Меню

Конденсатор включен в сеть переменного тока с частотой 100 гц

Конденсатор, катушка и резонанс в цепи переменного тока

теория по физике 🧲 колебания и волны

Опишем колебания, которые происходят в цепи переменного тока при включении в нее конденсатора и катушки индуктивности. А также рассмотрим условия, при выполнении которых в цепи переменного тока наступает резонанс. Получим формулы для вычисления амплитуд напряжений, введем понятия емкостного и индуктивного сопротивления и выясним, какую роль играют эти величины.

Конденсатор в цепи переменного тока

Постоянный ток не может существовать в цепи, содержащий конденсатор. Движению электронов препятствует диэлектрик, расположенный между обкладками. Но переменный ток в такой цепи существовать может, что доказывает опыт с лампой (см. рисунок ниже).

Пусть фактически такая цепь разомкнута, но если по ней течет переменный ток, конденсатор то заряжается, то разряжается. Ток, текущий при перезарядке конденсатора нагревает нить лампы, и она начинает светиться.

Найдем, как меняется сила тока в цепи, содержащей только конденсатор, если сопротивление проводов и обкладок конденсатора можно пренебречь (см. рис. выше). Напряжение на конденсаторе будет равно:

u = φ 1 − φ 2 = q C . .

Учтем, что напряжение на конденсаторе равно напряжению на концах цепи:

q C . . = U m a x cos . ω t

Следовательно, заряд конденсатора меняется по гармоническому закону:

q = C U m a x cos . ω t

Тогда сила тока, представляющая собой производную заряда по времени, будет равна:

i = q ´ = − C U m a x sin . ω t = C U m a x cos . ( ω t + π 2 . . )

Следовательно, колебания силы тока опережают колебания напряжения на конденсаторе на π 2 . . (см. график ниже). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того, как напряжение достигнет максимума, сила тока становится равной нулю и т.д.

Амплитуда силы тока равна:

I m a x = U m a x C ω

Также будем использовать действующие значения силы тока и напряжения. Тогда получим, что:

Величина X C , равная обратному произведению циклической частоты на электрическую емкость конденсатора, называется емкостным сопротивлением. Роль этой величины аналогична роли активного сопротивления R в законе Ома.

Обратите внимание, что на протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля. В следующую четверть периода (при разрядке конденсатора), эта энергия возвращается в сеть.

Пример №1. Максимальный заряд на обкладках конденсатора колебательного контура q m a x = 10 − 6 Кл. Амплитудное значение силы тока в контуре I m a x = 10 − 3 А. Определите период колебания (потерями на нагревание проводника пренебречь).

Согласно закону сохранения энергии максимальное значение энергии электрического поля конденсатора равно максимальному значения магнитного поля катушки:

q 2 m a x 2 C . . = L I 2 m a x 2 . .

L C = q 2 m a x I 2 m a x . .

√ L C = q m a x I m a x . .

T = 2 π √ L C = 2 π q m a x I m a x . . = 2 · 3 , 14 10 − 6 10 − 3 . . ≈ 6 , 3 · 10 − 3 ( с )

Катушка индуктивности в цепи переменного тока

Соберем две электрических цепи, состоящих из лампы накаливания, катушки индуктивности и источника питания: в первом случае постоянного, во втором — переменного (см. рисунки «а» и «б» ниже).

Опыт покажет, что в цепи постоянного тока лампа светится ярче по сравнению с той, что включена в цепь переменного тока. Это говорит о том, что сила тока в цепи постоянного тока выше действующего значения силы тока в цепи переменного тока.

Результат опыта легко объясняется явлением самоиндукции. При подключении катушки к постоянному источнику тока сила тока нарастает постепенно. Возрастающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь спустя какое-то время сила тока достигает наибольшего значения, соответствующему данному постоянному напряжению.

Если напряжение быстро меняется, то сила тока не успевает достигнуть максимального значения. Поэтому максимальное значение силы тока в цепи переменного тока с катушкой индуктивности ограничивается индуктивность. Чем больше индуктивность и чем больше частота приложенного напряжения, тем меньше амплитуда силы переменного тока.

Определим силу тока в цепи, содержащей катушку, активным сопротивлением которой можно пренебречь (см. рисунок ниже). Для этого найдем связь между напряжением на катушке и ЭДС самоиндукции в ней.

