Меню

Компенсация реактивной мощности при помощи синхронного двигателя

Синхронные компенсаторы в электрических сетях

Синхронные компенсаторыСинхронным компенсатором называется синхронный двигатель облегчённой конструкции, предназначенный для работы на холостом ходу.

Основные потребители электрической энергии, кроме активной мощности, потребляют от генераторов системы реактивную мощность. К числу потребителей, требующих большие намагничивающие реактивные токи для создания и поддержания магнитного потока, относятся асинхронные двигатели, трансформаторы, индукционные печи и другие. В связи с этим распределительные сети обычно работают с отстающим током.

Реактивная мощность, вырабатываемая генератором, получается с наименьшими затратами. Однако передача реактивной мощности от генераторов связана с дополнительными потерями в трансформаторах и линиях передач. Поэтому для получения реактивной мощности становится экономически выгодным применение синхронных компенсаторов, располагаемых на узловых подстанциях системы или непосредственно у потребителей.

Синхронные двигатели благодаря возбуждению постоянным током они могут работать с cos = 1 и не потребляют при этом реактивной мощности из сети, а при работе, с перевозбуждением отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшаются падение напряжения и потери в ней, а также повышается коэффициент мощности генераторов, работающих на электростанциях.

Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок.

Синхронным компенсатор — синхронная машина, работающая в двигательном режиме без нагрузки на валу при изменяющемся токе возбуждения.

В перевозбужденном режиме ток опережает напряжение сети, т. е. является по отношению к этому напряжению емкостным, а в недовозбужденных — отстающим, индуктивным. В таком режиме синхронная машина превращается в компенсатор — в генератор реактивного тока.

Нормальным являемся перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность.

Синхронные компенсаторы лишены приводных двигателей и с точки зрения режима своей работы в сущности являются синхронными двигателями, работающими на холостом ходу.

Синхронные компенсаторыВ связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют также генераторами реактивной мощности . Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения.

Для этого каждый синхронный компенсатор снабжается автоматическим регулятором возбуждения или напряжения, который регулирует величину его тока возбуждения так, что напряжение на зажимах компенсатора остается постоянным.

Для того чтобы улучшить коэффициент мощности и соответственно уменьшить угол сдвига между током и напряжением от значения φсв до φк нужна реактивная мощность:

где Р — средняя активная мощность, квар; φсв — сдвиг фаз, соответствующий средневзвешенному коэффициенту мощности; φк — сдвиг фаз, который должен быть получен после компенсации; а — коэффициент, равный около 0,9, вводимый в расчеты с целью учета возможного повышения коэффициента мощности, без установки компенсирующих устройств.

Помимо компенсации реактивных токов индуктивных промышленных нагрузок, синхронные компенсаторы необходимы на ЛЭП. В длинных ЛЭП при малых нагрузках преобладает емкость линии, и они работают с опережающим током. Для того чтобы компенсировать этот ток, синхронный компенсатор должен работать с отстающим током, т. е. недовозбужденным.

При значительной нагрузке ЛЭП, когда преобладает индуктивность потребителей электроэнергии, ЛЭП работает с отстающим током. В этом случае синхронный компенсатор должен работать с опережающим током, т. е. перевозбужденным.

Изменение нагрузки на ЛЭП вызывает изменение потоков реактивных мощностей по величине и фазе, приводит к значительным колебаниям напряжения в линии. В связи с этим возникает необходимость его регулирования.

Синхронные компенсаторы обычно устанавливают на районных подстанциях.

Для регулирования напряжения в конце или середине транзитных ЛЭП могут быть созданы промежуточные подстанции с синхронными компенсаторами, которые должны регулировать либо поддерживать напряжение неизменным.

Работа таких синхронных компенсаторов автоматизируется, в связи с чем создается возможность плавного автоматического регулирования величины вырабатываемой реактивной мощности и напряжения.

Для осуществления асинхронного пуска все синхронные компенсаторы снабжаются пусковыми обмотками в полюсных наконечниках или их полюсы делаются массивными. При этом используется способ прямого, а в необходимых случаях — способ реакторного пуска.

В некоторых случаях мощные компенсаторы пускаются в ход также с помощью пусковых фазных асинхронных двигателей, укрепляемых с ними на одном валу. Для синхронизации с сетью при этом обычно используется метод самосинхронизации.

Читайте также:  Зоны мощности при циклическом характере работы

Так как синхронные компенсаторы не развивают активной мощности, то вопрос о статической устойчивости работы для них теряет остроту. Поэтому они изготовляются с меньшим воздушным зазором, чем генераторы и двигатели, Уменьшение зазора позволяет облегчить обмотку возбуждения и удешевить машину.

