Меню

Какие напряжения возникают при растяжении нормальные или касательные

Напряжения при растяжении и сжатии

Лекция 20

Тема 2.2. Растяжение и сжатие.

Внутренние силовые факторы, напряжения.

Иметь представление о продольных силах, о нормальных на­пряжениях в поперечных сечениях.

Знать правила построения эпюр продольных сил и нормальных напряжений, закон распределения нормальных напряжений в попе­речном сечении бруса.

Уметь строить эпюры продольных сил и нормальных напряжений.

Растяжение и сжатие

Растяжением или сжатием называют вид нагружения, при ко­тором в поперечном сечении бруса возникает только один внутрен­ний силовой фактор — продольная сила.

Продольные силы меняются по длине бруса. При расчетах по­сле определения величин продольных сил по сечениям строится гра­фик — эпюра продольных сил.

Условно назначают знак продольной силы.

Если продольная сила направлена от сечения, то брус растянут. Растяжение считают положительной деформацией (рис. 20.1а).

Если продольная сила направлена к сечению, то брус сжат. Сжа­тие считают отрицательной деформацией (рис. 20.16).

Примеры построения эпюры продольных сил

Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а).

Делим брус на участки нагружения.

Участком нагружения считают часть бруса между внешними силами.

Тема 2.2. Растяжение и сжатие 177

На представленном рисунке 3 участка нагружения. Воспользуемся методом сечений и определим вну­тренние силовые факторы внутри каждого участка.

Расчет начинаем со свободного конца бруса, что­бы не определять величины реакций в опорах.

Участок 1: ∑ Fz = 0; 3F + N 1 = 0; N 1 = 3F. Продольная сила положи­тельна, участок 1 растянут.

Участок 2: ∑ Fz = 0; -3F + 2F + N 2 = 0; N 2 = F . Продольная сила по­ложительна, участок 2 растянут.

Участок 3: ∑ Fz = 0; -3F + 2F + 5FN3 = 0; N 3 = 4F . Про­дольная сила отрицательна, участок 3 сжат. Полученное значение N 3 равно реакции в заделке.

Под схемой бруса строим эпюру продольной силы (рис. 20.26).

Эпюрой продольной си­лы называется график рас­пределения продольной си­лы вдоль оси бруса.

Ось эпюры параллель­на продольной оси.

Нулевая линия прово­дится тонкой линией. Зна­чения сил откладывают от оси, положительные — вверх, отрицательные — вниз. В пределах одного участка значение силы не меняется, поэто­му эпюра очерчивается отрезками прямых линий, параллельными оси Oz .

Правило контроля: в месте приложения внешней силы на эпюре должен быть скачок на величину приложенной силы.

На эпюре проставляются значения Nz . Величины продольных сил откладывают в заранее выбранном масштабе.

Эпюра по контуру обводится толстой линией и заштриховыва­ется поперек оси.

Изучая деформации при растяжении и сжатии, обнаруживаем, что выполняются гипотеза плоских сечений и принцип смягчения граничных условий.

Гипотеза плоских сечений заключается в том, что поперечное сечение бруса, плоское и перпендикулярное продольной оси, после деформации остается плоским и перпендикулярным продольной оси.

Следовательно, продольные внутренние волокна удлиняются одинаково, а внутренние силы упругости распределены по сечению равномерно.

Принцип смягчения граничных условий гласит: в точках тела, удаленных от мест приложения нагрузки, модуль внутренних сил мало зависит от способа закрепления. Поэтому при решении задач не уточняют способ закрепления.

Напряжения при растяжении и сжатии

При растяжении и сжатии в сечении действует только нормаль­ное напряжение.

Напряжения в поперечных сечениях могут рассматриваться как силы, приходящиеся на единицу площади.

Таким образом, направление и знак напряжения в сечении со­впадают с направлением и знаком силы в сечении (рис. 20.3).

Исходя из гипотезы плоских сечений, можно предположить, что напряжения при растяжении и сжатии в пределах каждого сечения не меняются. По­этому напряжение можно рассчитать по формуле

где Nz — продольная cила в сечении; А — площадь поперечного сечения.

Величина напряжения прямо пропорциональна продольной силе и обратно пропорциональна площади поперечного сечения.

Нормальные напряжения действуют при растяжении от сечения (рис. 20.4а), а при сжатии к сечению (рис. 20.46).

Тема 2.2. Растяжение и сжатие 179

Размерность (единица измерения) напряжений — Н/м 2 (Па), од­нако это слишком малая единица, и практически напряжения рас­считывают в Н/мм 2 (МПа): При определении напряже­ний брус разбивают на участки нагружений, в пределах которых продольные силы не изменяются, и учитывают места изменений площади поперечных сечений.

Читайте также:  Реле напряжения выбора фаз

Рассчитывают напряжения по сечениям, и расчет оформляют в виде эпюры нормальных напряжений.

Строится и оформляется такая эпюра так же, как и эпюра про­дольных сил.

Рассмотрим брус, нагру­женный внешними силами вдоль оси (рис. 20.5).

Обнаруживаем три уча­стка нагружения и определя­ем величины продольных сил.

