Меню

Какие химические вещества проводят электрический ток

Какие вещества проводят электрический ток

Как известно, электрическим током называется упорядоченное движение носителей электрического заряда. Такими носителями заряда могут выступать электроны — в металлах, в полупроводниках и в газах; ионы — в электролитах и в газах; а в полупроводниках носителями электрического заряда выступают еще и дырки — незаполненные валентные связи в атомах, равные по модулю заряду электрона, но имеющие положительный заряд.

Какие вещества проводят электрический ток

Задаваясь вопросом о том, какие же вещества проводят электрический ток, нам придется порассуждать о том, благодаря чему в первую очередь возникает ток, а именно — о наличии в тех или иных веществах заряженных частиц. Ток смещения рассматривать здесь не будем, поскольку он не является током проводимости, и поэтому не относится напрямую к данному вопросу.

Медная проволока

По праву главными проводниками электрического тока во всей современной электротехнике выступают металлы. Для металлов характерна слабая связь валентных электронов, то есть электронов внешних энергетических уровней атомов, с ядрами этих атомов.

И как раз благодаря слабости данных связей, при возникновении по какой-нибудь причине в проводнике разности потенциалов (вихревое электрическое поле или приложенное напряжение), электроны эти начинают лавинообразно перемещаться в ту или иную сторону, возникает движение электронов проводимости внутри кристаллической решетки, словно движение «электронного газа».

Характерные представители металлических проводников: медь, алюминий, вольфрам.

Полупроводники

Далее по списку — полупроводники. Полупроводники, по способности проводить электрический ток, занимают промежуточное положение между проводниками вроде медных проводов и диэлектриками вроде оргстекла. Здесь один электрон связан сразу с двумя атомами — атомы находятся в ковалентных связях друг с другом — поэтому для того чтобы каждый отдельно рассматриваемый электрон начал двигаться создавая ток, ему сначала необходимо получить энергию для реализации возможности покинуть свой атом.

Например, полупроводник можно нагреть, и некоторые из электронов начнут покидать свои атомы, то есть возникнет условие для существования тока — в кристаллической решетке появятся свободные носители заряда — электроны и дырки (на месте откуда электрон ушел, сначала остается вакантное пустое место с положительным зарядом — дырка, которое затем занимается электроном из другого атома). Яркими представителями чистых полупроводников являются: германий, кремний, бор. Соединения здесь не рассматриваем.

Электролит

Электролиты тоже способны проводить ток благодаря наличию в них свободных носителей заряда. Но электролиты — это проводники второго рода. Свободными носителями заряда в электролитах являются ионы (положительные ионы называются катионами, отрицательные — анионами).

Катионы и анионы образуются здесь благодаря процессу электролитической диссоциации (распаду молекул на части — на отдельные ионы) кислот, щелочей, оснований в их растворах или расплавах. Одновременно с диссоциацией протекает ассоциация ионов снова в молекулы — это называется динамическим равновесием в электролите. Пример электролита — 40% раствор серной кислоты в воде.

Плазма

Наконец, плазма — ионизированный газ — четвертое агрегатное состояние вещества. В плазме электрический заряд переносится электронами, а также катионами и анионами, образуемыми благодаря нагреванию газа или под действием на него рентгеновского, ультрафиолетового или другого излучения (либо под действием одновременно и нагревания и излучения). Плазма квазинейтральна, то есть внутри нее в малых объемах суммарный заряд всюду равен нулю. Но в силу подвижности частиц газа, плазма все же способна проводить электрический ток.

Вообще плазма экранирует внешнее электрическое поле так как в ней разделяются этим полем заряды, но в силу того, что тепловое движение носителей заряда присутствует, на малых масштабах квазинейтральность плазмы нарушается, и плазма практически получает способность проводить электрический ток. Все межзвездное пространство во вселенной заполнено плазмой, и сами звезды состоят из плазмы.

Источник

Электропроводность растворов

Установка для сравнения электропроводности растворовРис. 71. Установка для сравнения электропроводности растворов

Хорошими проводниками электрического тока, помимо металлов, являются расплавленные соли и основания. Способностью проводить ток обладают также водные растворы оснований и солей. Безводные кислоты — очень плохие проводники, но водные растворы кислот хорошо проводят ток. Растворы кислот, оснований и солей в других жидкостях в большинстве случаев тока не проводят, но и осмотическое давление таких растворов оказывается нормальным. Точно так же не проводят тока водные растворы сахара, спирта, глицерина и другие растворы с нормальным осмотическим давлением.

