Меню

Характеристику кремния проводит электрический ток

Характеристику кремния проводит электрический ток

Основные свойства характеристики (физические, механические, химические) кремния, его отличительные особенности и области применения.

Кремний (Si) – это простой полупроводник.

Кремний — элемент четвертой группы таблицы Менделеева — имеет структуру алмаза, в которой каждый атом окружен четырьмя ближайшими соседями. В данной структуре действуют ковалентные связи.

Исторически элемент германий определил научно-техническую революцию в полупроводниковой электронике, однако кремний быстро завоевал первое место как в дискретных приборах, так и в микросхемах.

Это один из наиболее распространенных элементов земной коры (около 30 %). Технический кремний (около одного процента примесей) получают в электрических печах восстановлением его оксидов углеродсодержащими веществами. Затем химическим путем образуют легколетучие хлористые соединения кремния, например трихлорсилан (SiHCl3), представляющий собой жидкость с температурой кипения около 32°С. После тщательной дополнительной очистки трихлорсилан с потоком водорода поступает в камеру восстановления, в которой на нагретые электрическим током до 1250°С кремниевые стержни — затравки оседает чистый поликристаллический кремний. Процесс ведут до получения нужного диаметра стержня (до 100 и более мм). Выращивание объемных монокристаллов кремния осуществляют методами вытягивания из расплава и бестигельной зонной плавки.

Основные физические свойства кремния:

  • плотность 2300 кг/м 3 ;
  • коэффициент теплопроводности при 20°С 80 Вт/(м·К);
  • средняя удельная теплоемкость при 0–100°С 710 Дж/(кг·К);
  • температура плавления 1414°С;
  • собственное удельное сопротивление при 20°С 2000 Ом·м;
  • ширина запрещенной зоны при 20°С 1,12 эВ;
  • подвижность электронов при 20°С 0,14 м 2 /(В·с);
  • подвижность дырок при 20°С 0,05 м 2 /(В·с);
  • работа выхода электронов 4,3 эВ;
  • первый ионизационный потенциал 8,14 В;
  • диэлектрическая проницаемость 12,5;
  • термо-ЭДС относительно платины 41,6 мкВ/К.

Специально легированный кремний широко применяется как материал для изготовления полупроводниковых приборов: транзисторов, термисторов, диодов, силовых выпрямителей тока, тиристоров, тензопреобразователей, твердых схем микроэлектроники, солнечных фотоэлементов, используемых в космических кораблях.

Поскольку кремний прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике.

Кремний может обладать свойствами сверхпроводника. При наличии 9% примеси бора в кристалле кремния, у такого материала резко снижается электрическое сопротивление при охлаждении ниже 0,35 К.

При использовании кремния верхний предел рабочей температуры приборов может составлять в зависимости от степени очистки материала 120—200°С, что значительно выше, чем для германия.

Источник

Кремний

Кремний — очень редкий минеральный вид из класса самородных элементов. На самом деле это удивительно, как редко химический элемент кремний, составляющий в связанном виде не менее 27,6% массы земной коры, встречается в природе в чистом виде. Но кремний прочно связывается с кислородом и почти всегда находится в виде кремнезёма — диоксида кремния, SiO2 (семейство кварца) или в составе силикатов (SiO4 4- ). Самородный кремний как минерал был найден в продуктах вулканических испарений и как мельчайшие включения в самородном золоте.

  1. Структура
  2. Свойства
  3. Морфология
  4. Происхождение
  5. Применение
  6. Классификация
  7. Физические свойства
  8. Оптические свойства
  9. Кристаллографические свойства

алмаз

СТРУКТУРА

Кристаллическая решётка кремния кубическая гранецентрированная типа алмаза, параметр а = 0,54307 нм (при высоких давлениях получены и другие полиморфные модификации кремния), но из-за большей длины связи между атомами Si—Si по сравнению с длиной связи С—С твёрдость кремния значительно меньше, чем алмаза. Имеет объемную структуру. Ядра атомов вместе с электронами на внутренних оболочках обладают положительным зарядом 4, который уравновешивается отрицательными зарядами четырех электронов на внешней оболочке. Вместе с электронами соседних атомов они образуют ковалентные связи на кристаллической решетке. Таким образом, на внешней оболочке находятся четыре своих электрона и четыре электрона, заимствованные у четырех соседних атомов. При температуре абсолютного нуля все электроны внешних оболочек участвуют в ковалентных связях. При этом кремний является идеальными изолятором, так как не имеет свободных электронов, создающих проводимость.