Если сопротивление катушки равно нулю, то и напряженность электрического поля внутри проводника в любой момент времени должна равняться нулю. Иначе, согласно закону Ома, сила тока была бы бесконечно большой. Равенство нулю напряженности поля оказывается возможным потому, что напряженность вихревого электрического поля → E i , порождаемого переменным магнитным полем, в каждой точке равна по модулю и противоположна по направлению напряженности кулоновского поля → E к , создаваемого в проводнике зарядами, расположенными на зажимах источника и в проводах цепи.

Из равенства → E i = − → E к следует, что удельная работа вихревого поля (т.е. ЭДС самоиндукции e i ) равна по модулю и противоположна по знаку удельной работе кулоновского поля.

Учитывая, что удельная работа кулоновского поля равна напряжения на концах катушки, можно записать:

Напомним, что сила переменного тока изменяется по гармоническому закону:

i = I m a x sin . ω t

Тогда ЭДС самоиндукции равна:

e i = − L i ´ = − L ω I m a x cos . ω t

Так как u = − e i , то напряжение на концах катушки оказывается равным:

u = L ω I m a x cos . ω t = L ω I m a x sin . ( ω t + π 2 . . ) = U m a x ( ω t + π 2 . . )

Амплитуда напряжения равна:

U m a x = L ω I m a x

Следовательно, колебания напряжения на катушке опережают колебания силы тока на π 2 . . , или колебания силы тока отстают от колебаний напряжения на π 2 . . , что одно и то же.

В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю (см. график ниже).

Но в момент, когда напряжение становится равным нулю, сила тока максимальна по модулю. Амплитуда силы тока в катушке равна:

I m a x = U m a x L ω . .

Также будем использовать вместо амплитуд действующие значения силы тока и напряжения. Тогда получим:

Величина X L , равная произведению циклической частоты на индуктивность, называется индуктивным сопротивлением. Индуктивное сопротивление зависит от частоты. Поэтому в цепи постоянного тока, в котором отсутствует частота, индуктивное сопротивление катушки равно нулю.

Пример №2. Катушка с индуктивным сопротивлением X L = 500 Ом присоединена к источнику переменного напряжения, частота которого ν = 1000 Гц. Действующее значение напряжения U = 100 В. Определите амплитуду силы тока I m a x в цепи и индуктивность катушки L. Активным сопротивлением пренебречь.

Индуктивное сопротивление катушки выражается формулой:

X L = L ω = 2 π ν L

Так как амплитуда напряжения связана с его действующим значением соотношением U m a x = U √ 2 , то для амплитуды силы тока получаем:

Резонанс в электрической цепи

Механические и электромагнитные колебания имеют разную природу, но процессы, происходящие при этом, идентичны. Поэтому можно предположить, что резонанс в электрической цепи так же реален, как резонанс в колебательной системе, на которую действует периодическая сила.

Напомним, что в механической системе резонанс тем более заметен, чем меньше в колебательной системе трение между ее элементами. Роль трения в электрической цепи играет активное сопротивление R. Ведь именно наличие этого сопротивления в цепи приводит к превращению энергии тока во внутреннюю энергию проводника, который при этом нагревается. Следовательно, резонанс в электрической цепи будет отчетливо наблюдаться при малом активном сопротивлении R.

Если активное сопротивление мало, то собственная частота колебаний в колебательном контуре определяется формулой:

Сила тока при вынужденных колебаниях должна достигать максимальных значений, когда частота переменного напряжения, приложенного к контуру равна собственной частоте колебательного контура:

Резонанс в электрическом колебательном контуре — явление резкого возрастания амплитуды вынужденных колебаний силы тока при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.

После включения внешнего переменного напряжения резонансное значение силы тока в цепи устанавливается не моментально, а постепенно. Амплитуда колебаний силы тока возрастает до тех пор, пока энергия, выделяющаяся за период на резисторе, не сравняется с энергией, поступающей в контур за это же время:

I 2 m a x R 2 . . = U m a x I m a x 2 . .

Упростив это уравнение, получим:

I m a x R = U m a x

Следовательно, амплитуда установившихся колебаний силы тока при резонансе определяется уравнением:

I m a x = U m a x R . .

При сопротивлении, стремящемся к нулю, сила тока возрастает до бесконечно больших значений. При большом сопротивлении сила тока возрастает незначительно. Это хорошо видно на графике ниже.