Читайте также:  Электрический ток называется переменным если он в течение времени

Различное отношение веществ к электрическому току легко иллюстрировать следующим опытом.

Соединим провода, идущие от осветительной сети, с двумя угольными или металлическими пластинками— электродами (рис. 71). В один из проводов включим электрическую лампу, позволяющую грубо судить о наличии тока в цепи. Погрузим теперь свободные концы электродов в сухую поваренную соль или безводную серную кислоту. Лампа не загорается, так как эти вещества не проводят тока и цепь остается незамкнутой.

Тоже самое происходит, если погрузить электроды в стакан с чистой дестиллированной водой. Но стоит только растворить в воде немного соли или прибавить к ней какой-нибудь кислоты или основания, как лампа тотчас же начинает ярко светиться. Свечение прекращается, если опустить электроды в раствор сахара, глицерина и т. п.

Сванте АррениусСванте Аррениус (1859—1927)

Таким образом, среди растворов способностью проводить ток обладают преимущественно водные растворы кислот, оснований и солей. Сухие соли, безводные кислоты и основания (в твердом виде) тока не проводят почти не проводит тока и чистая вода. Очевидно, что при растворении в воде кислоты, основания и соли подвергаются каким-то глубоким изменениям, которые и обусловливают электропроводность получаемых растворов.

Электрический ток, проходя через растворы, вызывает в них, так же как и в расплавах, химические изменения, выражающиеся в том, что из раствора выделяются продукты разложения растворенного вещества или растворителя. Вещества, растворы которых проводят электрический ток, получили название электролитов. Электролитами являются кислоты, основания и соли.

Химический процесс, происходящий при пропускании тока через раствор электролита, называется электролизом. Исследуя продукты, выделяющиеся у электродов при электролизе кислот, оснований и солей, установили, что у катода всегда выделяются металлы или водород, а у анода — кислотные остатки или гидроксильные группы, которые затем подвергаются дальнейшим изменениям. Таким образом, первичными продуктами электролиза оказываются те же составные части кислот, оснований и солей, которые при реакциях обмена, не изменяясь, переходят из одного вещества в другое.

Сванте Аррениус (Svante Arrhenius) — шведский ученый, физико-химик, родился 19 февраля 1859 г. Был профессором университета в Стокгольме и директором Нобелевского института. В результате изучения электропроводности растворов предложил в 1887 г. теорию, объясняющую проводимость электрического тока растворами кислот, щелочей и солей, получившую название теории электролитической диссоциации.

Аррениусу принадлежит также ряд исследовании по астрономии, космической физике и в области приложения физико-химических законов к биологическим процессам.

Вы читаете, статья на тему Электропроводность растворов

Источник

Основные химические источники электроэнергии

Химические источники тока — это устройства и приборы которые в процессе химической окислительно-восстановительной реакции выделяют напряжение. Также они называются электрохимическими, гальваническими элементами. Основной принцип действия их основан на взаимодействии химических реагентов которые вступая, в реакцию друг с другом вырабатывают электроэнергию, в виде постоянного тока. Этот процесс происходит без механического или теплового воздействия, что является основными факторами играющими превосходящую роль среди других генераторов постоянного напряжения. Химические источники тока, сокращённо ХИТ, уже давно нашли применение не только в быту, но и на производстве.

Немного истории создания ХИТ

Батарея Вольта

Ещё в восемнадцатом веке итальянский учёный Луиджи Гальвани придумал простейший элемент который химическим способом выделял электрический ток. Однако он был не только учёным, но и физиком, врачом, физиологом. Он интересовался и проводил опыты которые были направлены на изучение реакции животных на внешние раздражители. Как и всё гениальное первый химический источник энергии был получен Луиджи абсолютно случайно, во время многочисленных экспериментов над лягушками. После присоединения двух пластин из металла к лягушачьей мышце на лапке, было замечено мускульное сокращение. Гальвани посчитал это нервной реакцией на внешний раздражитель и изложил это в результатах своих исследований, попавших в руки другого великого учёного Алессандро Вольта. Он и выложил свою теорию о возникновении напряжения в результате химической реакции, возникшей между двумя металлическими пластинами в среде мускульной ткани лягушки.

