Меню

Компенсации реактивной мощности потребители реактивной мощности

Реальные и мнимые преимущества компенсации реактивной мощности

Компенсация реактивной мощности в потребительских сетях РФ. Экономическое стимулирование внедрения КРМ в России. Реальные выгоды от компенсации реактивной мощности.

Компенсация реактивной мощности «на местах» у потребителя по одной из наиболее целесообразных в каждой конкретной ситуации схем (централизованная, групповая, индивидуальная или комбинированная) остается самым эффективным и разумным способом снижения уровня энергозатрат и повышения качества передаваемой/потребляемой электроэнергии.

Вместе с тем, государство по факту не в состоянии обеспечить даже крупных потребителей электрической энергии установками компенсации реактивной мощности ни по схемам лизинга, ни с помощью государственных преференций — самим потребителям в виде действенных и ощутимых налоговых льгот, или банковским институциям для снижения кредитных ставок на целевые займы по приобретению установок КРМ. Т.е. пока проблема компенсации реактивной мощности на местах полностью выведена в плоскость потребителя, и каждый владелец нагрузки продолжает решать вопрос необходимости использования установок компенсации реактивной мощности, руководствуясь собственными критериями для оценки целесообразности принимаемого решения.

Экономическое стимулирование внедрения КРМ в России

Несмотря на формирование Новой России более десятилетия технические потери энергии из-за перетоков паразитной реактивной мощности компенсировались государством по «советской» методике путем введения добавок к базовому тарифу на электроэнергию. Отмена на рубеже веков «Правил пользования электрической и тепловой энергией» и ведение в действие N 184-ФЗ «О техническом регулировании» выбросило страну буквально в правовой вакуум, причем необязательными для исполнения стал целый ряд базовых государственных стандартов и стандартов организаций, среди которых СО 153-34.20.185-94, СО 153-34.20.118-2003 и СО 153-34.20.112 (Указания по выбору средств регулирования напряжения и компенсации реактивной мощности при проектировании электроснабжения сельскохозяйственных объектов и электрических сетей сельскохозяйственного назначения) формировали предметную базу для компенсации реактивной мощности на местах.

Несколько нормализовалась ситуация после 2004 года (Постановления Правительства Российской Федерации от 27 декабря 2004 г. N 861«Правила недискриминационного доступа к услугам по передаче электрической энергии и оказания этих услуг», от 31.08.2006 № 530«Правила розничного рынка электроэнергии и мощности, и порядка ограничения потребителей», № 530 «Об утверждении Правил функционирования розничных рынков электроэнергии в переходный период функционирования электроэнергетики», от 1 марта 2011 г. N 129 изменения к «Правилам технологического присоединения энергопринимающих устройств потребителей электрической энергии, объектов по производству электрической энергии, а также объектов электросетевого хозяйства, принадлежащих сетевым организациям и иным лицам, к электрическим сетям», а также Приказ министра промышленности и энергетики РФ № 49 от 22.02.2007 «Порядок расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии (договорах электроснабжения)»), хотя вся накопленная нормативно-правовая база в целом была ориентирована на сети низкого напряжения и основывалась на введении мало понятных стимулирующих добавок. Т.е. забытым остался сегмент потребителей в сетях среднего и высокого напряжения, где значительны используемые мощности и существенна выгода от компенсации реактивной мощности на местах.

Попытка выхода на масштабных потребителей реактивной мощности была сделана Правительством РФ в постановлении № 442 «О функционировании розничных рынков электрической энергии, полном и (или) частичном ограничении режима потребления электрической энергии» и «Основные положениями функционирования розничных рынков электрической энергии» (от 04.05.2012), а также проекте Постановления от 17.01.2014 «Об определении стоимости услуг по передаче электрической энергии с учетом оплаты резервируемой максимальной мощности», где помимо формализации новой терминологии (максимальная мощность, резервируемая максимальная мощность) установлен срок начала оплаты потребителями с электрическими нагрузками от 750 кВА резервируемой максимальной мощности (с 1 июля текущего года). Упрощенно суть вопроса –потребитель будет оплачивать по специальным тарифам при отсутствии данных о почасовых объемах потребления электроэнергиисовокупную максимальную мощность всех энергопринимающих устройств на объекте, а при наличии данных о почасовых объемах потребления электроэнергии — резервируемую максимальную мощность или разность между совокупной максимальной мощностью всех энергопринимающих устройств на объекте и потребленной мощностью согласно средств учета электроэнергии.

