Меню

Химическое действие тока это физика 8 класс

Химическое действие тока это физика 8 класс

Действия электрического тока — это те явления, которые вызывает электрический ток.
По этим явлениям можно судить есть или нет электрический ток в цепи.

Тепловое действие тока.

— электрический ток вызывает разогревание металлических проводников вплоть до свечения.

Химическое действие тока.

— при прохождении электрического тока через электролит возможно выделение веществ, содержащихся в растворе, на электродах.
— наблюдается в жидких проводниках.

Магнитное действие тока.

— проводник с током приобретает магнитные свойства.
— наблюдается при наличии электрического тока в любых проводниках (твердых, жидких, газообразных).

А СМОЖЕШЬ ЛИ ТЫ СООБРАЗИТЬ

Открытие физика Араго в 1820 г. заключалось в следующем: когда тонкая медная проволока, соединенная с источником тока, погружалась в железные опилки, то они приставали к ней.
Объясните это явление.
В коробке перемешаны медные винты и железные шурупы.
Каким образом можно быстро рассортировать их, имея аккумулятор, достаточно длинный медный изолированный провод и железный стержень?

ДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА НА ОРГАНИЗМ ЧЕЛОВЕКА.

Физиологическое действие тока на ранней стадии развития науки об электричестве было единственным, о котором было известно ученым, и было основано на собственных ощущениях экспериментаторов.

Одним из первых, кто ощутил на себе действие тока, был голландский физик П.Мушенбрук, живший в 18 веке. Получив удар током он заявил, что «не согласился бы подвергнуться ещё раз такому испытанию даже за королевский трон Франции.»

Электрический ток вызывает изменения в нервной системе, выражающиеся в ее раздражении или параличе. При воздействии электрического тока возникают судорожные спазмы мышц.
Принято говорить, что электрический ток человека «держит»: пострадавший не в состоянии
выпустить из рук предмет — источник электричества.
___

При поражении достаточно сильным электрическим током происходит судорожный спазм диафрагмы — главной дыхательной мышцы в организме — и сердца.
Это вызывает моментальную остановку дыхания и сердечной деятельности. Действие электрического тока на мозг вызывает потерю сознания. Соприкасаясь с телом человека, электрический ток оказывает также тепловое действие, причем в месте контакта возникают ожоги III степени.
___

Постоянный ток менее опасен, чем переменный в электросети, который даже под напряжением 220В может вызвать очень тяжелое поражение организма. Действие электрического тока на человека усиливается при наличии промокшей обуви, мокрых рук, которым свойственна повышенная электропроводность.
___

При поражении молнией на теле пострадавшего возникает древовидный рисунок синюшного цвета. Принято говорить, что молния оставила свое изображение.
В действительности при поражении молнией происходит паралич подкожных сосудов.

Электрошок — электрическое раздражение мозга , с помощью которого лечат некоторые психические заболевания.
Дефибрилляторы — электрические медицинские приборы, используемые при восстановлении нарушений ритма сердечной деятельности посредством воздействия на организм кратковременными высоковольтными электрическими разрядами.
Гальванизация — пропускание через организм слабого постоянного тока, оказывающего болеутоляющий эффект и улучшающий кровообращение.

Работая с электроприборами, будь осторожен!

Любознательным

По ковру ходить опасно!

Иногда вас может «ударить током», если вы просто пройдетесь по ковру или поерзаете на сиденьи автомобиля. Очевидно, при этом каким-то образом накапливается заряд. Можете ли вы более подробно объяснить, что именно происходит? Почему, например, вас «бьет током», когда вы идете по ковру, но ничего не случается, если вы стоите на нем? Почему эти эффекты зависят от времени года?