Участок 1: N 1 = 0. Внутренние продольные силы равны нулю.

Участок 2: N 2 = 2F . Про­дольная сила на участке поло­жительна.

Участок 3: N3= 2F-3F = — F . Продольная сила на участке отрицательна.

Брус — ступенчатый. С учетом изменений ве­личин площади поперечного сечения участков напряжений больше.

Строим эпюры продольных сил и нормальных напряжений. Масштабы эпюр могут быть разными и выбираются исходя из удобства построения.

Примеры решения задач

Ступенчатый брус нагружен вдоль оси двумя силами. Брус за­щемлен с левой стороны (рис. 20.6). Пренебрегая весом бруса, по­строить эпюры продольных сил и нормальных напряжений.

Решение

1. Определяем участки нагружения, их два.

2. Определяем продольную силу в сечениях 1 и 2.

4. Рассчитываем величины нормальных напряжений и строим эпюру нормальных напряжений в собственном произвольном мас­штабе.

1. Определяем продольные силы.

Тема 2.2. Растяжение и сжатие 181

Сечение 1. – N1 + F1= 0; N1 = F1= 100 кН.

Сечение 2. -80 — N 2 + 100 = 0; N 2 = 100 — 80 = 20 кН.

В обоих сечениях продольные силы положительны.

2. Определяем нормальные напряжения σ = — .

Сопоставляя участки нагружения с границами изменения пло­щади, видим, что образуется 4 участка напряжений. Нормальные напряжения в сечениях по участкам:

Откладываем значения напряжений вверх от оси, т. к. значения их положительные (растяжение). Масштаб эпюр продольной силы и нормальных напряжений выбирается отдельно в зависимости от порядка цифр и имеющегося на листе места.

Контрольные вопросы и задания

1. Какие внутренние силовые факторы возникают в сечении бруса при растяжении и сжатии?

2. Как распределяются по сечению силы упругости при растяжении и сжатии? (Использовать гипотезу плоских сечений.)

3. Какого характера напряжения возникают в поперечном сечении при растяжении и сжатии: нормальные или касательные?

4. Как распределены напряжения по сечению при растяжении и
сжатии?

5. Запишите формулу для расчета нормальных напряжений при
растяжении и сжатии.

6. Как назначаются знаки продольной силы и нормального напряжения?

7. Что показывает эпюра продольной силы?

8. Как изменится величина напряжения, если площадь поперечного сечения возрастет в 4 раза?

9. В каких единицах измеряется напряжение?

Дата добавления: 2019-09-13 ; просмотров: 124 ; Мы поможем в написании вашей работы!

Источник



Напряжения при растяжении и сжатии

При растяжении и сжатии в сечении действует только нормаль­ное напряжение.

Напряжения в поперечных сечениях могут рассматриваться как силы, приходящиеся на единицу площади.

Таким образом, направление и знак напряжения в сечении со­впадают с направлением и знаком силы в сечении .

Исходя из гипотезы плоских сечений, можно предположить, что напряжения при растяжении и сжатии в пределах каждого сечения не меняются. По­этому напряжение можно рассчитать по формуле

где Nz —продольная сила в сечении; А — площадь поперечного сечения. Величина напряжения прямо пропорциональна продольной силе и обратно пропорциональна площади поперечного сечения.

Нормальные напряжения действуют при растяжении от сечения (рис. 4.11, а), а при сжатии к сечению (рис. 4.11, б)

Размерность (единица измерения) напряжений — Н/м 2 (Па), од­нако это слишком малая единица, и практически напряжения рас­считывают в Н/мм 2 (МПа): 1 МПа = 10 6 Па = 1 Н/мм 2 .

При определении напряже­ний брус разбивают на участки (напряжений, в пределах которых продольные силы не изменяются, и учитывают места изменений площади поперечных сечений.

Рассчитывают напряжения по сечениям, и расчет оформляют в виде эпюры нормальных напряжений.

Строится и оформляется такая эпюра так же, как и эпюра про­дольных сил.

Читайте также:  Чем измерить высокочастотное напряжение

Рассмотрим брус, нагру­женный внешними силами вдоль оси (рис. 4.12).

Обнаруживаем три уча­стка нагружения и определя­ем величины продольных сил.

Участок 1: N1 = 0. Внутренние продольные силы равны нулю.

Участок2: N2 = 2F. Про­дольная сила на участке поло­жительна.

Участок 3: N3 = 2F—3F = —F. Продольная сила на участке отрицательна.

С учетом изменений ве­личин площади поперечного сечения участков напряжений больше.

Строим эпюры продольных сили нормальных напряжений.

Масштабы эпюр могут быть разными и выбираются исходя из удобства построения.

Источник

Растяжение-сжатие.

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

Читайте также:  Влияние провалом напряжения для электрооборудований

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε ‘ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε ‘ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно . В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность , пластичность , хрупкость , упругость и твердость .

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l и начальным постоянным поперечным сечением площади A статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l абсолютное удлинение стержня; ε = Δl / l — относительное продольное удлинение стержня; σ = F / A — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник