Меню

Клетки человека электрический ток

Глава 4. Откуда в клетке электричество?

Глава 4. Откуда в клетке электричество?

Итак, мы преодолели крепостную стену-мембрану, побродили по «замку» – информационному центру, покатались по узким каналам и даже ознакомились с канализационной системой клетки-городка. Но что заставляет двигаться все это чудо? Где моторчик, наполняющий клетку энергией?

Роль электростанции в клетке играют митохондрии. Это сложное название родилось из двух греческих слов – мито (нить) и хондрион (зернышко). А все потому, что митохондрии выглядят как короткая нитка или вытянутое зернышко-гранула. Впрочем, они довольно легко меняют форму, оставаясь при этом постоянными в диаметре. Весь секрет в том, что митохондрии состоят из двух слоев мембранной ткани. Наружный слой – гладкий и может слегка вытягиваться или сжиматься. А вот внутренний «смят» в складки в форме гребней или трубочек (они называются «кристы», а содержимое митохондрии, окруженное ее внутренней мембраной, – «матрикс митохондрии»). В состав внутренней мембраны входит особое вещество, делающее мембрану абсолютно непроницаемой для электрических частиц – протонов. О том, какие возможности это дает, расскажем чуть позже.

Митохондрии – совершенно удивительные образования. В отличие от всех других систем клетки, они – совершенно самостоятельны и обособлены. Они даже размножаться могут самостоятельно, независимо отделения клетки. Ученые считают, что происходит это оттого, что когда-то митохондрии были отдельными организмами – чем-то вроде бактерий – и наши далекие предки (совсем далекие, еще одноклеточные) в незапамятные времена, вместо того чтобы просто проглотить их, приспособили для внутренних нужд. Вот такие были мудрые, эти простейшие.

Не знаю, как для вас, дорогой читатель, но для меня именно эта часть жизни клетки является самой удивительной. Ну как из электрических частиц образуется материя и наоборот? Как из белков, углеводов и жира получают чистую энергию?

Для того чтобы понять, как действуют эти мини-электростанции, сначала вспомним несколько терминов. Уверена, вы не раз слышали об АТФ. Но что это такое? Полное название – аденозинтрифосфорная кислота. Это особое вещество, которое с полным правом можно считать аккумулятором энергии. Дело в том, что в нем связи между атомами фосфора и кислорода являются макроэргическими, то есть при их разрыве выделяется большое количество энергии.

Задача митохондрии – синтезировать, то есть собрать молекулу АТФ из подручных средств, которые можно найти в клетке. Для этого она использует самые различные механизмы.

Основные закономерности преобразования энергии митохондриями изложены в одноименной статье лауреата Государственной премии СССР профессора А. Д. Виноградова. Это подробный рассказ, понятный (честно говоря) только узким специалистам. Но если немного упростить изложенное, то завеса тайны поднимется и для широкого круга читателей.

Итак, первый механизм называют «клеточным дыханием». Это цикл химических реакций, проистекающих с участием кислорода, – от этого и пошло название. В каждой реакции выделяется совсем небольшое количество энергии, но ее достаточно, чтобы произошла следующая реакция и так далее, пока не будет собрана «аккумуляторная батарейка» – АТФ.

Для своей работы митохондрии могут использовать только самые простые составляющие глюкозы (углеводов, попадающих в наш организм с едой). Поэтому первый этап дыхания – это подготовка глюкозы к использованию, или гликолиз. Глюкоза расщепляется вне митохондрий – в цитоплазме. Если вспомнить школьный курс органической химии, можно иметь в виду, что в ходе гликолиза молекула глюкозы превращается в два остатка уксусной кислоты. В митохондрию они «проталкиваются» специальным переносчиком – коэнзимом А. Коэнзим А присоединяет к себе остаток уксусной кислоты, превращается при этом в ацетилкоэнзим А, или, кратко, ацетил-КоА, и в таком виде «протискивается» сквозь внешнюю мембрану митохондрий.