Номинальная полная мощность синхронного компенсатора соответствует его работе с перевозбуждением, т.е. номинальной мощностью синхронного компенсатора считается его реактивная мощность при опережающем токе, которую он может длительно нести в рабочем режиме.

Синхронные компенсаторы

Наибольшие значения тока и мощности в недовозбужденном режиме получаются при работе в реактивном режиме.

В большинстве случаев в недовозбужденном режиме требуются меньшие мощности, чем в перевозбужденном, но в некоторых случаях необходима большая мощность. Этого можно достигнуть увеличением зазора, однако это приводит к удорожанию машины, и поэтому в последнее время ставится вопрос об использовании режима с отрицательным током возбуждения. Поскольку синхронный компенсатор по активной мощности загружен только потерями, то, согласно он может работать устойчиво также с небольшим отрицательным возбуждением.

В ряде случаев в маловодные периоды для работы в режиме компенсаторов используются также генераторы гидроэлектростанций.

В конструктивном отношении компенсаторы принципиально не отличаются от синхронных генераторов. Они имеют такую же магнитную систему, систему возбуждения, охлаждения и др. Все синхронные компенсаторы средней мощности имеют воздушное охлаждение и выполняются с возбудителем и подвозбудителем.

В связи с тем, что синхронные компенсаторы не предназначены для выполнения механической работы и не несут активной нагрузки на валу, они имеют механически облегченную конструкцию. Компенсаторы выполняются как сравнительно тихоходные машины (1000 — 600 об/мин) с горизонтальным валом и явнополюсным ротором.

В качестве синхронного компенсатора может быть использован генератор, работающий вхолостую при соответствующем возбуждении. В перевозбужденном генераторе появляется уравнительный ток, являющийся чисто индуктивным относительно напряжения генератора и чисто емкостным относительно сети.

Следует иметь в виду, что перевозбужденная синхронная машина независимо от того, работает ли она генератором или двигателем, может рассматриваться относительно сети как емкость, а недовозбужденная — как индуктивность.

Для того чтобы перевести генератор, включенный в сеть, в режим синхронного компенсатора, достаточно закрыть доступ пара (или воды) в турбину. В таком режиме перевозбужденный турбогенератор начинает потреблять небольшую активную мощность из сети только для покрытия потерь вращения (механических и электрических) и отдает реактивную мощность в сеть.

В режиме синхронного компенсатора генератор может работать длительное время и зависит лишь от условий работы турбины.

При необходимости турбогенератор может быть использован в качестве синхронного компенсатора как при вращающейся турбине (вместе с турбиной), так и при отсоединенной, т. е. при разобранной муфте сочленения.

Вращение паровой турбины со стороны генератора, перешедшего в двигательный режим, может вызвать перегрев хвостовой части турбины.

Источник



X Международная студенческая научная конференция Студенческий научный форум — 2018

КОМПЕНСАЦИИ РЕАКТИВНОЙ МОЩНОСТИ СРЕДСТВАМИ СИНХРОННЫХ ДВИГАТЕЛЕЙ

Одним из эффективных путей целесообразного использования электроэнергии и повышения технико-экономических показателей работы электрооборудования является компенсация реактивной мощности (КРМ). Правильная компенсация реактивной мощности дает ряд преимуществ, таких как:

 высвобождение дополнительной мощности трансформаторов за счет снижения реактивной и, как следствие, полной мощности; 5

 уменьшение потерь активной составляющей тока (за счет уменьшения фазных токов в сетях потребителя);

 использование линий электропередач меньшего сечения;

 увеличение сроков службы электрооборудования за счет снижения нагрузок и нагрева;

 экономия при оплате электроэнергии и мощности (применение повышающих или понижающих коэффициентов к тарифу на передачу электроэнергии);

 улучшение качества электроэнергии у потребителей (улучшается освещенность на рабочих местах, увеличивается производительность труда).

 уменьшение аварий на электроустановках потребителя;

 уменьшение уровня гармоник в сети.

Мельницы мокрого самоизмельчения предназначены для размола руд черных и цветных металлов, алмазо- и золотосодержащих руд, сырья для промышленности строительных материалов. Мельницы самоизмельчения предназначены для измельчения руд дробящей средой, в которых служат не металлические шары и стержни, а крупные куски руды, загружаемые в мельницу. Работа мельницы происходит при непрерывной подаче во вращающийся барабан руды и воды. Материал, поступивший в барабан, захватывается специальными выступающими над бронеплитами подъемниками (лифтерами) и поднимается вверх до тех пор, пока сила тяжести поднятых кусков не превысит действующую на них центробежную силу, после чего эти куски падают и скатываются вниз. Измельчение материала происходит путем раскалывания, раздавливания и истирания. Измельченный материал проходит через разгрузочную решетку и выгружается из мельницы.

