Меню

Коэффициент передачи по току меньше 1 в схеме включения

Схемы включения транзисторов. Применяют три основные схемы включения транзисторов: с общей базой (ОБ), с общим эмиттером (ОЭ) и общим коллектором (ОК)

date image2015-05-26
views image7670

facebook icon vkontakte icon twitter icon odnoklasniki icon

Применяют три основные схемы включения транзисторов: с общей базой (ОБ), с общим эмиттером (ОЭ) и общим коллектором (ОК). Такая терминология указывает, какой из электродов транзистора является общим для его входной и выходной цепей.

На рис. 2 показана схема с общей базой. Во входную (эмиттерную) цепь последовательно с источником питания Е1 включен источник входного сигнала, вырабатывающий некоторое переменное напряжение UВХ. В коллекторную цепь включено сопротивление нагрузки RH. Входным током является ток эмиттера IВХ = IЭ. Выходным током является ток коллектора IВЫХ = IK. Коэффициент передачи тока для схемы с ОБ равен:

при Е2 = const.

Коэффициент a всегда меньше 1 и, чем он ближе к 1, тем лучше транзистор.

Поскольку ток эмиттера – наибольший из всех токов транзистора, то схема с ОБ имеет малое входное сопротивление для переменной составляющей тока сигнала. Фактически это сопротивление равно сопротивлению эмиттерного перехода, включенного в прямом направлении RBX = rЭ. Низкое входное сопротивление схемы с ОБ (единицы – десятки ом) является её существенным недостатком, т.к. в многокаскадных схемах это сопротивление оказывает шунтирующее действие на сопротивление нагрузки предыдущего каскада и резко снижает усиление этого каскада. Достоинствами схемы с ОБ являются меньшие искажения при усилении, лучшие температурные и частотные свойства, чем у схемы с ОЭ.

Для схемы с ОБ входная характеристика (рис. 3) представляет собой зависимость тока эмиттера от напряжения между эмиттером и базой при постоянной величине напряжения между коллектором и базой. Входные характеристики аналогичны ВАХ p-n-перехода для прямого тока. Сдвиг характеристик влево при увеличении напряжения UКБ объясняется проявлением так называемого эффекта Эрли (эффекта модуляции толщины базы).

Указанный эффект состоит в том, что при увеличении напряжения UКБ коллекторный переход расширяется (как и всякий обратно смещенный p-n-переход). Расширение происходит, главным образом, за счет базового слоя, как более высокоомного. Толщина базы и её сопротивление уменьшаются. Это приводит к уменьшению напряжения UЭБ и к уменьшению рекомбинации дырок с электронами в базовой области. При этом увеличивается коэффициент a и ток коллектора.

Выходные характеристики транзистора для схемы с ОБ (рис. 3) изображают зависимость тока коллектора от напряжения на коллекторе при различных постоянных значениях эмиттерного тока. Как было показано ранее, если коллекторный переход смещен в обратном направлении, то ток коллектора приблизительно равен току эмиттера IK » IЭ. Это соотношение сохраняется даже при UКБ = 0, так как большинство дырок, инжектированных в базу, захватываются электрическим полем коллекторного перехода и переносятся в коллектор. Только, если коллекторный переход смещают в прямом направлении (графики слева от точки 0 на рис. 3), встречный поток дырок из коллектора компенсирует поток дырок из эмиттера и ток коллектора становится равным нулю.

Схема с общим эмиттером показана на рис. 4. Входным током в ней является малый по величине ток базы, а выходным – ток коллектора. Следовательно, коэффициент передачи тока для схемы с ОЭ равен:

.

Соотношение между коэффициентами a и b можно получить в виде b = a / (1 – a). Если a = 0,98, то b = 49, т.е. можно получить коэффициент усиления тока порядка нескольких десятков.

Входное сопротивление транзистора в схеме с ОЭ значительно больше, чем в схеме с ОБ. Это следует из очевидного неравенства:

Достоинством схемы с ОЭ следует также считать возможность её питания от одного источника напряжения. Поэтому схема с ОЭ является наиболее распространенной.