Оказывается.
Когда два материала (скажем, подошвы туфель и ковер) соприкасаются, электроны из одного из них туннелируют через поверхностный энергетический барьер в другой. Поскольку ни тот, ни другой из этих материалов не является хорошим проводником, электроны могут переходить с одной поверхности на другую лишь в тех точках, где материалы плотно соприкасаются. Таким образом, чем больше поверхность контакта между материалами, тем больше будет переходить электронов. При трении одной поверхности о другую площадь контакта значительно возрастает, благодаря чему достигается переход большого числа электронов. Материал, который теряет электроны, заряжается положительно, материал, который принимает их, заряжается отрицательно. Если воздух влажный, избыточный заряд быстро переходит с материала на взвешенные в воздухе капельки воды. Уменьшению заряда могут способствовать также частицы дыма. Если же такого разряда не происходит, то при обычном контакте двух материалов может возникнуть весьма значительная разность потенциалов.
Если, например, перед тем как выйти из машины, вы поерзаете на сиденье, то потенциал вашего тела может оказаться на 15 кВ выше потенциала земли.

Источник

Действия электрического тока

Мы не обладаем возможностью увидеть электроны, бегущие по проводнику. Как же тогда можно обнаружить ток в проводнике? Наличие электрического тока можно обнаружить по косвенным признакам. Так как, ток, протекая по проводнику, оказывает воздействие на него.

Вот некоторые из признаков:

  1. тепловой;
  2. химический;
  3. магнитный.

Тепловое действие тока

Благодаря такому действию тока мы можем освещать помещения с помощью ламп накаливания. А, так же, используем различные нагревательные электроприборы – конвекторы, электроплиты, утюги (рис. 1).

Используя метровый кусок никелиновой проволоки (рис. 2), можно продемонстрировать нагревание проводника при протекании по нему электрического тока. Для заметного провисания нагретой проволоки из-за теплового увеличения длины и наблюдения красноватого ее свечения будет достаточно тока в 2 — 3 Ампера.

Кусок провода нагревается, когда по нему протекает электрический ток. Чем больше ток в проводнике, тем больше он нагреется. Длина нагретого проводника увеличивается.

Подробнее о выделившемся количестве теплоты можно прочитать в статье о законе Джоуля-Ленца (ссылка).

Примечание: Нихром, никелин, константан – сплавы металлов, обладающие большим удельным сопротивлением (ссылка). Проволоки, изготовленные из таких сплавов, используются в различных нагревательных электроприборах.

Химическое действие тока

Электрический ток, проходя через растворы некоторых кислот, щелочей или солей, вызывает выделение из них вещества. Это вещество осаждается на электродах – пластинках, опущенных в раствор и подключенных к источнику тока.

Такое действие тока используют в гальванопластике – покрытии металлом некоторых поверхностей. Применяют никелирование, омеднение, хромирование, а, так же, серебрение и золочение поверхностей.

Читайте также:  Какие виды поражения вызывает электрический ток в организме человека

С помощью раствора медного купороса можно продемонстрировать выделение вещества под действием тока. Водный раствор этой соли имеет голубоватый оттенок. Пропуская электрический ток (ссылка) через раствор, можно обнаружить выделение меди на одном из электродов (рис. 3).

На каком электроде будет выделяться медь

Медь в растворе купороса присутствует в виде положительных ионов. Тела, имеющие разноименные заряды, притягиваются. Поэтому, ионы меди будут притягиваться к пластинке, имеющей заряд со знаком «минус». То есть, пластинке, подключенной к отрицательному выводу источника тока. Такую пластинку называют отрицательным электродом, или катодом.

Вторую пластинку, подключенную к положительному выводу батареи, называют анодом.

Примечание: Медный купорос можно найти в хозяйственном магазине. Его химическая формула \(\large CuSO_<4>\). Он используется в сельском хозяйстве для опрыскивания листвы плодовых деревьев, кустарников и овощных культур – к примеру, томатов, картофеля. Входит в составы различных растворов, применяемых в борьбе с болезнями растений и насекомыми-вредителями.

Применение химического действия тока в медицине

Химическое действие тока применяют не только в гальванопластике.

Пропускание электрического тока через растворы вызывает в них движение заряженных частиц вещества – положительных и отрицательных ионов. Человеческое тело содержит жидкости, в которых растворены некоторые вещества. А значит, в таких жидкостях присутствуют ионы.

Прикладывая специальные электроды, смоченные растворами лекарств на отдельные участки тела, и пропуская через них маленькие токи, можно вводить в организм некоторые лекарственные препараты (рис. 4).