Пример №3. В цепь переменного тока с частотой ν = 500 Гц включена катушка индуктивностью L = 10 мГн. Какой емкости конденсатор надо включить в эту цепь, чтобы наступил резонанс?

Электрическая цепь, описываемая в условии, представляет собой колебательный контур. Резонанс в этой цепи наступит, когда частота переменного тока будет равна собственной частоте колебательного контура (ν = ν).

Читайте также:  Устройство защиты птиц от поражения электрическим током вл зпк 1

ν 0 = 1 2 π √ L C . .

К колебательному контуру подсоединили источник тока, на клеммах которого напряжение гармонически меняется с частотой ν.

Индуктивность L катушки колебательного контура можно плавно менять от максимального значения Lmax до минимального Lmin, а ёмкость его конденсатора постоянна.

Ученик постепенно уменьшал индуктивность катушки от максимального значения до минимального и обнаружил, что амплитуда силы тока в контуре всё время возрастала. Опираясь на свои знания по электродинамике, объясните наблюдения ученика.

Алгоритм решения

Решение

В колебательном контуре источником тока возбуждаются вынужденные колебания. Частота этих колебаний равна частоте источника — ν. Амплитуда колебаний зависит от того, как соотносятся между собой внешняя частота и частота собственных электромагнитных колебаний, которая определяется формулой:

ν 0 = 1 2 π √ L C . .

По мере увеличения внешней частоты от нуля до ν амплитуда растет. Она достигает максимума тогда, когда происходит резонанс. При этом внешняя частота равна частоте собственных электромагнитных колебаний: ν = ν. Затем амплитуда начинает убывать.

В данном случае, ученик меняет не внешнюю частоту, а частоту собственных электромагнитных колебаний. При плавном уменьшении индуктивности контура от максимального значения Lmax до минимального Lmin частота возрастает от ν0min до ν0max. Причем:

ν 0 m i n = 1 2 π √ L m i n C . .

ν 0 m a x = 1 2 π √ L m a x C . .

Из того факта, что амплитуда всё время увеличивалась, можем сделать вывод, что частота ν всё время приближалась к частоте источника тока, при этом ν > ν0max. В противном случае наблюдалось бы уменьшений амплитуды силы тока.

pазбирался: Алиса Никитина | обсудить разбор | оценить

В колебательном контуре, состоящем из катушки индуктивности и конденсатора, происходят свободные незатухающие электромагнитные колебания.

Из приведённого ниже списка выберите две величины, которые остаются постоянными при этих колебаниях.

а) период колебаний силы тока в контуре

б) фаза колебаний напряжения на конденсаторе

в) заряд конденсатора

г) энергия магнитного поля катушки

д) амплитуда колебаний напряжения на катушке

Алгоритм решения

  1. Определить, от чего зависит каждая из перечисленных величин.
  2. Установить, какие величины меняются, а какие нет.

Решение

В колебательном контуре происходят гармонические колебания. Поэтому период колебаний силы тока в контуре — величина постоянная.

Фаза — это величина, которая определяет положение колебательной системы в любой момент времени. Поскольку в системе происходят колебания, фаза меняется.

Заряд конденсатора — колебания происходят за счет постоянной перезарядки конденсатора. Следовательно, эта величина тоже меняется.

Энергия магнитного поля катушки — в колебательном контуре происходят взаимные превращения энергии магнитного поля катушки в энергию электрического поля конденсатора, и обратно. Поэтому энергия магнитного поля катушки постоянно меняется.

В условии задачи сказано, что колебания незатухающие. Это значит, что полная механическая энергия колебательной системы сохраняется. Поскольку именно от нее зависит амплитуда колебаний напряжения на катушке, то эта величина также остается постоянной.

pазбирался: Алиса Никитина | обсудить разбор | оценить

На рисунке приведён график зависимости силы тока i от времени t при свободных гармонических колебаниях в колебательном контуре. Каким станет период свободных колебаний в контуре, если конденсатор в этом контуре заменить на другой конденсатор, ёмкость которого в 4 раза меньше? Ответ запишите в мкс.

Источник

§ 2.14. Примеры решения задач

При решении задач на электрические колебания рекомендуется учесть следующее. В задачах на свободные колебания в контуре, кроме формулы для периода свободных электрических колебаний (2.3.2), можно применять закон сохранения энергии.

При решении задач на расчет цепей переменного тока следует иметь в виду, что амперметры и вольтметры в этих цепях показывают действующие значения силы тока (2.5.4) и действующие значения напряжения (2.5.5).

