонах, участки выхода токов из рельсов и трубопровода, возникает процесс электрохимической коррозии. При этом скорость разрушения металлов может достигать десятка миллиметров в год. Для рельсового пути такие повреждения несущественны из-за большой толщины стали, хотя также снижают срок службы конструкции.

А вот для труб с небольшой стенкой такие повреждения становятся критичными. Выглядят они как сквозные отверстия небольшого диаметра. Если трубопровод находится в зоне длительного воздействия блуждающих токов без надлежащей защиты, может возникнуть ситуация, когда его поверхность напоминает решето.

Среди двух других потенциальных источников возникновения блуждающих токов выделяют:

заземлители

  1. Трансформаторные подстанции, распределительные устройства с заземляющим оборудованием, линии ЛЭП с глухозаземлённой нейтралью. В случае постоянных небольших утечек на землю, уровень которых не достигает предела срабатывания защитных устройств, в зоне вокруг этих сооружений также возникают паразитные блуждающие токи.
  2. Электрокабельные сети подземного заложения также становятся причиной подобного эффекта при снижении диэлектрических свойств изоляции или её пробое.

Объяснение схемы выше: нулевой провод (PEN) одним концом соединен с ЗУ электроподстанции, а вторым подключен к шине PEN потребителя, которая соединена с заземляющим устройством объекта. Соответственно, разница электрических потенциалов между выводами нулевого проводника будет передаваться ЗУ, что создаст условия для образования цепи. Величина утечки будет незначительной, поскольку основная нагрузка пойдет по пути наименьшего сопротивления (нулевому проводнику), но, тем не менее, часть ее пойдет по земле.

Понятно, что в большинстве случаев разрушающее воздействие в таких условиях будет меньше, чем в зонах расположения рельсовых путей электротранспорта, но оно также оказывает своё влияние.

Причина появления тока в домашнем быту

Существует ещё один вид блуждающего тока, который правда не связан с процессами, происходящими в земле. Речь идёт о появлении аналогичных повреждений на стальных полотенцесушителях, радиаторов отопления, установленных в обычных зданиях. Основной причиной становится разница потенциалов на этих устройствах и заземлённых участках водопровода или системы отопления.

Раньше все эти сети монтировались из металлических труб и обязательно заземлялись. Поэтому в пределах одного здания разницы потенциалов на отдельных участках или элементах системы не существовало или она была настолько минимальной, что не приносила никакого вреда.

Сейчас ситуация кардинально изменилась, и причиной этого стало массовое применение полипропиленовых и металлопластиковых труб. Полимерные материалы обладают высоким удельным сопротивлением, поэтому их можно считать хорошими диэлектриками. В результате получают изолированные друг от друга участки сети. При этом вода остаётся хорошим проводником, она отлично переносит скапливающийся статический заряд.

Поэтому и происходит появление эффекта блуждающих токов, вызванного разницей потенциалов на заземлённом участке сети и отдельных полотенцесушителях или батареях. В этом случае электрохимическая коррозия быстро разрушает тонкостенные металлические устройства.

Как измерить величину блуждающего тока

Наличие потенциальной опасности в обязательном порядке проверяют при проектировании новых трубопроводов в зоне их предполагаемой укладки. Для этого используют мультиметры высокого класса точности, внутренне сопротивление которых должно быть не менее 1 МОм, и специальные электроды, с минимальной паспортной разницей потенциалов.

Измерения проводят по следующей схеме:

методы измерения

  • Вдоль всей будущей трассы, устанавливая электроды через 1000 м.
  • По двум перпендикулярным направлением, с установкой электрода на расстоянии 100 м от точки пересечения линий.

Основная задача — определить существующую разницу потенциалов между точками. Если этот показатель превышает 0,04 В, на участке действуют блуждающие токи.

В районе расположения действующих рельсовых путей электротранспортной системы контроль выполняют за счёт следующих замеров:

  • Сопротивления изоляции между рельсами и грунтом.
  • Разницы потенциалов между рельсовым полотном и расположенными в земле металлическими конструкциями.
  • Плотности утечек через оболочки кабельных проводников.

Весь комплекс измерений выполняют при помощи специального оборудования.

Более подробно про измерения можете прочитать в инструкции(откроется в новой вкладке): Читать инструкцию

Коррозия от блуждающих токов

Под воздействием блуждающих токов происходит процесс электрохимической коррозии. Его интенсивность зависит от состава почвы, степени обводнённости и характеристик грунтовых вод. Разрушение металла происходит из-за разности окислительно-восстановительных потенциалов, присущих стали и окружающей её почвы.