Химическое действие тока применяют в медицине

Такое введение лекарств называют электрофорезом и используется в физиопроцедурных кабинетах поликлиник и санаториев.

Магнитное действие тока

Медь сама по себе не притягивается к магниту. В этом можно убедиться с помощью небольшого магнита и кусочка медного провода (рис. 5а).

На рисунке 5 кусок медного провода подвешен к двум штативам с помощью тонких нитей, не проводящих электрический ток.

Однако, во время протекания электрического тока, медный проводник начинает взаимодействовать с магнитом — притягиваться, или отталкиваться от него (рис. 5б).

С магнитом взаимодействует не сам медный проводник, а ток, протекающий по этому проводнику.

Почему проводок с током взаимодействует с магнитом

Электрический ток — это большое количество электронов, бегущих по проводку от одного его края к другому краю. Электроны обладают зарядом.

Вокруг движущихся зарядов возникает магнитное поле. Благодаря этому проводок с током превращается в маленький магнитик. И начинает взаимодействовать с магнитом, притягиваясь к нему, или отталкиваясь от него.

При этом, проводок, как более легкий предмет, будет двигаться. А магнит продолжит оставаться на месте. Из-за того, что его масса значительно больше массы кусочка провода.

Направление движения проводка зависит от полярности его подключения к батарейке и, от того, как располагаются полюса магнита.

На магнитном действии тока основано действие электромагнита.

Самодельный электромагнит

Его легко изготовить из куска гибкой изолированной медной проволоки и железного гвоздя.

Гвоздь нужно обернуть кусочком бумаги – гильзой (рис. 6). Затем на гильзу нужно намотать 200 – 300 витков тонкого медного провода в изоляции. К выводам полученной катушки нужно подключить батарейку от карманного электрического фонаря.

Во время протекания тока, к гвоздю притягиваются различные мелкие железные предметы – скрепки, кнопки, гвоздики, железные стружки, опилки и т. п.

Отсоединив батарейку, увидим, что как только ток прекращается, гвоздь перестает притягивать к себе железные предметы.

Рамка с током и подковообразный магнит

Провод, обладающий достаточной жесткостью, можно изогнуть в виде плоской фигуры – прямоугольника, квадрата, окружности. Эластичные же провода навивают на жесткий каркас, изготовленный из подходящего материала – фанеры, картона, пластмассы и т. д. Такой изогнутый провод образует рамку. Проволочную рамку часто называют контуром.

Проволочная рамка, по которой течет электрический ток, может ориентироваться в магнитном поле.

Чтобы убедиться в этом, проведем такой эксперимент. Используем для него подковообразный магнит и проводник, изогнутый в виде прямоугольной рамки. Подвесим рамку к лапке штатива с помощью нити. Размеры рамки нужно выбрать так, чтобы она поместилась между полюсами магнита.

Сначала используем только подвешенную рамку (рис. 7а), без магнита. Подключим к рамке источник тока. Можно убедиться, что после подключения тока рамка продолжает висеть неподвижно. Отключим источник тока.

Теперь поместим магнит так, чтобы рамка находилась между его полюсами (рис. 7б) и, пропустим по цепи электрический ток. Легко заметить, что во время протекания тока рамка поворачивается и ориентируется по магнитному полю. А когда цепь размыкается, рамка возвращается в первоначальное положение.

Примечание: Если изменить полярность подключения источника к рамке, то она будет поворачиваться в противоположную сторону.

Замечательное свойство рамки с током поворачиваться в магнитном поле, используют в различных измерительных приборах. Один из таких приборов – гальванометр.

Устройство гальванометра

Гальванометром прибор назвали в честь итальянского физика и врача Луиджи Гальвани. Этот прибор способен измерять маленькие электрические токи (постоянные).

На схемах прибор обозначают кружком, внутри которого расположена большая латинская буква G. На некоторых схемах внутри круга находится стрелка, направленная вертикально вверх.

  • подковообразный магнит и
  • находящуюся внутри него рамку, содержащую витки тонкого медного провода (рис. 8).

Подвижная рамка находится на оси и может вокруг нее поворачиваться.

К рамке прикреплена стрелка. Она указывает, на какой угол рамка повернулась во время протекания в ней электрического тока.