Тут «контрабандиста» уже поджидают. Захваченные им атомы надо пересадить с коэнзима и пустить в дело дальше. В этой операции участвует так называемый цикл Кребса – это кольцевая последовательность реакций, в ходе которых исходное вещество возвращается в свое первоначальное состояние. Этот цикл можно сравнить с водяной мельницей – вода льется на лопасти колеса и заставляет его двигаться, но само колесо при этом остается на месте.

Как это происходит? Давайте считать началом цикла молекулу щавелевоуксусной кислоты. В первой же реакции на нее переносится с ацетил-КоА остаток уксусной кислоты (он состоит из двух атомов углерода, трех – водорода, и одного атома кислорода), в результате получается изолимонная кислота. В ходе остальных реакций цикла атомы-перебежчики (те, которые были названы выше) отделяются от изолимонной кислоты и следующих молекул органических кислот, и в последней реакции снова получается щавелевоуксусная кислота. Точнее говоря, в каждом цикле от изолимонной кислоты и получающихся из нее молекул отделяются составные части остатка уксусной кислоты, присоединенного два цикла назад.

Реакции цикла Кребса происходят в жидкости, заполняющей митохондрию, а вот следующий процесс – окислительное фосфорилирование – в ее внутренней мембране. В тончайшем слое мембранной ткани «дрейфует» пять типов специальных окислительных белков. Они «вылавливают» освобождающиеся в процессе цикла Кребса атомы водорода и «сжигают» их с образованием молекул воды. Это делается так: белок № 1 отбирает у водорода один электрон и передает его белку № 2, тот – белку № 3, и так далее, до белка № 5. Белки № 2 и № 4 имеют небольшие размеры, поэтому в мембране они двигаются значительно быстрее № 1, 3 и 5, и по сути дела, играют роль курьеров, разносящих электроны по назначению. При этом энергия электрона все время уменьшается. Белок № 5 накапливает четыре таких электрона, а затем производит реакцию образования воды:

4 e — + O 2 + 4H + = 2 H 2O.

Энергию, выделяющуюся при прохождении электрона по дыхательной цепи, белки № 1, 3 и 5 расходуют на выбрасывание протонов изнутри митохондрии в пространство между ее мембранами. В этом пространстве создается положительный заряд, а внутри митохондрии – отрицательный.

По сути, глюкоза нужна нашему организму именно как «горючее» для производства энергии. Это – важный момент в понимании энергетической сущности процессов, происходящих в митохондриях. Разница зарядов заставляет протоны стремиться обратно, внутрь, но плотная внутренняя мембрана их не пропускает. Тогда протоны начинают искать «лазейки» или «шлюзы». Такими шлюзами выступают специальные молекулы АТФ-синтетазы. Само название молекул подсказывает, что как раз они занимаются «сборкой» наших «батареек» – АТФ. Они синтезируют молекулу, пропуская протоны через себя и запасая энергию во внутренних связях АТФ.

Вот так работает самая крошечная электростанция в мире.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Жизненный цикл ВИЧ (круговорот ВИЧ в клетке)

Жизненный цикл ВИЧ (круговорот ВИЧ в клетке) Vices superbae (Неумолимый круговорот судьбы) Еще со школы всем нам хорошо известно такое понятие, как круговорот веществ в природе. Так вот у ВИЧ тоже есть свой круговорот, а точнее, его жизненный цикл, который связан только с

Часть I. «Скелет в шкафу», или Что мы знаем о клетке?

Часть I. «Скелет в шкафу», или Что мы знаем о клетке? Помните известную английскую поговорку – у каждой семьи есть свой скелет в шкафу. Так говорят о чем-то тайном, что рано или поздно становится достоянием гласности. У клетки в этом смысле – сплошные скелеты (уж простите за

Читайте также:  Как узнать потребляемый ток компьютера

Глава 5 Откуда берется гипертония?