СВОЙСТВА

Кремний хрупок, только при нагревании выше 800 °C он становится пластичным веществом. Он прозрачен для инфракрасного излучения начиная с длины волны 1,1 мкм. Собственная концентрация носителей заряда — 5,81·10 15 м −3 (для температуры 300 K).Температура плавления 1415 °C, температура кипения 2680 °C, плотность 2,33 г/см 3 . Обладает полупроводниковыми свойствами, его сопротивление понижается при повышении температуры.

Читайте также:  Сила тока в замкнутой цепи постоянна

Аморфный кремний – порошок бурого цвета на основе сильно разупорядоченной алмазоподобной структуры. Обладает большей реакционной способностью, чем кристаллический кремний.

МОРФОЛОГИЯ

Чаще всего в природе кремний встречается в виде кремнезёма — соединений на основе диоксида кремния (IV) SiO2 (около 12 % массы земной коры). Основные минералы и горные породы, образуемые диоксидом кремния, — это песок (речной и кварцевый), кварц и кварциты, кремень, полевые шпаты. Вторую по распространённости в природе группу соединений кремния составляют силикаты и алюмосиликаты.

Отмечены единичные факты нахождения чистого кремния в самородном виде.

ПРОИСХОЖДЕНИЕ

Содержание кремния в земной коре составляет по разным данным 27,6—29,5 % по массе. Таким образом по распространённости в земной коре кремний занимает второе место после кислорода. Концентрация в морской воде 3 мг/л. Отмечены единичные факты нахождения чистого кремния в самородном виде — мельчайшие включения (наноиндивиды) в ийолитах Горячегорского щелочно-габброидного массива (Кузнецкий Алатау, Красноярский край); в Карелии и на Кольском п-ове (по мат. изучения Кольской сверхглубокой скважины); микроскопические кристаллы в фумаролах вулканов Толбачик и Кудрявый (Камчатка).

ПРИМЕНЕНИЕ

Сверхчистый кремний преимущественно используется для производства одиночных электронных приборов (нелинейные пассивные элементы электрических схем) и однокристальных микросхем. Чистый кремний, отходы сверхчистого кремния, очищенный металлургический кремний в виде кристаллического кремния являются основным сырьевым материалом для солнечной энергетики.

Монокристаллический кремний — помимо электроники и солнечной энергетики, используется для изготовления зеркал газовых лазеров.

Соединения металлов с кремнием — силициды — являются широко употребляемыми в промышленности (например, электронной и атомной) материалами с широким спектром полезных химических, электрических и ядерных свойств (устойчивость к окислению, нейтронам и др.). Силициды ряда элементов являются важными термоэлектрическими материалами.

Соединения кремния служат основой для производства стекла и цемента. Производством стекла и цемента занимается силикатная промышленность. Она также выпускает силикатную керамику — кирпич, фарфор, фаянс и изделия из них. Широко известен силикатный клей, применяемый в строительстве как сиккатив, а в пиротехнике и в быту для склеивания бумаги. Получили широкое распространение силиконовые масла и силиконы — материалы на основе кремнийорганических соединений.

Технический кремний находит следующие применения:

  • сырьё для металлургических производств: компонент сплава (бронзы, силумин);
  • раскислитель (при выплавке чугуна и сталей);
  • модификатор свойств металлов или легирующий элемент (например, добавка определённого количества кремния при производстве трансформаторных сталей уменьшает коэрцитивную силу готового продукта) и т. п.;
  • сырьё для производства более чистого поликристаллического кремния и очищенного металлургического кремния (в литературе «umg-Si»);
  • сырьё для производства кремний органических материалов, силанов;
  • иногда кремний технической чистоты и его сплав с железом (ферросилиций) используется для производства водорода в полевых условиях;
  • для производства солнечных батарей;
  • антиблок (антиадгезивная добавка) в промышленности пластмасс.