В отличие от цепей постоянного тока, обладающих только активным сопротивлением, цепи переменного тока могут иметь еще емкостное сопротивление (2.7.4) и индуктивное сопротивление (2.8.5). Полное сопротивление цепи с последовательно соединенными резистором, конденсатором и катушкой индуктивности определяется по формуле (2.9.4). Закон Ома для цепи переменного тока имеет вид (2.9.5).

При последовательном соединении потребителей в цепях переменного тока действующие или амплитудные значения напряжений складываются методом векторной диаграммы. При параллельном соединении потребителей в цепях переменного тока векторно складываются амплитуды сил токов или их действующие значения. В этом случае тоже следует строить векторные диаграммы. При построении векторных диаграмм надо хорошо знать фазовые соотношения между колебаниями силы тока и напряжения в цепях переменного тока.

Мощность вычисляется по формуле (2.10.4). Явление резонанса в электрической цепи имеет место при условии (2.11.1).

Задача 1

Колебательный контур состоит из катушки индуктивностью L = 6 • 10 -3 Гн и конденсатора емкостью С = 15 мкФ. Максимальная разность потенциалов на конденсаторе Um = 200 В. Чему равна сила тока i в контуре, когда разность потенциалов на конденсаторе уменьпгилась в n = 2 раза? Потерями энергии пренебречь.

Решение. Когда напряжение на обкладках конденсатора максимально, вся энергия контура сосредоточена в электрическом поле конденсатора (см. § 2.2.). Она равна . При уменьшении напряжения на обкладках конденсатора до значения энергия контура распределяется между конденсатором и катушкой. Энергия электрического поля конденсатора становится равной , а энергия магнитного поля катушки будет равна .

Согласно закону сохранения энергии имеем:

Задача 2

Напряжение на концах участка цепи, по которому течет переменный ток, изменяется с течением времени по закону

В момент времени мгновенное значение напряжения u = 10 В. Определите амплитуду напряжения Um и циклическую частоту ω, если период колебаний силы тока Т = 0,01 с. Начертите график зависимости изменения напряжения от времени.

Решение. Сначала найдем значение циклической частоты:

Далее записываем выражение для мгновенного значения напряжения в момент времени :

График изменения напряжения в зависимости от времени представлен на рисунке 2.33.

Задача 3

В цепь переменного тока стандартной частоты (v = 50 Гц) последовательно включены резистор сопротивлением R = 21 Ом, катушка индуктивностью L = 0,07 Гн и конденсатор емкостью С = 82 мкФ (см. рис. 2.20). Определите индуктивное, емкостное и полное сопротивления цепи, а также сдвиг фаз между силой тока и напряжением.

Решение. Индуктивное сопротивление находим по формуле (2.8.5):

Емкостное сопротивление вычисляется по формуле (2.7.4):

Полное сопротивление согласно формуле (2.9.4) равно:

Задача 4

К магистрали переменного тока с напряжением U = 120 В (U — действующее значение напряжения) через катушку (дроссель) с индуктивностью L = 0,05 Гн и активным сопротивлением R = 1 Ом подключена осветительная сеть квартиры (рис. 2.34, а). Каково напрялсение U1 на входе в квартиру, если сила потребляемого тока I = 2 А? Частота тока стандартная (V = 50 Гц). Индуктивностью и емкостью электрической цепи квартиры пренебречь.

Решение. Дроссель и осветительная сеть квартиры подключены к магистрали последовательно, поэтому сила тока одинакова на всех участках цепи. Напряжение U1 и напряжение UR на активном сопротивлении дросселя совпадают по фазе с силой тока I. Напряжение U1 на индуктивном сопротивлении дросселя опережает силу тока по фазе на π/2. Следовательно, векторная диаграмма для действующих значений напряжений и силы тока имеет вид, изображенный на рисунке 2.34, б.

По теореме Пифагора

где ω = 2πv. Так как действующее значение напряжения всегда пололсительно, то

Задача 5

В цепи (рис. 2.35) параметры R, L и С известны. Напряжение между точками А и В равно U. Постройте векторную диаграмму сил токов в данной цепи и определите силу тока в неразветвленном участке цепи. Найдите сдвиг фаз между колебаниями силы тока и напряжения. При каком условии сила тока в неразветвленном участке цепи окажется минимальной? Чему равен сдвиг фаз между силой тока и напряжением в этом случае?