Глава 5 Откуда берется гипертония? А ведь действительно, откуда она берется? Большинство пациентов, впервые приходящих на консультацию, хотят найти причину повышения давления, чтобы потом успешно с ней бороться.К сожалению, если говорить о причинах болезни, то мы можем

Приемы миотерапии при болях в грудной клетке

Приемы миотерапии при болях в грудной клетке Боли в передней части грудной клетки часто называют синдромом ложных болей в области сердца (псевдостенокардия, псевдоинфаркт миокарда). Причины: сдавление нижней части плечевого сплетения, раздражение позвоночного нерва в

Глава 1 Что такое рак и откуда он берется?

Глава 1 Что такое рак и откуда он берется? С давних времен известно, что в организме человека, животных, растений могут появляться опухоли. Обычно их подразделяют на доброкачественные и злокачественные. Их названия в основном заканчиваются на — ома («опухоль»): карцинома,

Глава VI АТМОСФЕРНОЕ ЭЛЕКТРИЧЕСТВО И ЖИЗНЬ ЧЕЛОВЕКА

Глава VI АТМОСФЕРНОЕ ЭЛЕКТРИЧЕСТВО И ЖИЗНЬ ЧЕЛОВЕКА Роль ионовВозможна ли жизнь на земле в неионизированной внешней среде?Атомы, отличающиеся одним или двумя лишними или недостающими электронами, называются отрицательными или положительными ионами. В воздухе

ГЛАВА I. ОТКУДА К НАМ ПРИШЕЛ ЧЕСНОК

ГЛАВА I. ОТКУДА К НАМ ПРИШЕЛ ЧЕСНОК Чеснок посевной — огородное многолетнее травянистое растение семейства лилейных. Его научное название — Allium sativum. Перевод слова allium неизвестен, возможно, оно пришло из кельтского языка. А «sativum» означает «домашний» и позволяет нам

Снотворное электричество

Снотворное электричество С определенной долей условности наши нервные клетки (нейроны) можно было бы сравнить с электрическими батарейками или, даже лучше, с аккумуляторами. Наш мозг, вообще говоря, это такая большая РАО ЕЭС, к счастью или к сожалению, но без старого

5.1. Активизация положительной энергии Ци в грудной клетке

5.1. Активизация положительной энергии Ци в грудной клетке Лечение и профилактика : проблемы с дыханием, заложенность груди.Изначальная поза. Положение стоя-II.Первый этап . Тело расслаблено, глаза закрыты, ноги полусогнуты. Зафиксируйте эту позу. Не меняйте ее 5 минут.Второй

Глава 1. Откуда берется вода в кране?

Глава 1. Откуда берется вода в кране? Для начала давайте посмотрим, откуда берется вода в кране, как она туда попадает и какую очистку проходит на своем пути. В городской водопровод вода может попасть из двух источников: с помощью водозабора на реке и из артезианских

Ци: «электричество» тела человека

Ци: «электричество» тела человека Современные ученые начинают описывать мир почти таким же образом, как его описывали древние даосы — как взаимодействие положительно (Ян) и отрицательно (Инь) заряженных энергий ци. Вот недавнее описание электричества в научном журнале

Источник

БИОЭЛЕКТРИЧЕСТВО

БИОЭЛЕКТРИЧЕСТВО, естественные электрические процессы в живых организмах, лежащие в основе многих физиологических и поведенческих реакций. К проблемам биоэлектричества относят также все эффекты, возникающие в организме на различных его уровнях при воздействии электричества от внешних источников.

Биоэлектричество в классическом понимании.

В 1791 Л.Гальвани обнаружил, что если к изолированной мышце лягушки прикоснуться металлическим предметом, то мышца сократится. Он объяснил это явление существованием «животного электричества». Проанализировав опыты Гальвани, А.Вольта пришел к заключению (1792), что электричество возникает в тот момент, когда металл касается мышцы; в дальнейшем его вывод лег в основу создания электрической батареи. Такие батареи стали использовать для лечения нервных и мышечных нарушений. Электротерапия широко вошла в медицинскую практику в 19 в., но с развитием биохимии и появлением новых лекарственных препаратов утратила прежнее значение.