Источник

Большая Энциклопедия Нефти и Газа

Электропроводность — кремний

В табл. 7 приведены значения электропроводности кремния и германия при температуре плавления каждого из них. [17]

Например, введение в кремний примесей атомов III или V групп периодической системы элементов в ничтожной концентрации ( 1 атом примеси на миллиард атомов кремния) изменяет электропроводность кремния на несколько порядков. Электропроводность металлов обычно практически не изменяется и при введении гораздо больших количеств атомов примесей. [19]

Наряду с собственной проводимостью он обладает большой примесной проводимостью; примеси элементов V группы периодической системы приводят к появлению электронной л-проводимости, примеси элементов III группы — к дырочной р-проводимости. Электропроводность кремния меняется при этом на несколько порядков. [20]

Хотя кремний по внешнему виду похож на металл, к металлам его обычно не относят. Электропроводность кремния настолько меньше электропроводности обычных металлов, что его называют полупроводником. Кремний является образцом сетчатых твердых веществ ( рис. 20 — 1): атомы в его кристалле расположены так же, как и в алмазе. Каждый атом кремния, окружен четырьмя другими атомами кремния и связан с ними ко-валентными связями. [21]

Читайте также:  Напряженность электрического поля в витке с током

Интересную проблему поставило взаимодействие примесных атомов и дислокаций, которое, например, в случае электропроводности и ковкости выражается функцией температуры, степени чистоты и несовершенств решетки. Электропроводность кремния внезапно возрастает при 900 [13], при этой температуре наступает начало пластичности. У германия при 500 также одновременно возрастает электропроводность и появляется пластичность. Эти явления можно легко объяснить, приняв, что при указанных температурах примесные атомы отделяются от дислокаций. Изменение элетропроводности металлов из-за освобождения примесных атомов достаточно точно измерить не представляется возможным; при отделении примесных атомов наблюдали только возникновение дислокаций. Такое выделение может произойти уже при низких температурах, если концентрация примесных атомов станет малой. [22]

Большой интерес представляет структура Крх-полосы кремния, элемента, некоторые свойства которого ( например, зависимость его электропроводности от температуры) до сих пор еще не позволяют совершенно надежно отнести его к металлам или электронным полупроводникам. Решающие в этом отношении эксперименты по определению знака температурного коэффициента электропроводности кремния , выполненные до сих пор, приводили к противоречивым результатам. В связи с этим было даже высказано предположение, что кремний и некоторые другие вещества, считающиеся обычно электронными полупроводниками, в действительности обладают металлической проводимостью, а наблюдающееся иногда у этих веществ возрастание электропроводности с температурой объясняется разрушением оксидных пленок, разделяющих мелкие кристаллики в пределах поликристаллического образца. Такая же двойственность характеризует и результаты рентгеноспектроскопи-ческого изучения К-эмиссионных полос кремния и его соединений. Здесь также наблюдаются значительные разногласия в результатах, полученных разными авторами, и сосуществование признаков, характерных для свойств металлических тел и полупроводников. [23]

Чистый кремний образует блестящие серые ( цвета железа) твердые ( твердость 7 по шкале Мооса; см. стр. Электропроводность кремния очень мала и возрастает с повышением температуры ( полупроводник; см. стр. Структура кристалла кремния аналогична структуре алмаза ( стр. Такую же структуру имеет и аморфный кремний, который, следовательно, является не особой аллотропической формой, а обычным кремнием кубической структуры в высокодисперсном состоянии. Формы кремния, аналогичной графитут не существует. [24]

Повышение удельной проводимости кремния с увеличением Т в области низких температур обусловлено увеличением концентрации свободных носителей заряда — электронов за счет ионизации донорной примеси. При дальнейшем повышении температуры наступает истощение примеси — полная ее ионизация. Собственная же электропроводность кремния заметно еще не проявляется. В этих условиях концентрация свободных носителей практически от температуры не зависит и температурная зависимость удельной проводимости полупроводника определяется зависимостью подвижности носителей от температуры. Наблюдаемое в этой области температур уменьшение удельной проводимости кремния с увеличением температуры происходит за счет рассеяния свободных носителей заряда на тепловых колебаниях решетки. Однако возможен и такой случай, когда область истощения примеси оказывается в интервале температур, где основным механизмом рассеяния является рассеяние на ионах примеси. [26]

Почти все валентные электроны в кристалле кремния локализованы в ковалентных связях и не могут свободно проводить тепло или электрический ток через кристалл. С другой стороны, в твердом веществе всегда имеется небольшое число валентных электронов, которые обладают достаточной энергией и поэтому не локализованы. Эти электроны и обусловливают небольшую, но заметную электропроводность кремния . [27]

В кристаллическом состоянии кремний хорошо проводит тепло. Его электропроводность составляет 0 007 ( для обычного) — 0 000001 ( для особо чистого) от электропроводности ртути, причем при нагревании она не понижается ( как то характерно для металлов), а повышается. Повышается она и с увеличением давления. Теплота плавления кремния равна 11, теплота атомизации-108 ккал / г-атом. Резко ( в 29 раз) возрастает при плавлении и электропроводность кремния . [28]