Читайте также:  Мощность электромоторы для катеров мощность

Мельницы самоизмельчения предназначены для тонкого измельчения (до 0,3-0,07 мм) крупнокускового (от 300 до 600 мм) неклассифицированного или разделенного на два класса крупности (+100 и –100 мм) материала при переработке медно-молибденовых, железных, золотосодержащих и других типов руд. В процессе измельчения крупные куски измельчают более мелкие зерна руды и одновременно измельчаются сами. По своей конструкции мельницы подобны обычным, принципиальное отличие их состоит лишь большом диаметре (до 11-13 м) при малой длине (0,3-0,5 диаметра). Большой диаметр обеспечивает необходимую силу удара кусков и увеличивает удельную производительность её диаметру в степени 0,6.

Такие мельницы используют в настоящее время в компании Алроса МГОК на обогатительной фабрике №3 для размола алмазосодержащих руд.

Средства компенсации реактивной мощности. Для искусственной компенсации реактивной мощности, называемой иногда «поперечной» компенсацией, применяются специальные компенсирующие устройства, являющиеся средствами компенсации реактивной мощности. Понятие средства компенсации реактивной мощности относят к любым устройствам, способным целенаправленно воздействовать на баланс реактивной мощности в энергетической системе объекта. Это воздействие может быть достигнуто увеличением или уменьшением как генерируемой, так и потребляемой реактивной мощности. К основным техническим средствам компенсации реактивной мощности относятся следующие виды компенсирующих устройств: конденсаторные батареи (КБ), синхронные компенсаторы, статические тиристорные компенсаторы.

Синхронные двигатели компенсаторы. При увеличении тока возбуждения выше номинального значения синхронные двигатели (СД) могут вырабатывать реактивную мощность, следовательно, их можно использовать как средство компенсации реактивной мощности. Главным отличием СД от АД является то, что магнитное поле, необходимое для действия СД, создаётся в основном от отдельного источника постоянного тока (возбудителя). Вследствие этого СД в нормальном режиме (при cos? = 1) почти не потребляет из сети реактивной мощности, необходимой для создания главного магнитного потока, а в режиме перевозбуждения, т.е. при работе с опережающим коэффициентом мощности, может генерировать ёмкостную мощность в сеть. Синхронные двигатели, выпускаемые отечественной промышленностью, рассчитаны на опережающий коэффициент мощности cos? = 0,9 и при номинальной активной нагрузке ?ном и напряжении ?ном могут вырабатывать номинальную реактивную мощность:

При недогрузке СД по активной мощности ? = ? ?ном 1.

Преимуществом СД, используемым для компенсации реактивной мощности, по сравнению с КБ является возможность плавного регулирования генерируемой реактивной мощности. Недостатком является то, что активные потери на генерирование реактивной мощности для СД больше, чем для КБ, так как зависят от квадрата генерируемой мощности СД. Дополнительные активные потери в обмотке СД, кВт, вызываемые генерируемой реактивной мощностью в пределах изменения cos? от 1 до 0,9 при номинальной активной мощности СД, равной Рном,

где ?ном-номинальная реактивная мощность СД, квар; -сопротивление одной фазы обмотки СД в нагретом состоянии, Ом; ?ном -номинальное напряжение сети, кВ. В общем случае когда Р, Q, и U отличаются от номинальных значений, потери активной мощности, кВт, на генерирование реактивной мощности

где Q’-величина генерируемой синхронным двигателем реактивной мощности, кВАр; ?1 и ?2 — постоянные величины, кВт. Реактивная мощность Q’, генерируемая синхронным двигателем при активной нагрузке Р

Источник

5.2. Синхронный двигатель как компенсатор реактивной мощности

Работа системы электроснабжения характеризуется потреблением электроприемниками реактивной мощности. Это вызывает дополнительные потери энергии в элементах системы, снижение уровня напряжения и необходимость иметь повышенную пропускную способность подстанций и распределительных сетей, что снижает экономичность работы системы. В связи с этим для улучшения показателей работы системы электроснабжения необходимо производить компенсацию реактивной мощности, что может осуществляться несколькими способами.

Один из эффективных способов компенсации реактивной мощности связан с использованием СД, который за счет регулирования тока возбуждения может осуществлять генерацию реактивной мощности в электрическую сеть. В этом случае СД работает с опережающим cos. Возможность работы СД в качестве компенсатора реактивной мощности иллюстрируют U-образные характеристики СД, приведенные на рис. 5.5. Эти характеристики показывают зависимости тока статораI1и егоcosот тока возбужденияIвприU=constиP=const.

Характеристики I1(Iв) показывают, что при увеличении от нуля тока возбуждения ток статора вначале уменьшается, что происходит за счет уменьшения его реактивной составляющей. При некотором токе возбуждения она становится равной нулю,acos=l. При дальнейшем увеличении тока возбуждения вновь появляется и увеличивается реактивная составляющая тока статора, но уже с опережающей фазой. Синхронный двигатель начинает работать генератором реактивной энергии с отдачей ее в сеть.