Позже Гальвани показал, что мышцы лягушки сокращаются и в том случае, когда никаким металлическим предметом к ним не прикасаются. Это привело к выводу, что процессы, протекающие в нервной системе, имеют электрическую природу и что сокращение мышцы происходит в ответ на электрический сигнал, проходящий по нерву. Сигнал может возникать и произвольно; например, при подсоединении к нерву источника электрического тока последний генерирует нервный сигнал, запускающий мышечное сокращение. См. также БАТАРЕЯ ЭЛЕКТРОПИТАНИЯ; ЭЛЕКТРОХИМИЯ.

При достаточно большой силе тока, подводимого к ткани с помощью проводников или бесконтактным способом, выделяется тепло (на этом принципе основана работа микроволновой печи). Генерация тепла в тканях под действием электричества (диатермия) используется в лечебных целях.

Электрические сигналы регулируют работу сердца. Если через тело человека проходит электрический ток от внешнего источника, он нарушает сердечную деятельность и может вызвать остановку сердца и смерть. Электрический сигнал можно измерить, подведя проводники к любым двум точкам тела. У человека обычно исследуют электрические сигналы трех видов. Электроэнцефалография регистрирует относительно слабый, быстро изменяющийся сигнал в головном мозге. Записываемая при этом кривая – электроэнцефалограмма (ЭЭГ) – используется в исследовательских и диагностических целях. Какова конкретная физиологическая роль этого сигнала в норме – неизвестно. Электрокардиография регистрирует биоэлектрический потенциал работающего сердца; электрический сигнал в этом случае примерно в 100 раз мощнее. Электрокардиограмма (ЭКГ) широко используется для диагностики болезней сердца. Сигнал третьего вида, поверхностный электрический потенциал, сравним по величине с генерируемым сердечной мышцей, но меняется медленнее. Его происхождение и роль неизвестны.

Примерно до начала 1940-х годов термин «биоэлектричество» использовали в тех случаях, когда речь шла о нейрофизиологических исследованиях, об измерениях описанных выше электрических сигналов у человека или (главным образом в историческом контексте) о применении электричества в терапии.

Биоэлектричество в современном понимании.

Все проявления жизнедеятельности организма зависят от сложных последовательностей химических реакций, в основе которых лежит, в частности, явление электричества. Иногда соответствующие процессы можно изучать, не рассматривая эти силы в явном виде. Такой подход вполне применим при исследовании, например, регуляции экспрессии генов или механизма иммунного ответа. Он гораздо менее успешен, когда речь идет о памяти, научении и регуляции регенеративных процессов. Трудности, с которыми сталкиваются исследователи, когда пытаются объяснить по крайней мере некоторые биологические явления – включая саму жизнь – исходя исключительно из биохимических концепций, заставляют их обратиться к биоэлектрическим факторам. На эту проблему впервые обратил внимание в 1941 венгерский биохимик А.Сент-Дьёрдьи. Он пришел к выводу, что феномен жизни нельзя должным образом объяснить просто наличием каких-то химических веществ: необходимо, чтобы эти вещества находились в определенном электрическом состоянии. Согласно этой точке зрения, живые и мертвые животные различаются по своему биоэлектрическому, а не биохимическому статусу. Эти идеи привели к возрождению интереса к биоэлектричеству.

Одним из первых результатов новых исследований в этой области стало обнаружение пьезоэлектрических свойств костной ткани, т.е. генерации в ней электричества при механическом воздействии (например, при нагрузке во время ходьбы). Известно, что если костная ткань не испытывает регулярной механической нагрузки, то ее механические свойства утрачиваются. Возможно, пьезоэлектричество – это «передаточное звено» между внешним воздействием (нагрузкой) и внутренними процессами (образованием новой костной ткани). Полученные экспериментальные данные подтверждают эту идею. Возможно, электротерапия окажется полезной при лечении инфекционных заболеваний, наркомании, рака.