корозия

Под воздействием проходящего через трубу тока происходит образование гальванической пары в месте его выхода в почву. При этом железо, которое обладает меньшим окислительно-восстановительным потенциалом в результате процесса разрушается. И чем больше вокруг аварийного участка образуется солей, тем быстрее проходят все эти химические процессы.

В отличие от обычной коррозии, связанной с окислительными свойствами кислорода, интенсивность появления ржавчины зависит от величины разницы потенциалов. Поэтому бороться с электрохимической коррозией можно только путём устранения предпосылок, способствующих её появлению.

Способы устранения

Единственный способ предотвращения появления блуждающих токов — убрать возможность утечки из проводников, в качестве которых выступают те же рельсы, в землю. Для этого и устраивают насыпи из щебня, устанавливают деревянные шпалы, которые нужны не только для получения прочного основания под рельсовый путь, но и повышают сопротивление между ним и грунтом.

Дополнительно практикуется монтаж прокладок из диэлектрических материалов. Но все эти способы больше подходят для ЖД магистралей, трамвайные пути изолировать таким способом сложно, так как это приводит к увеличению уровня рельсов, что в городских условиях нежелательно.

В случае с распределительными пунктами и подстанциями, ЛЭП, ситуацию можно исправить применением более совершённых систем автоматического отключения. Но возможности такого оборудования ограничены, да и постоянное отключение электроснабжения, особенно в промышленных условиях, нежелательно.

Поэтому в большинстве случаев прибегают к защите трубопроводов, бронированных кабелей и металлических конструкций, расположенных в зоне действия блуждающих токов.

Активная и пассивная защита

Существует два основных способа защиты:

    Пассивная — предупреждает контакт металла за счёт применения покрытий из диэлектрических материалов. Именно для этой цели применяют обмазку битумными мастиками, обмотку диэлектрическими изолентами, комбинацию этих способов. Но такие трубы стоят дороже, а проблема полностью не решается, потому что при глубоких повреждениях подобных покрытий защита практически не работает.

Пасивная защита

Пассивная защита
Активная — основана на отводе блуждающих токов от защищаемых магистралей. Может быть выполнена несколькими способами. Считается наиболее эффективным решением.

Читайте также:  Электрические цепи однофазного переменного тока тест

Активная защита

Активная защита

В различных условиях применяют отличающиеся способы защиты от электрохимической коррозии. Рассмотрим несколько основных примеров.

Защита полотенцесушителей

Главное отличие — находятся на открытом воздухе, поэтому изоляция не поможет, а отвести блуждающие токи некуда. Поэтому единственно допустимый вариант — выравнивание потенциалов.

Для решения этой проблемы применяют простое заземление. То есть восстанавливают те условия, которые были до разрыва цепи при помощи полимерных труб. При этом требуется заземление каждого полотенцесушителя или радиатора отопления.

Защита водопроводных труб

В этом случае больше подходит протекторная защита с применением дополнительного анода. Такой способ применяется и для предотвращения образования накипи в электрических водонагревательных баках.

Анод, чаще всего магниевый, соединяется с металлической поверхностью трубы, образуя гальваническую пару. При этом блуждающие токи выходят не через сталь, а через такой жертвенный анод, постепенно разрушая его. Металлическая труба при этом остаётся целой. Следует понимать, что время от времени требуется замена защитного анода.

Защита газопроводов

Для защиты этих объектов применяют два способа:

  • Катодная защита, при которой трубе придают отрицательный потенциал за счёт применения дополнительного источника питания.
  • Электродренажная защита предполагает соединение газопровода с источником проблем проводником. При этом предотвращается образование гальванической пары с окружающим магистраль грунтом.

Отметим, что ощутимый ущерб, наносимый металлическим конструкциям, требует применения комплексных мер. Они включают защиту и предотвращение появления опасных факторов.

Источник



Защита подземных сооружений от блуждающих токов

Блуждающие токи – это токи в земле, ответвляющие от рельсов электрифицированных железных дорог, трамваев, метро и других видов электрифицированного транспорта, работающих на постоянном токе и использующих в качестве обратного провода рельсы. Блуждающие токи возникают также и от других электрических установок постоянного тока, использующих в качестве обратного провода землю (телеграф, установки постоянного тока для питания усилительных пунктов кабельных линий связи).