Читайте также:  Какая мощность у старых радиаторов отопления

Характеристики рис. 5.5 позволяют выявить также зависимость компенсирующей способности СД от мощности Рна его валу. Как видно из рис. 5.5, с ростом мощностиРобласть генерации реактивной мощности (опережающегоcos) смещается в сторону больших токов возбуждения. Другими словами, при неизменном токе возбуждения с изменением мощности на валу отдаваемая в сеть реактивная мощность также меняется.

Из сказанного следует важный вывод: если СД работает с переменной нагрузкой на валу, то для полного использования его компенсирующих свойств требуется регулирование тока возбуждения.

Следует подчеркнуть, что при использовании СД в качестве источника реактивной мощности необходимо обеспечивать повышенные токи возбуждения и увеличивать габаритную (полную) мощность СД, что не является ограничивающим фактором для такого применения СД. Покажем это следующим несложным расчетом.

Запишем отношение полной габаритной мощности Sк активной мощностиP

(5.8)

Пусть требуется, например, чтобы реактивная опережающая мощность составляла 40 % активной мощности, т. е. Q/P=0,4. Расчет по формуле (5.8) выявляет, что при этом отношениеS/Pсоставит 1,08, т. е. генерирование указанной реактивной мощности потребует увеличения габаритной мощности только на 8 %. Это показывает, что использование СД для компенсации реактивной мощности является выгодным.

Отдаваемая (или потребляемая при недовозбуждении) реактивная мощность СД определяется общей формулой

(5.9)

Более удобные для практических расчетов выражения можно получить с помощью векторных диаграмм СД. Для явнополюсного СД может быть получено следующее выражение, вывод которого дан в [6]:

(5.10)

где xdиxq– индуктивные сопротивления СД соответственно по продольной и поперечной осям.

Формулу для неявнополюсного СД можно получить из выражения (5.10), если положить в нем xd=xq=x1,

(5.11)

Полученные формулы подтверждают выводы, сделанные на основании анализа характеристик рис. 5.5, а именно: с увеличением тока возбуждения и тем самым ЭДС Ерастет генерируемая СД реактивная мощность, значение которой при этом зависит от нагрузки СД, определяющей угол.

При использовании СД для компенсации реактивной мощности сети энергоснабжения обычно требуется рассматривать в комплексе несколько вопросов. Одним из основных вопросов является технико-экономическое обоснование использования данного способа компенсации реактивной энергии. Как известно, кроме СД для этой цели могут использоваться также статические компенсирующие устройства (конденсаторы) и синхронные компенсаторы. Среди приемлемых вариантов экономически целесообразным будет тот, который обеспечивает минимум приведенных годовых затрат,

где Kн,э– нормативный коэффициент эффективности капитальных вложенийK;Сэ– эксплуатационные расходы.

Приведенные затраты, связанные с установкой средств компенсации реактивной мощности, ее генерированием и передачей, определяются [29] по формуле

(5.12)

где Q– реактивная мощность, генерируемая источником, Мвар;З– постоянная составляющая затрат, не зависящая от генерируемой реактивной мощности, руб.;Зy1– удельные затраты на 1 Мвар реактивной мощности, руб/Мвар;Зy1– удельные затраты на 1 Мвар 2 генерируемой мощности, руб/Мвар 2 .

Формулы для нахождения З,Зy1иЗy2для разных видов компенсирующих устройств, а также пример технико-экономического расчета даны в [29]. Выбор мощности компенсирующего устройстваQтакже должен быть обоснован и может быть выполнен с помощью полученных в [29] выражений.

Если в результате выполненных технико-экономических расчетов выявлена целесообразность использования СД для компенсации определенной реактивной мощности Q, то далее необходимо установить наиболее экономическое ее распределение между отдельными СД. Это достигается отысканием оптимального варианта возбуждения СД, участвующих в компенсации. Под оптимальным вариантом возбуждения СД обычно понимают такое распределение реактивной мощностиQмежду отдельными СД, при котором суммарные потери активной мощности, зависящие от выработки и распределения реактивной мощности, минимальны. В [6] для этого случая получены расчетные формулы и рассмотрены примеры их использования.

На практике распределение реактивной мощности между СД часто производят пропорционально либо их полной номинальной мощности Sном, либо пропорционально их активной мощностиРном. Этот принцип, как показывают расчеты, дает потери активной мощности, близкие к минимальному значению.

Токи возбуждения отдельных СД, компенсирующих заданную для них реактивную мощность, могут быть определены по формулам [6] либо по кривым Q(Iв), снятым опытным путем.

Источник