Читайте также:  Ток зарядки аккумулятора автомобиля 55а час

Еще одно направление биоэлектрических исследований занимается изучением биологического эффекта высоковольтных линий электропередачи. Эти системы, а также радио- и телепередающие и радарные установки создают вокруг себя электромагнитное поле, которое может оказывать влияние на людей, постоянно живущих или работающих в нем. Интерес к этой проблеме возник в связи с публикацией данных об изменении роста и развития, а также эндокринных и нервных нарушениях у людей и животных, подвергавшихся действию электромагнитных полей в лабораторных условиях. В начале 1980-х годов появились данные о связи между длительным воздействием электромагнитных полей и развитием злокачественных опухолей, частотой самоубийств и возникновением других патологий.

Природные электрические и магнитные факторы оказывают несомненное влияние на жизненный цикл различных организмов. Бактерии, насекомые, птицы и, возможно, киты воспринимают магнитное поле Земли и используют эту способность для ориентации и навигации в поисках пищи и во время миграций.

Мы хорошо знаем, как устроены наши пять органов чувств – зрение, слух, обоняние, осязание, вкус; в них выявлены клетки, воспринимающие внешние стимулы, и нервы, по которым информация передается в мозг. Для большинства же биоэлектрических эффектов соответствующие клетки и пути передачи сигналов неизвестны. Механизм восприятия клетками электромагнитных полей объясняется двумя теориями, причем обе постулируют принципиально новые процессы. Согласно первой из них, между нервными клетками возможны кооперативные взаимодействия, зависимые от электромагнитных полей; согласно второй – восприятие поля происходит только в определенных условиях, а именно при наличии у клеток особого электрического статуса. Еще одна теория объясняет связь между воздействием электромагнитного поля и развитием того или иного заболевания: предполагается, что это воздействие вызывает стресс, и если оно достаточно длительное, то происходит ослабление иммунной системы, соответственно снижаются адаптивные возможности организма и на этом фоне легко возникает болезнь. См. также БИОЛОГИЯ; БИОСФЕРА; БИОФИЗИКА; БИОХИМИЯ; НЕЙРОМЕДИАТОРЫ.

Источник

Энергетика живой клетки

Электрические явления в клеточной энергетике

Механизм создания АТФ оставался загадкой долгие годы, пока не обнаружилось, что данный процесс по сути своей является электрическим. В обоих случаях: и для дыхательной цепи (набора белков, которые осуществляют окисление субстратов кислородом) и для аналогичного фотосинтетического каскада, — генерируется ток протонов через мембрану, в которую погружены белки. Токи обеспечивают энергией синтез АТФ, а также служат источником энергии для некоторых видов работы. В современной биоэнергетике принято считать АТФ и протонный ток (точнее, протонный потенциал) альтернативными и взаимно конвертируемыми энергетическими валютами. Некоторые функции оплачиваются одной валютой, другие – второй.

К середине XX в. биохимики точно знали, что в бактериях и митохондриях электроны переходят от восстанавливаемых субстратов к кислороду через каскад электронных переносчиков, называемых дыхательной цепочкой. Загадка была в том, каким способом сопряжены перенос электрона и синтез АТФ. На протяжении 10 с лишним лет надежда открыть секрет вспыхивала и вновь угасала. Решающую роль сыграло не преодоление технических трудностей, а концептуальная разработка. Сопряжение оказалось в принципе не химическим, а электрическим. В 1961 г. английский ученый П. Митчелл опубликовал в журнале «Nature» радикальную идею для разрешения биохимической загадки века: хемиосмотическую гипотезу. Идея Митчелла была поистине революционной сменой парадигм, трансформацией концептуальной основы и поначалу вызывала бурные споры.

В 1966 г. Митчелл пишет свою первую книгу «Хемиосмотическое сопряжение в окислительном и фотосинтетическом фосфорилировании». В том же году российские ученые, биофизик Е. Либерман и биохимик В. Скулачев, придумали, как экспериментально подтвердить правоту Митчелла. С помощью синтетических ионов, проникающих через биологическую мембрану, они показали, что дыхание и фосфорилирование, действительно, связаны через протонный потенциал. Еще один серьезный шаг в поддержку Митчелла сделали биофизики биофака МГУ А. Булычев, В. Андрианов, Г. Курелла и Ф. Литвин. Используя микроэлектроды, они зарегистрировали образование трансмембранной разности электрических потенциалов при освещении крупных хлоропластов.

Еще несколько лет споров и дотошных проверок в разных лабораториях по всему свету — и идеи Митчелла, наконец, были признаны. Он был принят в Королевское общество Великобритании (и соответственно, стал сэром), получил множество престижных международных наград, а в 1978 г. был удостоен Нобелевской премии, которая, вопреки традициям, на сей раз была вручена не за открытие нового явления, а за догадку о его существовании.

Хемиосмотическое сопряжение энергии. (а) Общий принцип. (б) Аналогичная электрическая цепь (изображение: www.sciam.ru)

Цепь переноса электрона оказалась не просто связана с мембраной, но вплетена в нее таким образом, что при движении электрона от субстрата к кислороду протоны перемещаются с внутренней поверхности наружу. Мембрана образует замкнутый пузырек, который плохо пропускает протоны, поэтому в результате «выкачивания» протонов генерируется разность потенциалов через мембрану: электрическая отрицательность внутри. Одновременно увеличивается рН: защелачивается среда внутри пузырька. Протоны снаружи оказываются под гораздо более высоким электрохимическим потенциалом, чем внутри, как бы под «давлением» со стороны и электрического потенциала и градиента рН, которые толкают протоны обратно через мембрану внутрь пузырька. Живая клетка использует энергию таких протонов для совершения разных видов работы.

Поразительные успехи рентгеноструктурного анализа белков позволили увидеть полные пространственные структуры отдельных белковых комплексов, входящих в состав дыхательной цепи. Белки цепи переноса электронов, локализованные в мембранах митохондрий, способны менять свой спектр поглощения, получая и отдавая электроны. Микроспектральные методы позволяют проследить последовательность передачи электронов по цепочке белков и выяснить, в каких именно местах часть свободной энергии электронов используется для синтеза АТФ.

Согласно идее Митчелла, для синтеза АТФ из АДФ и фосфата в мембранах митохондрий используется электрическая энергия. Следовательно, если снять разность потенциалов через мембрану, можно предположить, что синтез прекратится. Именно такой эффект был продемонстрирован в ходе экспериментов на искусственных мембранах с использованием специально синтезированных ионов, резко повышающих проводимость мембран для протонов.

Одни из первых экспериментальных доказательств верности гипотезы Митчелла были получены в нашей стране под руководством Е.А. Либермана и В.П. Скулачева. В качестве индикаторов изменений электрического поля на мембране были использованы синтетические ионы, отличающиеся по своей природе и знаку заряда, но сходные в одном: все они легко проникали через фосфолипидную пленку. После многих попыток сложилась следующая изящная экспериментальная модель.

Каплю фосфолипидов, растворенных в органическом растворителе, подносят к небольшому отверстию в тефлоновой пластинке, и оно мгновенно закрывается плоской бимолекулярной пленкой — искусственной мембраной. Тефлоновую пластинку с искусственной мембраной погружают в сосуд с электролитом, разделяя его на два отсека со своим измерительным электродом в каждом. Остается встроить в искусственную мембрану белок, способный генерировать электричество, а в электролит добавить проникающие ионы. Тогда работа белкового генератора, изменяющего разность потенциалов на мембране, приведет к перемещению проникающих ионов через фосфолипидную пленку, что и будет зарегистрировано в виде изменения разности потенциалов между отсеками.

Читайте также:  Характеристики сопротивлений в цепях переменного тока

Еще более убедительная экспериментальная модель, позволяющая проводить прямые измерения электрического тока, генерируемого клеточными органеллами и отдельными белками, была разработана и успешно использована Л.А. Драчевым, А.А. Кауленом и В.П. Скулачевым. Частицы, генерирующие электрический ток (митохондрии, хроматофоры бактерий или липидные пузырьки с встроенными в них индивидуальными белками), заставляли слипаться с плоской искусственной мембраной. После этого протонный ток, созданный молекулами-генераторами в ответ на вспышку света или добавление соответствующих химических субстратов, обнаруживался напрямую измерительными электродами по обе стороны искусственной мембраны.