Т.е. с учетом обязательности включения в договора на поставку электроэнергии максимальной мощности, которая будет определяться сетевой организацией по суммарной максимальной мощности подключенных энергопринимающих устройств и даже при наличии средств учета почасовых объемов потребляемой электроэнергии владелец нагрузок с потреблением от 750 кВА реактивной мощности должен или использовать/не использовать, но оплачивать резервируемую максимальную мощность, или отказываться от части энергопринимающих устройств, перезаключая договор с поставщиком электроэнергии.

Реальные выгоды от компенсации реактивной мощности.

На текущий момент безусловным остается факт — компенсация реактивной мощности реально выгодна потребителю только в случае использования установок КРМ до границы балансовой принадлежности сети, причем экономическая, а вернее энергетическая выгода будет тем выше, чем ближе установка КРМ к потребляющей реактивную энергию нагрузке.

В отличие от ряда стран ЕС, где потребитель по факту может реализовать сэкономленную или производимую (из возобновляемых источников) электроэнергию, в России экономическая выгода от компенсации реактивной мощности нематериальная, т.е. имеет только условный денежный эквивалент и основывается на возможности снизить объемы заказываемой по договору полной мощности или наращивать реальную потребляемую активную мощность путем подключения дополнительной загрузки.

Читайте также:  Мощность передатчика wifi дбм

Вместе с тем, в существующей ситуации некорректно говорить о малой выгоде централизованной схемы компенсации реактивной мощности, поскольку КРМ на входе силовой линии на объект в значительной степени позволяет нивелировать недостатки компенсации реактивной мощности в распределительной сети электросетевой организации. Т.е. оптимальным вариантом для предприятия можно было бы считать использование комбинированной схемы компенсации реактивной мощности с КРМ на границе балансовой принадлежности (но со стороны потребителя) и оптимизированные «точечные» интеграции установок по индивидуальной или групповой схемах с максимальной приближенностью установки к потребляющей реактивную энергию нагрузке.

Централизованная на подстанции 10 (6)/0.4кВ: на стороне высшего напряжения 6(10) кВ,или на границе балансовой принадлежности

Наличие на объекте высоковольтных электродвигателей 6(10) кВ и/или равномерный график нагрузки

Возможность подключения к сборным шинам дополнительной мощности, повышение качества электроэнергии

Централизованная на подстанции 110 (35)/10 (6) кВ:
на стороне низшего напряжения(в случае если граница балансовой принадлежности проходит по стороне 110 (35) кВ)

Снижение активных потерь в трансформаторах 110 (35)/10 (6) кВ и токоведущих кабелях, возможность подключения дополнительной мощности

Повышение качества электроэнергии и увеличение пропускной способности сетей по объемам активной мощности

Централизованнаяна подстанции 10 (6)/0.4 кВ: настороне низшего напряжения 0,4 кВ

В узлах динамической нагрузки с широким диапазоном потребления реактивной мощности

Снижение активных потерь в трансформаторах 10 (6)/0,4 кВ и возможность подключения дополнительной мощности

Групповая на стороне низшего напряжения0,4 кВ

Группа однородных по характеру нагрузки потребителей

Снижение активных потерь в трансформаторах и питающих линиях, повышение стабильности сетевого напряжения

Индивидуальная (возле нагрузки) на стороне низшего напряжения 0,4 кВ

Единичный потребитель-нагрузка, коммутируемый отдельным выключателем

Снижение активных потерь во всей распределительной сети благодаря нивелированию перетоков реактивной мощности

Источник



Компенсация реактивной мощности в теории

Компенсация реактивной мощности (КРМ). Появление термина «реактивная» мощность связано с необходимостью выделения мощности, потребляемой нагрузкой, составляющей, которая формирует электромагнитные поля и обеспечивает вращающий момент двигателя. Эта составляющая имеет место при индуктивном характере нагрузки. Например, при подключении электродвигателей. Практически вся бытовая нагрузка, не говоря о промышленном производстве, в той или иной степени имеет индуктивный характер. В электрических цепях, когда нагрузка имеет активный (резистивный) характер, протекающий ток синфазен (не опережает и не запаздывает) от напряжения. Если нагрузка имеет индуктивный характер(двигатели, трансформаторы на холостом ходу), ток отстает от напряжения. Когда нагрузка имеет емкостной характер(конденсаторы), ток опережает напряжение.

Суммарный ток, потребляемый двигателем, определяется векторной суммой

1. Iа— активный ток
2. Iри— реактивный ток индуктивного характера

К этим токам привязаны мощности потребляемые двигателем.