Входная характеристика схемы с ОЭ (Iб = f(UБЭ) при UКЭ = const) подобна ВАХ p-n-перехода при прямом смещении (рис. 5). При UКЭ = 0 – это прямые ветви эмиттерного и коллекторного переходов, включенных параллельно. С ростом UКЭ ток базы уменьшается. Это объясняется тем, что при увеличении UКЭ растет напряжение, приложенное к коллекторному переходу в обратном направлении, уменьшается вероятность рекомбинации носителей заряда в базе, т.к. почти все носители быстро втягиваются в коллектор. Поэтому ток электронов, входящих в базу для рекомбинации с инжектированными дырками, уменьшается.

Выходные характеристики транзистора для схемы с ОЭ (рис. 5) представляют собой зависимости тока коллектора от напряжения между коллектором и эмиттером при постоянном токе базы: IK = f (UКЭ) при Iб = const.

Схема с общим коллектором (ОК) в некоторых учебниках не рассматривается вообще или кратко представлена в виде, изображенном на рис. 6. В других учебниках схема изображена в виде рис. 7 (и называется эмиттерным повторителем). В этой схеме действительно коллектор является общей точкой для входного и выходного переменного тока: источники питания Е1 и Е2 имеют малое сопротивление и всегда шунтированы конденсаторами большой емкости, поэтому для переменного тока они могут считаться короткозамкнутыми. Поэтому к коллектору оказываются подключенными и источник входного напряжения UВХ и сопротивление нагрузки.

Входным током является ток базы, а выходным – ток эмиттера. Поэтому коэффициент прямой передачи тока для этой схемы:

.

Для переменных входных и выходных напряжений справедливо равенство
DUBX = DUБЭ + DUВЫХ (т.е. усиления по напряжению нет). Само напряжение UБЭ и особенно переменная составляющая этого напряжения достаточно малы, поэтому амплитуда переменной составляющей входного напряжения DUBX приблизительно равна амплитуде переменной составляющей выходного напряжения DUВЫХ. В соответствии с этим схема с ОК и называется эмиттерным повторителем.

Достоинством схемы с ОК является её большое входное сопротивление.

В таблице представлены коэффициенты усиления по току ki, напряжению kU, мощности kp, входное сопротивление RBX схем с ОБ, ОЭ и ОК и фазовый сдвиг между выходным и входным напряжениями.

Источник

Параметры биполярного транзистора

В радиолюбительской практике часто приходится подбирать транзисторы для их замены на аналогичные или выбирать нужные транзисторы при конструировании какого нибудь изделия по желаемым параметрам.
Поэтому без справочников по транзисторам никак не обойтись. В них приведены основные параметры транзисторов как по постоянному, так и переменному току. Но не все знают, что они обозначают. Попробуем разобраться с этим.

Биполярные транзисторы

Зная название транзистора уже можно получить нужную информацию о нем.
Транзисторам присваивается обозначение из четырех элементов.
Первый элемент — буква или цифра, указывающий исходный материал из чего сделан транзистор ( Г или 1 — германий, К или 2 — кремний, А или 3 — соединения галия.
Второй элемент — буква определяющая подкласс прибора ( Т — транзистор, П — полевой).
Третий элемент — цифры, первая обозначает номер классификации у биполярных транзисторов — граничную частоту передачи тока, а у полевых транзисторов — максимальную рабочую частоту. Последующие две цифры обозначают порядковый номер разработки.
Вот расшифровка первой цифры,
транзисторы:
малой мощности (мощность рассеяния до 0,3 Вт);
1 — низкой частоты (до 3 МГц)
2 — средней частоты (от 3 до 30 МГц)
3 — высокой частоты (свыше 30 МГц)
средней мощности (мощность рассеяния от 0,3 Вт до 1,5 Вт)
4 — низкой частоты (до 3 МГц)
5 — средней частоты (от 3 до 30 МГц)
6 — высокой частоты (свыше 30 МГц)
большой мощности (мощность рассеяния свыше 1,5 Вт)
7 — низкой частоты (до 3 МГц)
8 — средней частоты (от 3 до 30 МГц)
9 — высокой частоты (свыше 30 МГц).
Четвертый элемент — буква, указывающая разновидность из данной группы приборов.
К примеру ГТ328А — германиевый транзистор, малой мощности, высокочастотный, номер разработки 28, разновидность А.

Обратный коллекторный ток

Параметры транзистора по постоянному току характеризуют токи транзистора при включении перехода в обратном направлении.