Читайте также:  Контакторы переменного тока коммутируют

Первый химический источник электрического тока представлял собой емкость с соляным составом, в который было погружено две пластины из разных материалов. Одна из меди, другая из цинка. Именно это устройство в будущем, а конкретнее во второй половине девятнадцатого века, было применено при изобретении и создании марганцево-цинкового элемента внутри которого был тот же солевой электролит.

Принцип действия

Принцип действия химического источника питания

Устройства вырабатывающее электрический ток содержит два электрода, которые помещаются между электролитом. Именно на их границе соприкосновения и появляется небольшой потенциал. Один из них называют катодом, а другой анодом. Все эти элементы вместе образуют электрохимическую систему.
Во время возникновения окислительно-восстановительной реакции между электродами один элемент отдаёт мельчайшие частицы электроны другому. Поэтому она и не может происходить вечно, а со временем просто теряются свойства каждого элемента этой цепи.
Электроды могут быть представлены в виде пластин или решёток из металла. После погружения их в среду с электролитом меду их выводами возникает разность потенциалов, которая именуется напряжением разомкнутой цепи. Даже при удалении хотя бы одного из электродов с электролита процесс генерации напряжения прекращается.

Состав электрохимических систем

В качестве электролита используются следующие химические вещества:

  1. Водные растворы на основе щелочей, кислот, солей и т. д.;
  2. Растворы с ионной проводимостью на неводной основе, которые получены при растворении солей в неорганических или органических растворителях;
  3. Твердые соединения, содержащие ионную решетку, где один из ионов является подвижным;
  4. Матричные электролиты. Это особый вид жидких растворов и расплавов, которые находятся в порах твёрдого непроводящего элемента — электроносителя;
  5. Расплавы солей;
  6. Ионообменные электролиты с униполярной системой проводимости. Твёрдые тела с фиксированной ионогенной группой одного знака.

Классификация гальванических элементов и их подбор

Генераторы электрического тока получающегося во время химической реакции разделяются по:

  • Размерам;
  • Конструктивным особенностям;
  • Способу и реагенту, за счёт которого, и получается электроэнергия.

Все элементы вырабатывающее ток во время химической реакции делятся на:

  1. Заряжаемые, которые в процессе эксплуатации могут неоднократно заряжаться от источника постоянного тока, они называются аккумуляторами;
  2. Не заряжаемые, то есть источники одноразового использования которые после завершения химической реакции просто приходят в негодность и должны быть утилизированы. Попросту это гальванический элемент или батарейка.

Для того чтобы подобрать источник электроэнергии, основанный на химической реакции, нужно понимать его характеристики, к которым относятся:

  • Напряжение между анодом и катодом при разомкнутой цепи. Этот показатель чаще всего зависит от выбранной электрохимической системы, а также концентрации и вылечены всех составляющих;
  • Мощность источника;
  • Показатель силы тока;
  • Емкость;
  • Электротехнические показатели, то есть количество циклов заряда и разряда;
  • Диапазон рабочих температур;
  • Срок хранения между тем временем как элемент был создан и до начала его эксплуатации;
  • Полный срок службы;
  • Прочность, то есть защита корпуса от различных механических повреждений и влияний, а также вибраций;
  • Положение работы, некоторые из них работают только в горизонтальных положениях;
  • Надёжность;
  • Простота в эксплуатации и обслуживании. В идеале отсутствие необходимости малейшего вмешательства в работу в течение всего срока эксплуатации.

При выборе нужной батареи или аккумулятора обязательно нужно учесть его электрические номиналы такие как напряжение и ток, а также ёмкость. Именно она является ключевой для сохранения работоспособности, подключаемого к источнику прибора.