В 1973 г. У. Стокениус и Д. Остерхельт из США открыли необычный светочувствительный белок в мембранах фиолетовых бактерий, обитающих в соленых озерах Калифорнийских пустынь. Этот белок, подобно зрительному пигменту глаза животных – родопсину, — содержал производное витамина А – ретиналь, за что и был назван бактериородопсином. Американские ученые Рэкер и Стокениус изящно продемонтрировали участие бактериородопсина в энергетическом сопряжении. Объединив в модельной фосфолипидной мембране только что открытый светочувствительный белок фиолетовых бактерий с АТФ-синтазой, они получили молекулярный ансамбль, способный синтезировать АТФ при включении света.

В конце 1973 г. академик Ю.А. Овчинников организовал проект «Родопсин» для сравнительного исследования животного и бактериального светочувствительных пигментов. В рамках проекта в лаборатории В.П. Скулачева в МГУ в модельных экспериментах на искусственных мембранах было доказано, что бактериородопсин – белковый генератор электрического тока. Встроенный в искусственную фосфолипидную пленку бактериородопсин направленно транспортировал протоны в ответ на вспышку света. Величина фотопотенциала на мембране превышала 0,3 В, что заведомо достаточно для энергетического обеспечения синтеза АТФ.

Бактериородопсин оказался на редкость стабильным электрическим генератором: он продолжал работать при нагревании до 100 о С и даже в 0,1 N кислоте. В ходе опытов с бактериородопсином электрическая часть хемиосмотической гипотезы получила свое окончательное подтверждение.

После множества придирчивых проверок теория П. Митчелла была признана абсолютно корректной, и ее рамки были расширены далеко за пределы сопряжения в цепях переноса электрона с синтезом АТФ. Ученому с самого начала было ясно, что циркуляция протонов может поддерживать множество видов работы при посредстве мембранных белков.

Источник



Бывает ли электричество в живых организмах

Дата публикации: 28 ноября 2019

Биоэлектричество относится к электрическим потенциалам и токам, которые возникают внутри живых организмов или производятся ими. Это результат преобразования химической энергии в электрическую. Такие потенциалы генерируются рядом различных биологических процессов и используются клетками для управления метаболизмом, проведения импульсов по нервным волокнам, для регулирования мышечного сокращения.

У большинства организмов биоэлектрические потенциалы различаются по силе: от одного до нескольких сотен милливольт. Наиболее важное различие между электричеством в живых организмах и типом электрического тока, используемого для производства света, тепла или энергии, заключается в том, что биоэлектрический ток представляет собой поток ионов (атомов или молекул, несущих электрический заряд), а стандартное электричество — это движение электронов.

Бывает ли электричество в живых организмах

Историческая справка

Биоэлектрические эффекты были известны с древних времён по активности таких электрических рыб, как нильский сом, электрический угорь. Сейчас измерение биоэлектрических потенциалов стало обычной практикой в ​​клинической медицине. Но до XVII века европейские врачи и философы считали, что нервные импульсы передаются мозгу через какую-то органическую жидкость. Эксперименты двух итальянцев, врача Луиджи Гальвани и физика Алессандро Вольта, показали, что истинное объяснение нервной проводимости — это биоэлектричество.

Бывает ли электричество в живых организмах

В XIX веке Эмиль Дюбуа-Реймон, изобрёл и усовершенствовал приборы, способные измерять очень малые электрические потенциалы и токи, генерируемые живой тканью. Один из его учеников, немецкий учёный по имени Юлиус Бернштейн, полагался на гипотезу, что нервные и мышечные волокна поляризованы, с положительными ионами снаружи и отрицательными внутри, поэтому ток, который может быть измерен, — результат изменения этой поляризации. В начале XX столетья несколько британских исследователей определили химические вещества, участвующие в передаче информации между нервами и мышцами.