Обратный ток коллектора Iкбо — это ток, возникающий в коллекторном переходе включенном в обратном направлении со свободным эмиттером ( рис.1 ).
Индекс кбо обозначает ток между коллектором и базой при не включенном (открытом) эмиттере.

Обратный ток эмиттера Iэбо — это ток при обратном заданном напряжении на переходе эмиттер — база с отключенным коллектором ( рис.2 ).

Рассмотрим подробней обратный ток коллектора Iкбо , т.к. он является главным дестабилизирующим параметром транзистора.
Коллекторный обратный ток очень мал. В маломощных транзисторах при комнатной температуре Iкбо равен всего несколько десятков микроампер, а в кремневых — менее 1мкА. Так почему данные этих незначительных величин приводятся в справочниках параметров транзисторов?
Дело в том, что во время работы любой транзистор греется, а значить при этом будет повышается и температура p-n и n-p переходов между коллектором и базой. А полупроводники не только обогащены примесями с основными носителями зарядов электронами или дырками. В них присутствует еще достаточное количество и нейтральных атомов.
Поэтому при нагреве полупроводников происходит, так называемая, термогенерация — уход в нейтральных атомах полупроводника электронов с орбиты в валентную зону или зону проводимости. Но при этом в валентной зоне образуются и дырки (атомы потерявшие электроны), которые так же, наряду с электронами, будут в зоне проводимости.
Все это приводит к тому, что в цепи коллектор — база проходит диффузионный неуправляемый ток коллекторного p-n перехода в обратном направлении.
При повышении температуры транзистора обратный ток коллектора быстро растет по экспоненциальному закону. В германиевых (Ge) транзисторах обратный ток удваивается на каждые 10 о С , а в транзисторах из кремния (Si) — в 2,5 раза.

Читайте также:  Формула вектора магнитной индукции витка с током

Возьмем, например, германиевый ГТ108 и кремниевый КТ3102 маломощные транзисторы и рассчитаем значения возрастания обратного коллекторного тока Iкбо от повышения температуры t о C транзисторов ( рис.3 ), и по этим данным построим график ( рис.4) .
По ним видно, что при увеличении температуры от 20 о C до 70 о C обратный ток увеличивается в десятки раз. Поэтому обратный коллекторный ток еще называют тепловым током.
Отсюда можно сделать вывод: кремниевые транзисторы, имея меньшее Iкбо , более температурно стабильнее, чем германиевые.

Но еще большая «проблема» состоит в том, что в различных усилительных схемах часть обратного коллекторного тока проходит через управляющий эмиттерный переход транзистора и это приводит к сильному увеличению прямого коллекторного тока, а значить — к увеличению температуры транзистора.

Низкочастотные параметры транзистора

h — параметры

Для анализа работы транзистора в усилительном режиме используется метод четырехполюсника, который позволяет производить расчет усилителя с помощью только матриц без составления эквивалентной схемы транзистора.
Существуют три системы параметров транзистора: z, h и y .
Для расчета низкочастотных схем применяются z- и h-параметры, а для высокочастотных — y-параметры.
И хотя система h-параметров характеризует работу транзистора под воздействием только малого сигнала, она получила широкое распространение, благодаря тому, что при измерении этих параметров требуется воспроизвести легко выполнимые действия: холостой ход на входе ( I1=0 ) или короткое замыкание на выходе ( U2=0 ). А связь между h- параметрами c остальными параметрами можно узнать в Википедии .

Но вернемся к четырехполюснику.
На низких частотах при работе с малым сигналом транзистор можно рассматривать как активный четырехполюсник, у которого есть входной и выходной контакты, а так же один общий провод с двумя контактами ( рис.5 ). А к общему проводу транзистор может подключаться по разному. От того, какой из выводов транзистора подключен к этому проводу, различают включение с общей базой ( ОБ ), общим эмиттером ( ОЭ ) и общим коллектором ( ОК ).
На клеммы четырехполюсника 1-1 подается переменное входное напряжение U1 , которое создает ток I1 а с клемм 2-2 снимаются выходные U2 и I2 .

