Механическая работа и мощность
Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы. Другими словами, работа — мера воздействия силы.
Определение механической работы
Работа А , совершаемая постоянной силой F → , — это физическая скалярная величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы F → и перемещением s → .
Данное определение рассматривается на рисунке 1.
Формула работы записывается как,
Работа – это скалярная величина. Единица измерения работы по системе СИ — Джоуль ( Д ж ) .
Джоуль равняется работе, совершаемой силой в 1 Н на перемещение 1 м по направлению действия силы.
Рисунок 1. Работа силы F → : A = F s cos α = F s s
При проекции F s → силы F → на направление перемещения s → сила не остается постоянной, а вычисление работы для малых перемещений Δ s i суммируется и производится по формуле:
A = ∑ ∆ A i = ∑ F s i ∆ s i .
Данная сумма работы вычисляется из предела ( Δ s i → 0 ) , после чего переходит в интеграл.
Графическое изображение работы определяют из площади криволинейной фигуры, располагаемой под графиком F s ( x ) рисунка 2.
Рисунок 2. Графическое определение работы Δ A i = F s i Δ s i .
Примером силы, зависящей от координаты, считается сила упругости пружины, которая подчиняется закону Гука. Чтобы произвести растяжение пружины, необходимо приложить силу F → , модуль которой пропорционален удлинению пружины. Это видно на рисунке 3.
Рисунок 3. Растянутая пружина. Направление внешней силы F → совпадает с направлением перемещения s → . F s = k x , где k обозначает жесткость пружины.
Зависимость модуля внешней силы от координат x можно изобразить на графике с помощью прямой линии.
Рисунок 4. Зависимость модуля внешней силы от координаты при растяжении пружины.
Из выше указанного рисунка возможно нахождение работы над внешней силой правого свободного конца пружины, задействовав площадь треугольника. Формула примет вид
Данная формула применима для выражения работы, совершаемой внешней силой при сжатии пружины. Оба случая показывают, что сила упругости F → у п р равняется работе внешней силы F → , но с противоположным знаком.
Если на тело действует несколько сил, то их общая работа равняется сумме всех работ, совершаемых над телом. Когда тело движется поступательно, точки приложения сил перемещаются одинаково, то есть общая работа всех сил будет равна работе равнодействующей приложенных сил.
Мощность
Мощностью называют работу силы, совершаемую в единицу времени.
Запись физической величины мощности, обозначаемой N , принимает вид отношения работы А к промежутку времени t совершаемой работы, то есть:
Система С И использует в качестве единицы мощности ватт ( В т ) . 1 Ватт — это мощность, которую совершает работу в 1 Д ж за время 1 с .
Помимо Ватта, существуют и внесистемные единицы измерения мощности. Например, 1 лошадиная сила примерна равна 745 Ваттам.
Источник
Механическая работа. Мощность
1. Механическая работа \( A \) — физическая величина, равная произведению вектора силы, действующей на тело, и вектора его перемещения: \( A=\vec\) . Работа — скалярная величина, характеризуется числовым значением и единицей.
За единицу работы принимают 1 джоуль (1 Дж). Это такая работа, которую совершает сила 1 Н на пути 1 м.
2. Если сила, действующая на тело, составляет некоторый угол \( \alpha \) с перемещением, то проекция силы \( F \) на ось X равна \( F_x \) (рис. 42).
Поскольку \( F_x=F\cdot\cos\alpha \) , то \( A=FS\cos\alpha \) .
Таким образом, работа постоянной силы равна произведению модулей векторов силы и перемещения и косинуса угла между этими векторами.
3. Если сила \( F \) = 0 или перемещение \( S \) = 0, то механическая работа равна нулю \( A \) = 0. Работа равна нулю, если вектор силы перпендикулярен вектору перемещения, т.е. \( \cos90^\circ \) = 0. Так, нулю равна работа силы, сообщающей телу центростремительное ускорение при его равномерном движении по окружности, так как эта сила перпендикулярна направлению движения тела в любой точке траектории.
4. Работа силы можетбыть как положительной, так и отрицательной. Работа положительная \( A \) > 0, если угол 90° > \( \alpha \) ≥ 0°; если угол 180° > \( \alpha \) ≥ 90°, то работа отрицательная \( A \) \( \alpha \) = 0°, то \( \cos\alpha \) = 1, \( A=FS \) . Если угол \( \alpha \) = 180°, то \( \cos\alpha \) = -1, \( A=-FS \) .