Угол поворота отмечают по делениям шкалы.

Кто такой Луиджи Гальвани

Гальвани был одним из основателей учения об электричестве.

Обнаружил, что в местах контакта различных видов металлов возникает электрическое напряжение.

Проводил опыты с использованием железного ключа и серебряной монеты.

Изучал сокращения мышц под воздействием электричества и пришел к выводу, что мышцы управляются электрическими импульсами, поступающими по нервным волокнам из мозга.

Читайте также:  Угловая погрешность в трансформаторе тока это

В итальянском городе Болонья неподалеку от здания Болонского университета находится памятник Гальвани. Он находится на площади Piazza Luigi Galvani, носящей имя ученого.

В его честь, так же, назвали один из кратеров на обратной стороне Луны.

А Болонский лицей назван именем Гальвани еще с 1860-го года.

О приборах магнитоэлектрической системы

Такие приборы, содержащие проводящую рамку и небольшой магнит, называют приборами магнитоэлектрической системы. Они получили широкое распространение из-за своего сравнительно простого устройства.

Шкалы приборов можно градуировать в различных единицах измерения, в зависимости от измеряемых физических величин. На основе таких приборов изготавливают вольтметры, амперметры, омметры и т. п.

Источник

Урок физики 8 классе на тему: «Химическое действие электрического тока. (Закон Фарадея).»
план-конспект урока по физике (8 класс) на тему

Кузьмина Инга Валерьевна

Урок физики в 8 классе на тему: «Химическое действие электрического тока. (Закон Фарадея).»

Скачать:

Вложение Размер
urok_po_fizike_8_klass._himicheskoe_deystvie_elektricheskogo_toka._zakon_faradeya.docx 30.94 КБ

Предварительный просмотр:

Урок №44 физика 8 класс

Тема: Химическое действие электрического тока. (Закон Фарадея).

Цель урока – знать какое действие вызывает электрический ток, закон Фарадея, применять знания при решении задач

  1. Рассмотреть свойства электрического тока, изучить закон электролиза (закон Фарадея), научиться использовать законы при решении конкретных задач;
  2. Развивать умение строить аналогии, анализировать, делать умозаключения, использовать конкретный закон при решении физических задач;
  3. Воспитать дисциплинированность, организованность, умение слушать окружающих людей.

Тип урока: изучение нового материала.

  1. Орг.момент.
  2. Эмоционально-психологический настрой
  3. Актуализация знаний:

1. проверка дом задания

2. чтение сообщений + оценивание

3. решение задач

Целеполагание: Он бежит по проводам

В каждом доме он желан

Но не вздумай с ним шутить,

Может он поколотить.

  1. Озвучивание темы урока. целеполагание

Итак, сегодня мы продолжим изучать тему «Электрический тока». Одним из действий электрического тока является химическое свойства тока. Тема нашего урока «Химическое действие электрического тока. Закон Фарадея». Какова цель урока? (ученики формулируют цель урока и записывают на доске)

  1. Изучение нового материала:

Учащимся раздается текст, они его изучают , сотавляют ключевые слова, презентуют + обсуждение

Задание: «Тело человека является проводником. Проходя по нему, электрический ток может вызвать повреждение жизненно важных органов, а иногда и смерть человека.

Тяжесть поражения током зависит от силы тока, прошедшего через человека, характера тока (является ли он постоянным или переменным, т.е. изменяющимся по величине и направлению), продолжительности его действия, а также от того, по какому пути внутри человека он шел. Наибольшую опасность представляет прохождения тока через мозг и те нервные центры, которые контролируют дыхание и сердцебиение человека.

Наиболее чувствительными к току являются такие участки тела, как кожа лица, шеи и тыльной стороны ладоней.

Опасность поражения током требует обязательного соблюдения правил безопасного труда при работе с электрическими цепями.

Однако действие электрического тока на человеческий организм может быть не только отрицательным, но и положительным. Это используется в медицине. Например, при радикулите, невралгии и некоторых других заболеваниях применяют гальванизацию: приложив к пациенту электроды, пропускают через него слабый постоянный ток. Это оказывает болеутоляющий эффект, улучшает кровообращение и т.д.