Потенциал клеточной мембраны

Все клетки животных обладают электрическими свойствами, обусловленными способностью клеточной мембраны поддерживать неравные заряды внутри и снаружи клетки. Клеточная оболочка полупроницаемая, это означает, что она образует селективный барьер для ионов, являющихся электрически заряженными атомами.

Таким образом, через мембрану накапливается две формы энергии:

  • химическая (разница концентрации ионов);
  • электрическая.

Клетки, способные к электрической активности, показывают потенциал покоя, равный примерно 50 милливольтам. Когда клетка активирована, потенциал покоя может внезапно измениться, результат — внешняя её сторона становится отрицательной, а внутренняя — положительной. Это состояние сохраняется короткое время, после чего всё возвращается в исходное положение покоя, так что «источник дипольного тока» существует очень маленький период времени.

Эти токи, возникающие внутри активной мембраны, функционально значимы близко к месту их происхождения, но некоторые живые существа, такие как рыбы и медузы, эволюционно адаптировали этот случайный ток для фактического использования. Вырабатывающие электричество организмы обзавелись специальными органами, способными генерировать значительные разряды до 1 тыс. вольт, например, электрический скат. Кто-то из них пользуется своими способностями для самообороны, а для кого-то это способ добывать еду.

Электричество в организме человека

Все клетки используют свои биоэлектрические потенциалы, чтобы контролировать метаболические процессы, но некоторые специально используют токи для отличительных физиологических функций: нервные и мышечные клетки. Информация переносится импульсами (называемыми потенциалами действия), проходящими по нервным волокнам. Подобные импульсы в мышцах сопровождают мышечные сокращения. Среди других клеток, где специализированные функции зависят от поддержания биоэлектрических потенциалов, есть:

  • рецепторы, чувствительные к свету, звуку, прикосновению;
  • клетки, которые выделяют гормоны или другие вещества, участвующие в общем метаболизме.

Как дополнение к потенциалам, возникающим в нервных или мышечных клетках, науке известны относительно устойчивые или медленно меняющиеся потенциалы. Они возникают:

  • там, где клетки были повреждены;
  • когда большой орган непарный (полушария мозга, разные участки кожи);
  • при активной работе железы (фолликулы щитовидки);
  • специальных структурах во внутреннем ухе.

В организме человека накапливается и статическое электричество. Когда электронам некуда деваться, заряд накапливается на поверхностях до тех пор, пока он не достигнет критического максимума и не разрядится крошечной молнией. Хотя возникающая внезапная мышечная реакция неприятна, обычно она безвредна.

Электричество в организме человека

Биоэлектричество — одна из основных форм энергии в организме человека. Движущиеся потенциалы действия — это основа для центральных функций организма, от которых зависит:

  • проводимость двигательных, вегетативных или сенсорных сообщений по нервам;
  • сокращение мышц;
  • функция мозга.

В частности, двигательные нервные сигналы приводят к сокращению мышц, вегетативные — контролируют дыхание и сердцебиение, сенсорные — собирают всю информацию из внешнего мира, включая предупреждения о повреждениях организма (боль). Измеряя биоэлектрические потенциалы в органах и тканях, люди сейчас могут диагностировать такие заболевания, как инфаркт миокарда, а также создавать беспроводные биоэлектрические записывающие устройства, которые используются в кибермедицине.

  • В поселке Амдерма откроют ветродизельную электростанциюВ поселке Амдерма откроют ветродизельную электростанцию
  • В России будут производить городской электромобильВ России будут производить городской электромобиль
  • Климатический саммит в Париже: итоги первой неделиКлиматический саммит в Париже: итоги первой недели
  • «EL Дилижанс» — первый серийный электромобиль в РФ«EL Дилижанс» — первый серийный электромобиль в РФ

Вам нужно войти, чтобы оставить комментарий.

Источник