5. При свободном падении с высоты \( h \) тело массой \( m \) перемещается из положения 1 в положение 2 (рис. 43). При этом сила тяжести совершает работу, равную:
При движении тела вертикально вниз сила и перемещение направлены в одну сторону, и сила тяжести совершает положительную работу.
Если тело поднимается вверх, то сила тяжести направлена вниз, а перемещение вверх, то сила тяжести совершает отрицательную работу, т.е.
6. Работу можно представить графически. На рисунке изображён график зависимости силы тяжести от высоты тела относительно поверхности Земли (рис. 44). Графически работа силы тяжести равна площади фигуры (прямоугольника), ограниченного графиком, координатными осями и перпендикуляром, восставленным к оси абсцисс
в точке \( h \) .
Графиком зависимости силы упругости от удлинения пружины является прямая, проходящая через начало координат (рис. 45). По аналогии с работой силы тяжести работа силы упругости равна площади треугольника, ограниченного графиком, координатными осями и перпендикуляром, восставленным к оси абсцисс в точке \( x \) .
\( A=Fx/2=kx\cdot x/2 \) .
7. Работа силы тяжести не зависит от формы траектории, по которой перемещается тело; она зависит от начального и конечного положений тела. Пусть тело сначала перемещается из точки А в точку В по траектории АВ (рис. 46). Работа силы тяжести в этом случае
Пусть теперь тело движется из точки А в точку В сначала вдоль наклонной плоскости АС, затем вдоль основания наклонной плоскости ВС. Работа силы тяжести при перемещении по ВС равна нулю. Работа силы тяжести при перемещении по АС равна произведению проекции силы тяжести на наклонную плоскость \( mg\sin\alpha \) и длины наклонной плоскости, т.е. \( A_
Работа силы упругости также не зависит от формы траектории.
Предположим, что тело перемещается из точки А в точку В по траектории АСВ, а затем из точки В в точку А по траектории ВА. При движении по траектории АСВ сила тяжести совершает положительную работу, при движении по траектории В А работа силы тяжести отрицательна, равная по модулю работе при движении по траектории АСВ. Следовательно работа силы тяжести по замкнутой траектории равна нулю. То же относится и к работе силы упругости.
Силы, работа которых не зависит от формы траектории и по замкнутой траектории равна нулю, называют консервативными. К консервативным силам относятся сила тяжести и сила упругости.
8. Силы, работа которых зависит от формы пути, называют неконсервативными. Неконсервативной является сила трения. Если тело перемещается из точки А в точку В (рис. 47) сначала по прямой, а затем по ломаной линии АСВ, то в первом случае работа силы трения \( A_
Следовательно, работа \( A_
9. Мощностью называется физическая величина, равная отношению работы к промежутку времени, за который она совершена. Мощность характеризует быстроту совершения работы.
Мощность обозначается буквой \( N \) .
Единица мощности: \( [N]=[A]/[t] \) . \( [N] \) = 1 Дж/1 с = 1 Дж/с. Эта единица называется ватт (Вт). Один ватт — такая мощность, при которой работа 1 Дж совершается за 1 с.
10. Мощность, развиваемая двигателем, равна: \( N = A/t \) , \( A=F\cdot S \) , откуда \( N=FS/t \) . Отношение перемещения ко времени представляет собой скорость движения: \( S/t = v \) . Откуда \( N = Fv \) .
Из полученной формулы видно, что при постоянной силе сопротивления скорость движения прямо пропорциональна мощности двигателя.
В различных машинах и механизмах происходит преобразование механической энергии. За счёт энергии при её преобразовании совершается работа. При этом на совершение полезной работы расходуется только часть энергии. Некоторая часть энергии тратится на совершение работы против сил трения. Таким образом, любая машина характеризуется величиной, показывающей, какая часть передаваемой ей энергии используется полезно. Эта величина называется коэффициентом полезного действия (КПД).
Коэффициентом полезного действия называют величину, равную отношению полезной работы \( (A_п) \) ко всей совершённой работе \( (A_с) \) : \( \eta=A_п/A_с \) . Выражают КПД в процентах.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Работа определяется по формуле
1) \( A=Fv \)
2) \( A=N/t \)
3) \( A=mv \)
4) \( A=FS \)
2. Груз равномерно поднимают вертикально вверх за привязанную к нему верёвку. Работа силы тяжести в этом случае
1) равна нулю
2) положительная
3) отрицательная
4) больше работы силы упругости
3. Ящик тянут за привязанную к нему верёвку, составляющую угол 60° с горизонтом, прикладывая силу 30 Н. Какова работа этой силы, если модуль перемещения равен 10 м?