Кратковременные высоковольтные электрические разряды через сердце помогают иногда предотвратить смерть пациента при тяжелом нарушении сердечной деятельности».

Просмотр видеоролика: «Электролиз», презентации

6. Закрепление новых знаний.

Предлагаю проверить прочность полученных знаний.

I вариант II вариант

1. Электрический ток – это… 1. Электрический ток в металлах – это…

а) упорядоченное движение частиц,

б) упорядоченное движение свободных электронов,

в) упорядоченное движение заряженных частиц,

г) движение заряженных частиц.

2. Какое действие тока всегда 2. Как называется действие тока

наблюдается в твердых, жидких может вызвать сильные конвульсии

и газообразных проводниках? и кровотечения из носа?

а) тепловое, б) химическое, в) магнитное, г) физиологическое.

3. Укажите, в каком из перечис- 3. Укажите, в каком из перечисленных ленных случаев используется ниже случаев используется химичес- физиологическое действие тока. кое действие тока.

а) нагревание воды электрическим током,

б) хромирование деталей,

в) рефлекторное сокращение мышц,

г) свечение электрической лампы.

4. Какое действие тока используют 4. Какое действие тока используют

в устройстве пылесоса? в устройстве гальванометра?

а) химическое, б) магнитное, в) физиологическое, г) тепловое.

5. В устройстве какого бытового 5. В устройстве какого бытового

прибора используется тепловое прибора используется одновре-

действие тока? менно тепловое и магнитное

а) телевизор, б) фен, в) пылесос, г) электрическая лампа.

7. Подведение итогов: возврат к цели урока, оценивание.

8. Домашнее задание: §45,46 упр.23 (4,5,6) – инструктаж.

Источник



Действия электрического тока: тепловое, химическое, магнитное, световое и механическое

Действия электрического тока: тепловое, химическое, магнитное, световое и механическоеЭлектрический ток в цепи всегда проявляется каким-нибудь своим действием. Это может быть как работа в определенной нагрузке, так и сопутствующее действие тока. Таким образом, по действию тока можно судить о его наличии или отсутствии в данной цепи: если нагрузка работает — ток есть. Если типичное сопутствующее току явление наблюдается — ток в цепи есть, и т. д.

Вообще, электрический ток способен вызывать различные действия: тепловое, химическое, магнитное (электромагнитное), световое или механическое, причем разного рода действия тока зачастую проявляются одновременно. Об этих явлениях и действиях тока и пойдет речь в данной статье.

Тепловое действие электрического тока

При прохождении постоянного или переменного электрического тока по проводнику, проводник нагревается. Такими нагревающимися проводниками в разных условиях и приложениях могут выступать: металлы, электролиты, плазма, расплавы металлов, полупроводники, полуметаллы.

Электрообогреватель

Сварочная дуга

В простейшем случае, если, скажем, через нихромовую проволоку пропустить электрический ток, то она нагреется. Данное явление используется в нагревательных приборах: в электрочайниках, в кипятильниках, в обогревателях, электроплитках и т. д. В электродуговой сварке температура электрической дуги вообще доходит до 7000°С, и металл легко плавится, — это тоже тепловое действие тока.

Закон Джоуля-Ленца

Джеймс Джоуль и Эмилий Ленц

Выделяемое на участке цепи количество теплоты зависит от приложенного к этому участку напряжения, значения протекающего тока и от времени его протекания (Закон Джоуля — Ленца).

Преобразовав закон Ома для участка цепи, можно для вычисления количества теплоты использовать либо напряжение, либо силу тока, но тогда обязательно необходимо знать и сопротивление цепи, ведь именно оно ограничивает ток, и вызывает, по сути, нагрев. Или, зная ток и напряжение в цепи, можно так же легко найти количество выделяемой теплоты.

Химическое действие электрического тока

Электролиты, содержащие ионы, под действием постоянного электрического тока подвергаются электролизу — это и есть химическое действие тока. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы). То есть вещества, содержащиеся в электролите, в процессе электролиза выделяются на электродах источника тока.