  1. Р– активная мощность привязана к Iа(по всем гармоникам суммарно)
  2. Q– реактивная мощность привязана к Iри(по всем гармоникам суммарно)
  3. A– полная мощность потребляемая двигателем. (по всем гармоникам суммарно)

Реактивная мощность не производит механической работы, хотя она и необходима для работы двигателя, поэтому ее необходимо получать на месте, чтобы не потреблять ее от энергоснабжающей организации. Тем самым мы снижаем нагрузку на провода и кабели, повышаем напряжение на клеммах двигателя, снижаем платежи за реактивную мощность, имеем возможность подключить дополнительные станки за счет снижения тока потребляемого с силового трансформатора.

Параметр определяющий потребление реактивной мощности называется Cos (φ)

Cos (φ) = P1гарм/ A1гарм

P1гарм— активная мощность первой гармоники 50 Гц
А1гарм— полная мощность первой гармоники 50 Гц
где,

Таким образом, сos (φ) уменьшается, когда потребление реактивной мощности нагрузкой увеличивается. Необходимо стремиться к повышению сos (φ), т.к. низкий сos (φ) несет следующие проблемы:

  1. Высокие потери мощности в электрических линиях (протекание тока реактивной мощности)
  2. Высокие перепады напряжения в электрических линиях(например 330…370 В, вместо 380 В)
  3. Необходимость увеличения габаритной мощности генераторов, сечения кабелей, мощности силовых трансформаторов.

Из всего вышеприведенного, понятно, что компенсация реактивной мощности необходима. Чего легко можно достичь применением активных компенсирующих установок. Конденсаторы в которых будут компенсировать реактивную мощность двигателей.

Потребители реактивной мощности

Потребителями реактивной мощности, необходимой для создания магнитных полей, являются как отдельные звенья электропередачи(трансформаторы, линии, реакторы), так и такие электроприёмники, преобразующие электроэнергию в другой вид энергии которые по принципу своего действия используют магнитное поле(асинхронные двигатели, индукционные печи и т.п.). До 80-85% всей реактивной мощности, связанной с образованием магнитных полей, потребляют асинхронные двигатели и трансформаторы. Относительно небольшая часть в общем балансе реактивной мощности приходится на долю прочих её потребителей, например на индукционные печи, сварочные трансформаторы, преобразовательные установки, люминесцентное освещение и т.п.

Читайте также:  Мощность оптического сигнала мвт

Трансформатор как потребитель реактивной мощности. Трансформатор является одним из основных звеньев в передаче электроэнергии от электростанции до потребителя. В зависимости от расстояния между электростанцией и потребителем и от схемы передачи электроэнергии число ступеней трансформации лежит в пределах от двух до шести. Поэтому установленная трансформаторная мощность обычно в несколько раз превышает суммарную мощность генераторов энергосистемы. Каждый трансформатор сам является потребителем реактивной мощности. Реактивная мощность необходима для создания переменного магнитного потока, при помощи которого энергия из одной обмотки трансформатора передаётся в другую.

Асинхронный двигатель как потребитель реактивной мощности. Асинхронные двигатели наряду с активной мощностью потребляют до 60-65% всей реактивной мощности нагрузок энергосистемы. По принципу действия асинхронный двигатель подобен трансформатору. Как и в трансформаторе, энергия первичной обмотки двигателя– статора передаётся во вторичную– ротор посредствам магнитного поля.

Индукционные печи как потребители реактивной мощности. К крупным электроприемникам, требующим для своего действия большой реактивной мощности, прежде всего, относятся индукционные печи промышленной частоты для плавки металлов. По существу эти печи представляют собой мощные, но не совершенные с точки зрения трансформаторостроения трансформаторы, вторичной обмоткой которых является металл (садка), расплавляемый индуктированными в нём токами.

Преобразовательные установки, преобразующие переменный ток в постоянный при помощи выпрямителей, также относятся к крупным потребителям реактивной мощности. Выпрямительные установки нашли широкое применение в промышленности и на транспорте. Так, установки большей мощности с ртутными преобразователями используются для питания электроизоляционных ванн, например при производстве алюминия, каустической соды и др. Железнодорожный транспорт в нашей стране почти полностью электрифицирован, причём значительная часть железных дорог использует постоянный ток преобразовательных установок.