1) 300 Дж
2) 150 Дж
3) 3 Дж
4) 1,5 Дж
4. Искусственный спутник Земли, масса которого равна \( m \) , равномерно движется по круговой орбите радиусом \( R \) . Работа, совершаемая силой тяжести за время, равное периоду обращения, равна
1) \( mgR \)
2) \( \pi mgR \)
3) \( 2\pi mgR \)
4) \( 0 \)
5. Автомобиль массой 1,2 т проехал 800 м по горизонтальной дороге. Какая работа была совершена при этом силой трения, если коэффициент трения 0,1?
1) -960 кДж
2) -96 кДж
3) 960 кДж
4) 96 кДж
6. Пружину жёсткостью 200 Н/м растянули на 5 см. Какую работу совершит сила упругости при возвращении пружины в состояние равновесия?
1) 0,25 Дж
2) 5 Дж
3) 250 Дж
4) 500 Дж
7. Шарики одинаковой массы скатываются с горки по трём разным желобам, как показано на рисунке. В каком случае работа силы тяжести будет наибольшей?
1) 1
2) 2
3) 3
4) работа во всех случаях одинакова
8. Работа по замкнутой траектории равна нулю
А. Силы трения
Б. Силы упругости
Верным является ответ
1) и А, и Б
2) только А
3) только Б
4) ни А, ни Б
9. Единицей мощности в СИ является
10. Чему равна полезная работа, если совершённая работа составляет 1000 Дж, а КПД двигателя 40 %?
1) 40000 Дж
2) 1000 Дж
3) 400 Дж
4) 25 Дж
11. Установите соответствие между работой силы (в левом столбце таблицы) и знаком работы (в правом столбце таблицы). В ответе запишите выбранные цифры под соответствующими буквами.
РАБОТА СИЛЫ
A. Работа силы упругости при растяжении пружины
Б. Работа силы трения
B. Работа силы тяжести при падении тела
ЗНАК РАБОТЫ
1) положительная
2) отрицательная
3) равна нулю
12. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.
1) Работа силы тяжести не зависит от формы траектории.
2) Работа совершается при любом перемещении тела.
3) Работа силы трения скольжения всегда отрицательна.
4) Работа силы упругости по замкнутому контуру не равна нулю.
5) Работа силы трения не зависит от формы траектории.
Часть 2
13. Лебёдка равномерно поднимает груз массой 300 кг на высоту 3 м за 10 с. Какова мощность лебёдки?
Источник
Техническая механика
Работа, мощность, энергия
Работа постоянной силы на прямолинейном участке
Рассмотрим материальную точку М, к которой приложена сила F. Пусть точка переместилась из положения М 0 в положение М 1, пройдя путь s (рис. 1).
Чтобы установить количественную меру воздействия силы F на пути s, разложим эту силу на составляющие N и R, направленные соответственно перпендикулярно направлению перемещения и вдоль него. Так как составляющая N (перпендикулярная перемещению) не может двигать точку или сопротивляться ее перемещению в направлении s, то действие силы F на пути s можно определить произведением Rs.
Эта величина называется работой и обозначается W.
Следовательно,
W = Rs = Fs cos α,
т. е. работа силы равна произведению ее модуля на путь и на косинус угла между направлением вектора силы и направлением перемещения материальной точки.
Таким образом, работа является мерой действия силы, приложенной к материальной точке при некотором ее перемещении.
Работа является скалярной величиной.
Рассматривая работу силы, можно выделить три частных случая: сила направлена вдоль перемещения (α = 0˚), сила направлена в противоположном перемещению направлении (α = 180˚), и сила перпендикулярна перемещению (α = 90˚).
Исходя из величины косинуса угла α, можно сделать вывод, что в первом случае работа будет положительной, во втором – отрицательной, а в третьем случае (cos 90˚ = 0) работа силы равна нулю.
Так, например, при движении тела вниз работа силы тяжести будет положительной (вектор силы совпадает с перемещением), при подъеме тела вверх работа силы тяжести будет отрицательной, а при горизонтальном перемещении тела относительно поверхности Земли работа силы тяжести будет равна нулю.
Силы, совершающие положительную работу, называются движущимися силами, силы, а совершающие отрицательную работу – силами сопротивления.
Единицей работы принят джоуль (Дж):
1 Дж = сила×длина = ньютон×метр = 1 Нм.