Блуждающие токи, встречая на своем пути металлические сооружения (кабели, газовые, водопроводные, тепловые и др. трубопроводы), проходят по ним и возвращаются по земле к источнику постоянного тока. Часть металлического подземного сооружения, из которого постоянный электрический ток выходит в землю по направлению к рельсам, является анодом, а часть сооружения, в которую входит блуждающий ток, – катодом.

При прохождении тока во влажной земле происходит электролиз и на проводнике, являющемся анодом, выделяется кислород, который окисляет и разъедает металл (электролитическая коррозия). При питании электроэнергией трамвая и электрифицированных железных дорог обычно положительный полюс источника постоянного тока присоединяется к контактному проводу, а отрицательный полюс – к рельсам (рис. 11.9). Бывают и другие способы включения.

Рис. 11.9. Схема образования опасных коррозионных зон блуждающими токами в земле.

Участок подземного металлического сооружения, в который входят блуждающие токи, называется катодной зоной. В катодной зоне потенциал металлического сооружения относительно земли отрицателен, и сооружение не подвергается электрокоррозии. Участок того же металлического сооружения, в пределах которого блуждающие токи выходят из земли, называется анодной зоной.

Установлено, что блуждающий ток в один ампер, текущий по металлическому сооружению, в течение года разлагает в анодных зонах около 36 кг свинца или около 9 кг железа. Блуждающие токи на некоторых сооружениях достигают иногда 40 а. Наиболее сильной коррозии подвергаются как голые освинцованные, так и бронированные кабели.

Основными средствами борьбы с коррозией блуждающими токами в подземных металлических сооружениях являются электрические меры защиты. К ним относятся электрический дренаж (простой и поляризованный), катодная защита и защита протекторами.

Принцип действия электрического дренажа заключается в том, что блуждающие токи при помощи металлического изолированного проводника отводятся из анодной зоны в рельсовую сеть трамвая или непосредственно на отрицательную шину генератора. Простые дренажи обладают двусторонней проводимостью тока, а поэтому они устанавливаются в устойчивых анодных зонах, т. е. в местах, где потенциал защищаемого сооружения всегда положителен по отношению к рельсам. При этом ток будет поступать из защищаемого сооружения в рельсы трамвая или в отсасывающий фидер, который присоединен к отрицательному полюсу генератора.

При изменении знака потенциала (полярности) на подземном (защищаемом) сооружении ток потечет в обратном направлении, вследствие чего на месте зоны катодной возникает анодная. В таких случаях применяются поляризованные электромагнитные дренажи, которые в отличие от простых обладают односторонней проводимостью тока. Поляризованные электрические дренажи свободно пропускают ток из защищаемого подземного сооружения в рельсы и не пропускают (или значительно ограничивают) ток в обратном направлении. Такие дренажи устанавливаются в анодных и знакопеременных зонах.

Принцип действия катодной защиты заключается в том, что подземные сооружения, имеющие анодные зоны, присоединяются к отрицательному полюсу постороннего источника постоянного тока, у которого положительный полюс заземлен. Источниками тока могут служить выпрямители, питающиеся от сети переменного тока, и аккумуляторы.

При присоединении защищаемого сооружения к протектору, зарываемому вблизи этого сооружения, ток будет стекать в землю, в результате чего подземное сооружение окажется катодом и не будет разрушаться от коррозии.

Кроме того, весьма важной мерой защиты подземных сооружений от электрокоррозии является ограничение сопротивления рельсовой сети. Блуждающие токи зависят от электрического сопротивления рельсовой и отсасывающей сетей, поэтому за состоянием рельсовой сети ведется систематическое наблюдение с тем, чтобы сопротивление сети находилось в соответствии с нормами.

Все подземные металлические сооружения, расположенные вблизи электрифицируемых путей, защищаются от коррозии блуждающими токами противокоррозийными покрытиями или путем укладки их в неметаллические трубы, блоки, каналы, туннели и коллекторы, а в местах интенсивной коррозии – дополнительно катодной защитой.

Опасными, относительно коррозии, блуждающими токами считаются:

а) для кабелей с голыми свинцовыми оболочками – все анодные и знакопеременные зоны независимо от агрессивности окружающего грунта;

б) для бронированных кабелей – анодные и знакопеременные зоны участков, в агрессивных грунтах с удельным сопротивлением их Ом·м, а в малоагрессивных грунтах – участки, в которых среднесуточная плотность тока утечки в землю превышает 0,15 мА/дм 2 .

Стальные подземные трубопроводы защищаются противокоррозионным покрытием.

Кабели с голыми свинцовыми оболочками укладываются в неметаллических трубах, блоках, каналах, туннелях и коллекторах.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Источник