Для лучшего понимания происходящего в четырехполюснике транзистора покажем его эквивалентную схему ( рис.6 ).
Тогда уравнения четырехполюсника с h-параметрами выглядят так:

h-параметры представляют собой определенные физические величины и зависят от схемы включения транзистора. Чтобы определить к какой схеме включения относятся параметры используют второй индекс: э,б или к . Например, h11э — входное сопротивление в схеме с ОЭ , а h21б — коэффициент обратной связи по напряжению в схеме с ОБ .

Рассмотрим, для примера, эквивалентную схему транзистора с ОЭ применяя h-параметры ( рис.7 ):
при коротком замыкании выходной сети (U2=0) :
h11э=Uбэ/Iб — входное сопротивление транзистора,
h21э=Iк/Iб — коэффициент передачи тока;
при разомкнутом по переменному току входе (I1=0) :
h12э=Uбэ/Uкэ — коэффициент обратной связи по напряжению,
h22э=Iк/Uкэ — выходная проводимость.

У современных транзисторов коэффициент обратной связи h12 почти равен нулю и позтому его можно не указывать на эквивалентной схеме.

Для разных схем включения транзистора h-параметры определяются по формулам:

h11э ? h11б/1+h21б;
h12э ? (h11б•h22б/1+h21б) — h12б;
h21э ? -h21б/1+h21б;
h22э ? h22б/1+h21б;

h11б?h11э/(1+h21э);
h12б?h11э•h22э/(1+h21э);
h21б?-h21э/(1+h21э);
h22б?h22э/(1+h21э);

h11к?h11э;
h12к?1;
h21к?-(1+h21э);
h22к?h22э.

Обычно в справочнике в разделе параметров транзистора указываются h-параметры при включении транзистора с ОБ: h11б — входное сопротивление, h12б — коэффициент обратной связи, h22б — выходная полная проводимость; и с ОЭ: h21э — коэффициент передачи тока.
Эти параметры транзистора статические, т.е. они измерены при постоянных параметрах напряжения коллектора Uк и тока коллектора Iк. Если будут изменяться эти значения — будут меняться и h-параметры транзистора. Но можно, благодаря этим приведеным h- параметрам, определить параметры с любым способом включения транзистора и приблизительно узнать, какие будут характеристики транзистора в динамическом режиме.

Например, возьмем старенький легендарный низкочастотный, маломощный транзистор МП41, и рассчитаем его входное и выходное сопротивления при включении с ОЭ по справочным данным:
h11б = 25 Ом,
h22б = 3,3 мкСм,
h21э = 30. 60.

Выходное сопротивление R вых. обратно пропорционально проводимости h22э:

В справочниках в параметрах транзисторов так же могут указаны коэффициенты усиления ? и ? .
? — это коэффициент усиления по току в схеме с ОЭ и показывающий во сколько раз коллекторный ток больше базового:
?=h21э?Iк/Iб .
? — коэффициент усиления по току в схеме с ОБ и показывающий во сколько раз коллекторный ток больше эмиттерного:
?=h21э?Iк/Iэ .

Коэффициенты ? и ? транзистора связаны между собой соотношением:
?=?/1-?.
При помощи номограммы ( рис.8 ) можно быстро перевести один коэффициент в другой:

Высокочастотные параметры транзистора

Емкость коллекторного перехода

В справочниках по транзисторам приводится параметр емкости коллекторного перехода Ск — емкость между выводами базы и коллектора при заданном обратном напряжении эмиттер — база и разомкнутой эмиттерной цепи.

Сам по себе транзистор представляет собой кристалл с двумя p-n или n-p переходами.
В следствии диффузии основных и неосновных зарядов в переходах образуются обедненные слоя с заряженными границами переходов (см. раздел «p-n переход», рис.a,b,c.), которые представляют собой своеобразные конденсаторы и называются барьерными емкостями.
При подаче напряжения разной полярности на переходы они будет расширяться или сужаться, меняя при этом свою емкость.

Рассмотрим эквивалентную схему транзистора, включенного по схеме с общим эмиттером ( рис.9 ), где сопротивления rб, rэ и rк представляют собой дифференциальные сопротивления базового, эмиттерного и коллекторного переходов соответственно.
Сопротивление rб может составлять десятки-сотни Ом, rэ — от долей до десятков Ом, а rк — от десятков килоОм до нескольких мегОм.
На схеме показаны барьерные емкости эмиттерного перехода Сэ и коллекторного — Ск , которые включены параллельно сопротивлениям rэ и rк .
Величина емкости Ск может составлять от 2-5 пф до 50-200 пф, а емкость Сэ больше Ск в 5-10 раз.