Джоуль – это работа силы в один ньютон на пути в один метр.
Работа силы на криволинейном участке пути
На бесконечно малом участке ds криволинейный путь можно условно считать прямолинейным, а силу – постоянной.
Тогда элементарная работа dW силы на пути ds равна
dW = F ds cos (F,v).
Работа на конечном перемещении равна сумме элементарных работ:
W = ∫ F cos (F,v) ds.
На рисунке 2а изображен график зависимости между пройденным расстоянием и F cos (F,v). Площадь заштрихованной полоски, которую при бесконечно малом перемещении ds можно принять за прямоугольник, равна элементарной работе на пути ds:
dW = F cos (F,v) ds,
а работа силы F на конечном пути s графически выражается площадью фигуры ОАВС, ограниченной осью абсцисс, двумя ординатами и кривой АВ, которая называется кривой сил.
Если работа совпадает с направлением перемещения и возрастает от нуля пропорционально пути, то работа графически выражается площадью треугольника ОАВ (рис. 2 б), которая, как известно, может быть определена половиной произведения основания на высоту, т. е. половиной произведения силы на путь:
Теорема о работе равнодействующей
Теорема: работа равнодействующей системы сил на каком-то участке пути равна алгебраической сумме работ составляющих сил на том же участке пути.
Пусть к материальной точке М приложена система сил (F 1, F 2, F 3. F n), равнодействующая которых равна F Σ (рис. 3).
Система сил, приложенных к материальной точке, есть система сходящихся сил, следовательно,
Спроецируем это векторное равенство на касательную к траектории, по которой движется материальная точка, тогда:
F Σ cos γ = F 1 cos α 1 + F 2 cos α 2 + F 3 cos α 3 + . + F n cos α n.
Умножим обе части равенства на бесконечно малое перемещение ds и проинтегрируем полученное равенство в пределах какого-то конечного перемещения s:
∫ F Σ cos γ ds = ∫ F 1 cos α 1 ds + ∫ F 2 cos α 2 ds + ∫ F 3 cos α 3 ds + . + ∫ F n cos α n ds,
что соответствует равенству:
Теорема о работе силы тяжести
Теорема: работа силы тяжести не зависит от вида траектории и равна произведению модуля силы на вертикальное перемещение точки ее приложения.
Пусть материальная точка М движется под действием силы тяжести G и за какой-то промежуток времени перемещается из положения М 1 в положение М 2, пройдя путь s (рис. 4).
На траектории точки М выделим бесконечно малый участок ds, который можно считать прямолинейным, и из его концов проведем прямые, параллельные осям координат, одна из которых вертикальна, а другая горизонтальна.
Из заштрихованного треугольника получим, что
Элементарная работа силы G на пути ds равна:
Полная работа силы тяжести G на пути s равна
W = ∫ Gds cos α = ∫ Gdy = G ∫ dy = Gh.
Итак, работа силы тяжести равна произведению силы на вертикальное перемещение точки ее приложения:
Пример решения задачи по определению работы силы тяжести
Задача: Однородный прямоугольный массив АВСD массой m = 4080 кг имеет размеры, указанные на рис. 5.
Определить работу, которую необходимо выполнить для опрокидывания массива вокруг ребра D.
Решение.
Очевидно, что искомая работа будет равна работе сопротивления, совершаемой силой тяжести массива, при этом вертикальное перемещение центра тяжести массива при опрокидывании через ребро D является путем, который определяет величину работы силы тяжести.
Для начала определим силу тяжести массива: G = mg = 4080×9,81 = 40 000 Н = 40 кН.
Для определения вертикального перемещения h центра тяжести прямоугольного однородного массива (он находится в точке пересечения диагоналей прямоугольника), используем теорему Пифагора, исходя из которой:
КО 1 = ОD – КD = √(ОК 2 + КD 2 ) – КD = √(3 2 +4 2 ) — 4 = 1 м.
На основании теоремы о работе силы тяжести определим искомую работу, необходимую для опрокидывания массива:
W = G×КО 1 = 40 000×1 = 40 000 Дж = 40 кДж.
Работа постоянной силы, приложенной к вращающемуся телу
Представим себе диск, вращающийся вокруг неподвижной оси под действием постоянной силы F (рис. 6), точка приложения которой перемещается вместе с диском. Разложим силу F на три взаимно-перпендикулярные составляющие: F 1 – окружная сила, F 2 – осевая сила, F 3 – радиальная сила.