Компенсация реактивной мощности в электрических сетях

Смотрите также: Конденсаторные установки для компенсации реактивной мощности (КРМ)

С другой стороны, элементы распределительной сети(линии электропередачи, повышающие и понижающие трансформаторы) в силу особенностей конструктивного исполнения имеют продольное индуктивное сопротивление. Поэтому, даже для нагрузки потребляющей только активную мощность, в начале распределительной сети будет иметь место индуктивная составляющая– реактивная мощность. Величина этой реактивной мощности зависит от индуктивного сопротивления распределительной сети и полностью расходуется на потери в элементах этой распределительной сети.
Действительно, для простейшей схемы:

Р– активная мощность в центре питания,
Рн– активная мощность на шинах потребителя,
R – активное сопротивление распределительной сети,
Q – реактивная мощность в центре питания,
Qн– реактивная мощность на шинах потребителя.
U – напряжение в центре питания,
Uн– напряжение на шинах потребителя,
Х– индуктивное сопротивление распределительной сети.

В результате, независимо от характера нагрузки, по распределительной сети от источника питания будет передаваться реактивная мощностьQ. При двигательном характере нагрузки ситуация ухудшается– значения мощности в центре питания увеличивается и становится равными:

Р= Рн + ( Рн² + Qн² ) * R / Uн²;
Q = Qн + ( Рн² + Qн² ) * X / Uн².

Передаваемая от источника питания к потребителю реактивная мощность имеет следующие недостатки:

В распределительной сети возникают дополнительные потери активной мощности – потери при транспорте электрической энергии:
∆Р= ( Рн² + Qн² ) * R ,
часть которых(а иногда и значительную) составляют потери от транспорта реактивной мощности.

Величина напряжения у потребителя, а, следовательно, и качество электрической энергии, снижается:
Uн= U – ( P * R + Q * X ) / U.

Увеличивается загрузка распределительной сети током, что лишает потребителя возможности перспективного развития.

Таким образом, транспортировка реактивной мощности по распределительным сетям от центров питания к потребителям превращается в сложную технико-экономическую проблему, затрагивающую как вопросы экономичности так и вопросы надежности систем электроснабжения.

Классическим решением данной проблемы в распределительных сетях является компенсация реактивной мощности у потребителя путём установки у него дополнительных источников реактивной мощности– потребительских статических конденсаторов.

Тэги: реактивная мощность, компенсация реактивной мощности, КРМ

Источник

Компенсация реактивной мощности у потребителей

Для перемещения электрической энергии от мест производства до мест потребления не используются другие ресурсы, используется часть самой передаваемой энергии, поэтому ее потери неизбежны, задача состоит в определении их экономически обоснованного уровня. Снижение потерь электроэнергии — одна из задач энергосбережения. Классификация потерь включает в себя четыре составляющие.

1. Технические потери электроэнергии, обусловленные физическими процессами, происходящими при передаче электроэнергии по электрическим сетям и выражающимися в преобразовании части электроэнергии в тепло в элементах сетей.

2. Расход электроэнергии на собственные нужды, необходимый для работы технологического оборудования подстанций и жизнедеятельности обслуживающего персонала.

3. Инструментальные потери, определяются метрологическими характеристиками и режимами работы используемых приборов.

4. Коммерческие потери, обусловлены несоответствием показаний счетчиков оплате за электроэнергию потребителями и другими причинами в сфере организации контроля за потреблением энергии (т.е., в первую очередь, воровством).

Нагрузочные потери активной мощности в элементе сети с сопротивлением R при напряжении U определяются по формуле:

формула

В большинстве случаев значение P (активная мощность) и Q (реактивная мощность) на элементах сети изначально неизвестны. Как правило, известны нагрузки в узлах сети (на подстанциях). Значения данных величин определяются посредством измерений по нормативным методикам, позволяющим определить данные параметры для различных периодов нагрузок — сезонных минимумов и максимумов.

Читайте также:  Какая мощность у швейных машин лучше

Из формулы видно, что для снижения потерь мощности важно проводить мероприятия по уменьшению или ограничению потребления реактивной мощности потребителями.

В электрических цепях, содержащих комбинированную нагрузку, в частности, активную (лампы накаливания, электронагреватели и др.) и индуктивную (электродвигатели, распределительные трансформаторы, сварочное оборудование, люминесцентные лампы и др.) общую мощность, забираемую от сети, можно выразить следующей векторной диаграммой:

диаграмма

Рис. 9.3. Диаграмма потребления мощности

Отставание тока по фазе от напряжения в индуктивных элементах обуславливает интервалы времени, когда напряжение и ток имеют противоположные знаки: напряжение положительно, а ток отрицателен и наоборот. В эти моменты мощность не потребляется нагрузкой, а подается обратно по сети в сторону генератора. При этом электроэнергия, запасаемая в каждом индуктивном элементе, распространяется по сети, не рассеиваясь в активных элементах, а совершая колебательные движения (от нагрузки к генератору и обратно). Соответствующую мощность называют реактивной.