В кристаллическом состоянии кремний хорошо проводит тепло. Его электропроводность составляет 0 007 ( для обычного) — 0 000001 ( для особо чистого) от электропроводности ртути, причем при нагревании она не понижается ( как то характерно для металлов), а повышается. Повышается она и с увеличением давления, а при 120 тыс. ат кремний приобретает свойства металла. Теплота плавления кремния равна 11, теплота атомизации-108 ккал / г-атом. Резко ( в 20 раз) возрастает при плавлении и электропроводность кремния . [29]

Читайте также:  Что такое трансформатор напряжения трансформатор тока

Источник



Учёные выяснили, что кремний может сохранять проводимость при сверхнизких уровнях заряда

Казалось бы, если в электронике что-то изучено наиболее досконально, то это свойства кремния. Оказалось, что это не так. Исследователи из американского Национального института стандартов и технологий (NIST) придумали новый метод измерения мобильности заряжённых частиц в кремнии, который если не перевернул, то значительно расширил представление о процессах переноса заряда в полупроводниках.

Отчёт об исследовании опубликован в журнале Optics Express. Предложенный учёными метод позволил провести наиболее чувствительные измерения скорости движения электрического заряда в кремнии, а это показатель его эффективности в качестве полупроводника. Как следствие, новый метод позволит точнее оценить влияние на проводимость кремния тех или иных легирующих добавок и создаст основу для улучшения характеристик полупроводниковых приборов. Это шанс улучшить работу чипов практически даром только за счёт лучшего понимания процессов. Провести тюнинг, если так можно выразиться.

Традиционно подвижность электронов и дырок в кремнии измеряли методом Холла. Этот метод предполагает, что на образце кремния (полупроводника) распаиваются контакты для пропускания электрического тока. Недостатком этого способа является то, что в местах пайки образуются дефекты или появляются примеси, которые вносят искажения в результаты измерения.

Для чистоты эксперимента учёные из NIST воспользовались бесконтактным методом. На образец кремния сначала подавался свет слабой интенсивности в виде сверхкоротких импульсов видимого света, а затем образец облучался импульсами излучения в дальнем инфракрасном или микроволновом диапазоне. Слабый видимый свет производил на кремний эффект фотолегирования: в слое кремния возникали заряжённые частицы в виде электронов и дырок.

Видимый свет, по понятным причинам, в толщу кремния проникнуть не мог. Именно для этого фотолегированный образец облучался терагерцевым излучением (в дальнем инфракрасном диапазоне), для которого кремний прозрачен. И чем больше в образце заряжённых частиц, тем больше света проникает или поглощается образцом. При этом важно отметить, что для более точного измерения подвижности электронов в образце его толщина должна была быть довольно большой ― до 1 мм. Это исключало влияние на измерения дефектов на поверхности образца.

В то же время перед исследователями стояла другая проблема. Количество «внесённых» видимым светом электронов и дырок в образце должно было быть как можно меньше, чтобы понизить порог чувствительности при измерениях. Обычно для этого образец облучался одним фотоном, но в случае толстого образца один фотон выбивал в кремнии недостаточно заряжённых частиц. Выход был найден в облучении образца двумя фотонами видимого света. После этого терагерцевое излучение свободно проходило через образец при минимальном числе заряжённых частиц в объёме материала. По утверждению учёных, порог чувствительности удалось понизить в 10 раз со 100 трлн носителей заряда на см 2 до 10 трлн.

Как только порог чувствительности был понижен, выяснилось удивительное. Подвижность электронов в кремнии оказалась способна расти даже до весьма разреженного состояния носителей в материале, о чём раньше никто не подозревал. Собственно, сама подвижность оказалась на 50 % выше, чем считалось ранее. Для контрольной проверки подобный эксперимент был проведён с арсенидом галлия (GaAs), тоже светочувствительным полупроводником. Обнаружилось, что подвижность носителей заряда в этом материале продолжает расти по мере снижения их плотности. Измеренный новым методом предел плотности носителей оказался примерно в 100 раз ниже, чем до этого считалось.

Что из всего этого следует? В далёком или не очень далёком будущем полупроводники смогут работать при очень низких уровнях заряда. По крайней мере, теоретический предел отодвинут достаточно далеко. Это и высокочувствительные солнечные панели, и однофотонные детекторы (привет квантовым компьютерам!), сверх энергоэффективная электроника и многое другое.

Источник