При повороте диска на бесконечно малый угол dφ сила F совершит элементарную работу, которая на основании теоремы о работе равнодействующей будет равна сумме работ составляющих.
Очевидно, что работа составляющих F 2 и F 3 будет равна нулю, так как векторы этих сил перпендикулярны бесконечно малому перемещению ds точки приложения М, поэтому элементарная работа силы F равна работе ее составляющей F 1:
dW = F 1ds = F 1Rdφ.
При повороте диска на конечный угол φ работа силы F равна
W = ∫ F 1Rdφ = F 1R ∫ dφ = F 1Rφ,
где угол φ выражается в радианах.
Так как моменты составляющих F 2 и F 3 относительно оси z равны нулю, то на основании теоремы Вариньона момент силы F относительно оси z равен:
Момент силы, приложенной к диску, относительно оси вращения называется вращающим моментом, и, согласно стандарту ИСО, обозначается буквой Т:
Т = М z(F), следовательно, W = Tφ.
Работа постоянной силы, приложенной к вращающемуся телу, равна произведению вращающего момента на угловое перемещение.
Пример решения задачи
Задача: рабочий вращает рукоятку лебедки силой F = 200 Н, перпендикулярной радиусу вращения.
Найти работу, затраченную в течение времени t = 25 секунд, если длина рукоятки r = 0,4 м, а ее угловая скорость ω = π/3 рад/с.
Решение.
Прежде всего определим угловое перемещение φ рукоятки лебедки за 25 секунд:
φ = ωt = (π/3)×25 = 26,18 рад.
Далее воспользуемся формулой для определения работы силы при вращательном движении:
W = Tφ = Frφ = 200×0,4×26,18 ≈ 2100 Дж ≈ 2,1 кДж.
Мощность
Работа, совершаемая какой-либо силой, может быть за различные промежутки времени, т. е. с разной скоростью. Чтобы охарактеризовать, насколько быстро совершается работа, в механике существует понятие мощности, которую обычно обозначают буквой P.
Мощностью называется работа, совершаемая в единицу времени.
Если работа совершается равномерно, то мощность определяют по формуле
Если направление силы и направление перемещения совпадают, что эту формулу можно записать в иной форме:
P = W/t = Fs/t или P = Fv.
Мощность силы равна произведению модуля силы на скорость точки ее приложения.
Если работа совершается силой, приложенной к равномерно вращающемуся телу, то мощность в этом случае может быть определена по формуле:
P = W/t = Tφ/t или P = Tω.
Мощность силы, приложенной к равномерно вращающемуся телу, равна произведению вращающего момента на угловую скорость.
Единицей измерения мощности является ватт (Вт):
Ватт = работа/время = джоуль в секунду.
Понятие об энергии и КПД
Способность тела при переходе из одного состояния в другое совершать работу называется энергией. Энергия есть общая мера различных форм движения материи.
В механике для передачи и преобразования энергии применяются различные механизмы и машины, назначение которых – выполнение заданных человеком полезных функций. При этом энергия, передаваемая механизмами, называется механической энергией, которая принципиально отличается от тепловой, электрической, электромагнитной, ядерной и других известных видов энергии. Виды механической энергии тела мы рассмотрим на следующей странице, а здесь лишь определимся с основными понятиями и определениями.
При передаче или преобразовании энергии, а также при совершении работы, имеют место потери энергии, поскольку механизмы и машины, служащие для передачи или преобразования энергии преодолевают различные силы сопротивления (трения, сопротивления окружающей среды и т. п.). По этой причине часть энергии при передаче безвозвратно теряется и не может быть использована для выполнения полезной работы.
Коэффициент полезного действия
Часть энергии, потерянная при ее передаче на преодоление сил сопротивления, учитывается при помощи коэффициента полезного действия механизма (машины), передающего эту энергию.
Коэффициент полезного действия (КПД) обозначается буквой η и определяется, как отношение полезной работы (или мощности) к затраченной:
Если коэффициент полезного действия учитывает только механические потери, то его называют механическим КПД.
Очевидно, что КПД – всегда правильная дробь (иногда его выражают в процентах) и его значение не может быть больше единицы. Чем ближе значение КПД к единице (100 %), тем экономичнее работает машина.
Если энергия или мощность передаются рядом последовательных механизмов, то суммарный КПД может быть определен, как произведение КПД всех механизмов:
где: η 1, η 2, η 3, . η n – КПД каждого механизма в отдельности.
Источник