Современные химические источники тока и их применение

Современный источник тока

Современный быт человека тяжело приставить без этих мобильных генераторов энергии, с которыми он сталкивается в течение всей жизни, начиная с детских игрушек и заканчивая, допустим, автомобилем.
Сферы применения различных батареек и аккумуляторов настолько разнообразны что перечислить их очень сложно. Работа любого мобильного телефона, компьютера, ноутбука, часов, пульта дистанционного управления была бы невозможна без этого переносного и очень компактного устройства для создания стабильного электрического заряда.
В медицине широко используются источники химической энергии при создании любого аппарата, помогающего человеку полноценно жить. Например, для слуховых аппаратов и электрокардиостимуляторов которые могут работать только от переносных источников напряжения, чтобы не сковывать человека проводами.
В производстве применяются целые системы аккумуляторных батарей для обеспечения напряжением цепей отключения и защит в случае пропадания входящего высокого напряжения на подстанциях. И также широко применяется это питание во всех транспортных средствах, военной и космической технике.
Одним из видов распространённых батарей являются литиевые источники электрического тока, так как именно этот элемент обладает высоким показателем удельной энергии. Дело в том что только этот химический элемент, оказывается, обладает сильным отрицательным потенциалом среди всех известных и изученных человеком веществ. Литий-ионные батареи выделяются среди всех остальных элементов питания по величине вырабатываемой энергии и низким габаритам, что позволяет применять их в самых компактных и мелких электронных устройствах.

Читайте также:  Источники тока регуляторы тока в схемах

Способы утилизации химических источников энергии

Батарейка

Проблема утилизации разных по габаритах химических источников напряжения является экологической проблемой всей планеты. Современные источники содержат в себе до тридцати химических элементов которые могут нанесите ощутимый вред природным ресурсам, поэтому для их утилизации разработаны целые программы и построены специализированные цеха по переработке. Некоторые методы позволяют не только качественно перерабатывать эти вредные вещества, но и возвращать в производство, тем самым защитив окружающую среду. В целях извлечения цветных металлов из батарей и аккумуляторов в настоящий момент разработаны и применены в цивилизованных странах, следящих и заботящихся об окружающей среде, целые пирометаллургические и гидрометаллургические комплексы. Самый же распространённый способ утилизации отработанных химических источников тока является метод, работающий на соединении этих процессов. Главным его достоинством считается высокая степень извлечения с минимальным количеством отходов.
Этот метод пирометаллургической, гидрометаллургической и механической переработки включает в себя восемь основных стадий:

  1. Измельчение;
  2. Магнитная сепарация;
  3. Обжиг;
  4. Дополнительное измельчение;
  5. Выделение крупных и мелких элементов с помощью грохочения;
  6. Водное очищение и выщелачивание;
  7. Сернокислотное выщелачивание;
  8. Электролиз.

Организация правильного сбора и утилизации ХИТ позволяет максимально уменьшить негативное влияние как на окружающую природу, так и на здоровье самого человека.

Видео о химических источниках тока

Источник



Электролиты

Электролиты — в химии это вещества, растворы или расплавы, которые при растворении проводят электрический ток и выделяют ионы.

Эти растворы проводят электричество из-за подвижности:

  • положительно заряженных ионов (называются катионами)
  • и отрицательно заряженных ионов (называются анионами).

В питании это минералы, которые содержатся в крови, поте и моче. Когда минералы растворяются в жидкости, они образуют электролиты, т.е. положительные или отрицательные ионы, которые используются в метаболических процессах организма.

Метаболизм — процесс поддержания жизни организма, при котором калории от потребляемой пищи превращаются в энергию

Сильные и слабые электролиты

Сильные электролиты быстро и полностью ионизируются при растворении, и в растворе не образуются нейтральные молекулы. Примеры сильных электролитов:

  • NaCl (хлорид натрия),
  • HNO3 (азотная кислота),
  • HClO3 (хлорноватая кислота),
  • CaCl2 (хлорид кальция) и др.

У слабых электролитов при растворении в воде ионизируются лишь небольшие фракции молекул, т.е. в их растворах присутствует некое количество нейтральных молекул. Примеры слабых электролитов:

  • большинство органических кислот и оснований,
  • NH4OH (аммиак),
  • H2CO3 (угольная кислота),
  • CH3COOH (уксусная кислота), и др.

Как определить сильный и слабый электролит?

Сильные электролиты полностью ионизируются, т.к. основными компонентами раствора сильных электролитов являются ионы, и степень диссоциации такого электролита стремится к 1 (т.е. степень диссоциации α ≈ 1). Слабые электролиты ионизируются только частично, т.е. степень диссоциации такого электролита стремится к 0 (или α

Источник