Эту эквивалентную схему можно использовать как модель для анализа происходящих процессов в транзисторе при подаче на него малого переменного напряжения, к примеру, с генератора.

В режиме малого переменного сигнала низкой частоты влияние небольших емкостей переходов будет минимальным, т.к. их реактивное сопротивление ( Xc=1/2?fC ), будет большИм, и мало влияет на rэ и rк .
В области верхних частот с ростом частоты сопротивления барьерных емкостей уменьшаются, что приводит к шунтировании сопротивлений переходов.
Хотя емкость Сэ и имеет бOльшую величину чем Ск , ее емкостное сопротивление не на много влияет на сопротивление rэ , т.к. шунтирует малое значение сопротивления (десятки Ом).

По другому происходит с коллекторным сопротивлением rк .
При увеличении частоты сигнала до десятков килогерц сопротивление коллекторной емкости Ск падает ниже сопротивления коллекторного перехода rк и шунтирует его. Если на выходе схемы подключить сопротивление нагрузки Rн , то влиянием емкости Ск уже нельзя пренебречь.
Цепочка rэСэ и rкСк будет включена параллельно резистору нагрузки Rн шунтируя его, что приведет в определенный момент к уменьшению усиления транзистора.

Из этого можно сделать вывод: транзисторы для работы в усилительном режиме нужно выбирать как можно с меньшей емкостью коллекторного перехода, особенно на высоких частотах.

Предельная и граничная частоты коэффициента передачи тока.

Предельная и граничная частоты коэффициента передачи по току приводятся в справочных данных как существенные параметры транзистора.
Мы уже выяснили, что при увеличении частоты входного сигнала транзистора коэффициент усиления по току с определенного момента начнет уменьшаться из-за увеличения емкости коллекторного перехода. Но это только одна из причин падения усиления транзистора от частоты, хотя и немаловажная.

С увеличением частоты сигнала проявляются инерционные свойства транзистора.
Происходит отставание по фазе переменного тока коллектора от тока эмиттера. Это вызвано конечным значением времени перемещения носителей заряда от эмиттерного перехода к коллекторному через базу. И хотя время «пролета» составляет меньше 0,1 мкс, но при частотах в несколько мегагерц и выше это приводит к сдвигу фаз коллекторного и эмиттерного токов, что увеличивает ток базы и уменьшает коэффициент усиления.
Так же к инерционным свойствам относится время на перезарядку емкостей коллекторного и эмиттерного переходов.
Все эти паразитные явления приводят к уменьшению коэффициента усиления по току.

Предельная частота fпр коэффициента передачи по току в схеме с ОЭ — частоты, при которой модуль коэффициента усиления по току h21эо уменьшается в v2 раза (или на 3 дб). ( рис.10 ).
Граничная частота fгр коэффициента усиления по току в схеме с ОЭ — частота, при которой модуль коэффициента усиления h21э=1 и транзистор не работает как усилитель.

Коэффициент шума

Величина коэффициента шума является самым основным параметром транзистора, работающем в предварительном усилителе с малыми входными сигналами.
Коэффициент шума Кш — это отношение полной мощности шумов на выходе транзистора к мощности тепловых шумов сопротивления источника сигнала на входе:

Из этого определения следует, что для идеального «нешумящего» транзистора Кш будет равен единице, т.к. шумы будут обусловлены только сопротивлением источника сигнала:

Из рис.11,12 можно сделать вывод, что коэффициент шума зависит от режима транзистора ( Iэ ) и температуры окружающей среды ( Т?С ), а так же от выходного сопротивления источника сигнала ( Rг ) и частоты сигнала.

Чтобы получить как можно меньший уровень шумов транзистора в усилительном режиме необходимо определить наивыгоднейшие значения по току эмиттера и напряжению на коллекторе при оптимальном значении сопротивления источника сигнала.
Этого можно добиться если выбирать Iэ=0,1. 0,5 мА, Uк=0,5. 2,5 В и как можно уже полосу рабочих частот.

Читайте также:  Амперметры постоянного тока для сварочного аппарата

Источник

Биполярные транзисторы. For dummies

Предисловие

Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.

Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики

Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.

Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной.

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.