Например, в раствор определенной кислоты, щелочи или соли погружают пару электродов, и при пропускании электрического тока по цепи на одном электроде создается положительный заряд, на другом — отрицательный. Ионы содержащиеся в растворе начинают откладываться на электроде с противоположным зарядом.

Скажем, при электролизе медного купороса (CuSO4), катионы меди Cu2+ с положительным зарядом движутся к отрицательно заряженному катоду, где они получают недостающий заряд, и становятся нейтральными атомами меди, оседая на поверхности электрода. Гидроксильная группа -OH отдаст электроны на аноде, и в результате выделится кислород. Положительно заряженные катионы водорода H+ и отрицательно заряженные анионы SO42- останутся в растворе.

Химическое действие электрического тока используется в промышленности, например, для разложения воды на составляющие ее части (водород и кислород). Также электролиз позволяет получать некоторые металлы в чистом виде. С помощью электролиза покрывают тонким слоем определенного металла (никеля, хрома) поверхности — это нанесение гальванических покрытий и т.д.

В 1832 году Майкл Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит. Если через электролит пропускается в течение времени t постоянный ток I, то справедлив первый закон электролиза Фарадея:

Здесь коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Магнитное действие электрического тока

При наличии электрического тока в любом проводнике (в твердом, жидком или газообразном) наблюдается магнитное поле вокруг проводника, то есть проводник с током приобретает магнитные свойства.

Так, если к проводнику, по которому течет ток, поднести магнит, например в виде магнитной стрелки компаса, то стрелка повернется перпендикулярно проводнику, а если намотать проводник на железный сердечник, и пропустить по проводнику постоянный ток, то сердечник станет электромагнитом.

В 1820 году Эрстед открыл магнитное действие тока на магнитную стрелку, а Ампер установил количественные закономерности магнитного взаимодействия проводников с током.

Магнитное действие электрического тока

Магнитное поле всегда порождается током, то есть движущимися электрическими зарядами, в частности — заряженными частицами (электронами, ионами). Противоположно направленные токи взаимно отталкиваются, однонаправленные токи взаимно притягиваются.

Такое механическое взаимодействие происходит благодаря взаимодействию магнитных полей токов, то есть это, в первую очередь, — магнитное взаимодействие, а уж потом — механическое. Таким образом, магнитное взаимодействие токов первично.

ЭДС пропорциональна скорости изменения магнитного потока

В 1831 году, Фарадей установил, что изменяющееся магнитное поле от одного контура порождает ток в другом контуре: генерируемая ЭДС пропорциональна скорости изменения магнитного потока. Логично, что именно магнитное действие токов используется по сей день и во всех трансформаторах, а не только в электромагнитах ( например, в промышленных).

Световое действие электрического тока

В простейшем виде световое действие электрического тока можно наблюдать в лампе накаливания, спираль которой разогревается проходящим через нее током до белого каления и излучает свет.

Для лампы накаливания на световую энергию приходится около 5% от подведенной электроэнергии, остальные 95% которой преобразуется в тепло.

Люминесцентные лампы более эффективно преобразуют энергию тока в свет — до 20% электроэнергии преобразуется в видимый свет благодаря люминофору, принимающему ультрафиолетовое излучение от электрического разряда в парах ртути или в инертном газе типа неона.

Световое действие электрического тока

Более эффективно световое действие электрического тока реализуется в светодиодах. При пропускании электрического тока через p-n переход в прямом направлении, носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Лучшие излучатели света относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), например GaAs, InP, ZnSe или CdTe. Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). КПД светодиода как источника света доходит в среднем до 50%.

Механическое действие электрического тока

Как было отмечено выше, каждый проводник, по которому течет электрический ток, образует вокруг себя магнитное поле. Магнитные действия превращаются в движение, например, в электродвигателях, в магнитных подъемных устройствах, в магнитных вентилях, в реле и т. д.

Механическое действие электрического тока

Механическое действие одного тока на другой описывает закон Ампера. Впервые этот закон был установлен Андре Мари Ампером в 1820 для постоянного тока. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна току в проводнике и векторному произведению элемента длины проводника на магнитную индукцию.

На этом принципе основана работа электродвигателей, где ротор играет роль рамки с током, ориентирующейся во внешнем магнитном поле статора вращающим моментом M.

Источник