диаграма2

Рис. 9.4. Диаграмма активной и реактивной мощности

Полная мощность складывается из активной мощности, совершающей полезную работу, и реактивной мощности, расходуемой на создание магнитных полей и создающей дополнительную нагрузку на силовые линии питания. Соотношение между полной и активной мощностью, выраженное через косинус угла между их векторами, называется коэффициентом (фактором) мощности.

фактор

Активная энергия преобразуется в полезную — механическую, тепловую и др. энергии. Реактивная энергия не связана с выполнением полезной работы, однако она необходима для создания электромагнитного поля, наличие которого является необходимым условием для работы электродвигателей и трансформаторов. Потребление реактивной мощности от энергоснабжающей организации нецелесообразно, т.к. приводит к увеличению мощности генераторов, трансформаторов, сечения подводящих кабелей, а так же повышению активных потерь и падению напряжения. Поэтому реактивную мощность необходимо получать (генерировать) непосредственно у потребителя. Эту функцию выполняют установки компенсации реактивной мощности (КРМ), основными элементами которых являются конденсаторы.

Реактивная мощность при этом уже не перемещается между генератором и нагрузкой, а совершает локальные колебания между реактивными элементами — индуктивными обмотками нагрузки и компенсатором. Такая компенсация реактивной мощности (снижение индуктивного тока в системе «генератор — нагрузка») позволяет, в частности, передать в нагрузку большую активную мощность при той же номинальной полной мощности генератора.

Наиболее эффективно проводить компенсацию реактивной мощности непосредственно у потребителя, но это процесс достаточно долгий и дорогостоящий. Для получения более быстрого ощутимого результата на первом этапе необходимо провести компенсацию реактивной мощности на подстанциях, что позволит разгрузить сеть и получить энергосбережение в пределах 10-20%. Предварительно, на подстанциях в сетях 0,4 кВ необходимо выравнивание нагрузок фаз, которое производится путем переключения части абонентов с перегруженных фаз на недогруженные.

На уровне отдельных непромышленных потребителей, особенно в жилых домах с однофазной нагрузкой, выравнивание фаз таким способом произвести нельзя из-за непрерывно меняющейся величины и характера нагрузки. Поэтому компенсация реактивной мощности на объектах должна производиться на каждой отдельной фазе. При этом в каждом случае должны учитываться гармонические составляющие, при необходимости устройства по компенсации реактивной мощности должны иметь фильтры с автоматическим регулированием емкости. В данном случае важно правильно произвести подбор фильтро-компенсирующего устройства (ФКУ).

Таким образом, для решения задачи по КРМ необходимо проводить работу в несколько этапов.

  • 1. Централизованная (грубая) компенсация, которая проводится на подстанциях и включает в себя проведение мониторинга показателей качества электроэнергии, выравнивание фаз, фильтрацию тока и установку КРМ.
  • 2. Индивидуальная (точечная) компенсация проводится на уровне каждой квартиры или параллельно нагрузке, посредством подключения установок КРМ (косинусных конденсаторов небольшой емкости). Данное мероприятие позволяет обеспечить синусоидальность тока, тем самым значительно уменьшая технические потери. Такие же мероприятия должны проводиться и внутри электроустановок зданий.

Хотя основными потребителями индуктивной мощности являются промышленные и производственные предприятия, на которых индуктивная мощность необходима для работы понижающих трансформаторов, асинхронных двигателей, электросварочного оборудования, индукционных печей и др., но нельзя сбрасывать со счетов и непромышленные объекты. Т.к. в настоящее время наблюдается увеличение потребления индукционной мощности в социально-бытовой сфере за счет увеличения числа различных электроприводов, стабилизирующих и преобразовательных устройств. Применение полупроводниковых преобразователей приводит к ухудшению формы кривой тока, что ухудшает работу других электроприемников, сокращает срок их службы, создает дополнительные потери электроэнергии. Современные люминесцентные светильники, все шире применяемые в квартирах и офисах, для продажи в России комплектуются дешевыми китайскими конденсаторами, срок службы которых обычно составляет несколько часов. Косинус φ у таких источников света составляет менее 0,5.

Нормативы уровня компенсации реактивной мощности изначально определены в «Инструкции по проектированию городских электрических сетей» (РД 34.20.185-94, последние изменения и дополнения внесены и утверждены Приказом Минтопэнерго РФ от 29.06.99 № 213.), где определены расчетные коэффициенты реактивной мощности жилых домов:

Источник

Adblock
detector