  1. Инверсный активный режим. Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения. Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки. Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Читайте также:  Определение силы взаимодействия между проводниками с током
Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

Источник



Коэффициент передачи по току меньше 1 в схеме включения

Транзисторы — Схемы включения биполярных транзисторов

Существует три основные схемы включения транзисторов. При этом один из электродов транзистора является общей точкой входа и выхода каскада. Надо помнить, что под входом (выходом) понимают точки, между которыми действует входное (выходное) переменное напряжение. Основные схемы включения называются схемами с общим эмиттером (ОЭ), общей базой (ОБ) и общим коллектором (ОК).

Схема с общим эмиттером (ОЭ). Такая схема изображена на рисунке 1. Во всех книжках написано, что эта схема является наиболее распространненой, т. к. дает наибольшее усиление по мощности.

Рис. 1 — Схема включения транзистора с общим эмиттером

Услительные свойства транзистора характеризует один из главных его параметров — статический коэффициент передачи тока базы или статический коэффициент усиления по току ?. Поскольку он должен характеризовать только сам транзистор, его определяют в режиме без нагрузки (Rк = 0). Численно он равен:

Этот коэффициент бывает равен десяткам или сотням, но реальный коэффициент ki всегда меньше, чем ?, т. к. при включении нагрузки ток коллектора уменьшается.

Коэффициент усиления каскада по напряжению ku равен отношению амплитудных или действующих значений выходного и входного переменного напряжения. Входным является перемнное напряжение uб-э, а выходным — перемнное напряжение на резисторе, или что то же самое, напряжение коллектор-эмиттер. Напряжение база-эмиттер не превышает десятых долей вольта, а выходное достигает едениц и десятков вольт (при достаточном сопротивлении нагрузки и напряжении источника E2). Отсюда вытекает, что коэффициент усиления каскада по мощности равен сотням, тысячам, а иногда десяткам тысяч.

Важной характеристикой является входное сопротивление Rвх, которое определяется по закону Ома:

и составляет обычно от сотен Ом до едениц килоом. Входное сопротивление транзистора при включении по схеме ОЭ, как видно, получается сравнительно небольшим, что является существенным недостатком. Важно также отметить, что каскад по схеме ОЭ переворачивает фазу напряжения на 180°

К достоинствам схемы ОЭ можно отнести удобство питания ее от одного источника, поскольку на базу и коллектор подаются питающие напряжения одного знака. К недостаткам относят худшие частотные и температурные свойства (например,в сравнении со схемой ОБ). С повышением частоты усиление в схеме ОЭ снижается. К тому же, каскад по схеме ОЭ при усилении вносит значительные искажения.

Схема с общей базой (ОБ). Схема ОБ изображена на рисунке 2.

Рис. 2 — Схема включения транзистора с общей базой

Такая схема включения не дает значительного усиления, но обладает хорошими частотными и температурными свойствами. Применяется она не так часто, как схема ОЭ.

Коэффициент усиления по току схемы ОБ всегда немного меньше еденицы:

т. к. ток коллектора всегда лишь немного меньше тока эмиттера.

Статический коэффициент передачи тока для схемы ОБ обозначается ? и определяется:

Этот коэффициент всегда меньше 1 и чем он ближе к 1, тем лучше транзистор. Коэффициент усиления по напряжению получается таким же, как и в схеме ОЭ. Входное сопротивление схемы ОБ в десятки раз ниже, чем в схеме ОЭ.

Для схемы ОБ фазовый сдвиг между входным и выходным напряжением отсутствует, то есть фаза напряжения при усилении не переворачивается. Кроме того, при усилении схема ОБ вносит гораздо меньшие искажения, нежели схема ОЭ.

Схема с общим коллектором (ОК). Схема включения с общим коллектором показана на рисунке 3. Такая схема чаще называется эмиттерным повторителем.

Рис. 3 — Схема включения транзистора с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь. Коэффициент усиления по току почти такой же, как и в схеме ОЭ. Коэффициент усиления по напряжению приближается к единице, но всегда меньше ее. В итоге коэффициент усиления по мощности примерно равен ki, т. е. нескольким десяткам.

В схеме ОК фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Входное сопротивление схемы ОК довольно высокое (десятки килоом), а выходное — сравнительно небольшое. Это является немаловажным достоинством схемы.

Источник