Решение. В этой задаче рассматривается электрическая цепь, состоящая из двух ветвей, соединенных параллельно. Одна ветвь содержит резистор и катушку индуктивности, другая — конденсатор.

Построение векторной диаграммы начнем с вектора действующего значения напряжения , поскольку напряжение одинаково для обеих ветвей цепи. Направим вектор горизонтально вправо (рис. 2.36).

Сила тока i является суммой сил токов i1 и i2 (см. рис. 2.35). Колебания силы тока i1 отстают по фазе от колебаний напряжения на угол φ1 , так как верхний участок цепи содержит катушку индуктивности.

Читайте также:  Трансформаторы тока завод по производству

Поэтому вектор 1 повернут относительно вектора на угол φ1 в отрицательную сторону (по часовой стрелке). Сила тока i2. текущего через конденсатор, опережает по фазе напряжение на π/2. Соответствующий вектор 2 повернут относительно вектора на угол π/2 в положительную сторону (против часовой стрелки). Его модуль I2 = ωCU. Действующее значение силы тока в неразветвленной части цепи находится с помощью векторной диаграммы (см. рис. 2.36):

Пользуясь теоремой косинусов, из векторной диаграммы определяем

Так как α = — φ1, то cos α = sin φ1 и

Как видно из векторной диаграммы (см. рис. 2.36), вектор силы тока образует с вектором напряжения угол φc. Из рисунка находим

Учитывая, что получим

Из выражения (2.14.1) вытекает, что сила тока в неразветвленном участке цепи минимальна, если LCω 2 — 1 = 0, т. е. если ω = . Но = ω — это циклическая частота собственных колебаний контура, входящего в состав данной цепи. В этом случае говорят, что в цепи наступил резонанс токов.

При резонансе токов, как следует из формулы (2.14.2),

При малом активном сопротивлении (R ⇒ 0)

Это значит, что при резонансе токов при малом активном сопротивлении сдвиг фаз между силой тока и напряжением равен нулю (рис. 2.37). Важно обратить внимание на то, что при резонансе сила тока I в неразветвленной части цепи меньше силы тока I1 в ветви, содержащей последовательно соединенные резистор сопротивлением R и катушку индуктивностью L, а также меньше силы тока I2 в ветви с конденсатором емкостью С.

Задача 6

В колебательный контур (см. рис. 2.20) включен источник переменной ЭДС е = Em cos ωt, причем амплитуда Em = 2 В. Определите амплитуду напряжения на конденсаторе при резонансе. Резонансная частота контура V = 10 5 Гц, индуктивность катушки L = 1 мГн и ее активное сопротивление R = 3 Ом.

Решение. При резонансе амплитуда напряжения на конденсаторе, равная амплитуде напряжения на катушке UmL (UmC = UmL), больше амплитуды напряжения на зажимах цепи Um в отношении . Если пренебречь внутренним сопротивлением источника переменной ЭДС, то Um = Em. Тогда

Упражнение 2

1. После зарядки конденсатора емкостью С от источника постоянного напряжения U переключатель замыкают на катушку индуктивностью L1 (см. рис. 2.5, б). В контуре возникают гармонические колебания с амплитудой силы тока Im1. Опыт повторяют по прежней схеме, заменив катушку на другую индуктивностью L2 = 2L1. Найдите амплитуду силы тока Im2 во втором случае.

2. Колебательный контур состоит из дросселя индуктивностью L = 0,2 Гн и конденсатора емкостью С = 10 -5 Ф. Конденсатор зарядили до напряжения U = 20 В. Чему равна сила тока при разрядке конденсатора в момент, когда энергия контура оказывается распределенной поровну между электрическим и магнитным полями?

3. Определите частоту собственных колебаний в контуре, состоящем из соленоида длиной l — 15 см, площадью поперечного сечения S1 = 1 см 2 и плоского конденсатора с площадью пластин S2 = 6 см 2 и расстоянием между ними d = 0,1 см. Число витков соленоида N = 1000.

4. Электрический контур состоит из конденсатора постоянной емкости и катушки, в которую может вдвигаться сердечник. Один сердечник спрессован из порошка магнитного соединения железа (феррита) и является изолятором. Другой сердечник изготовлен из меди. Как изменится частота собственных колебаний контура, если в катушку вдвинуть: а) медный сердечник; б) сердечник из феррита?

5. Для чего в телефонной трубке нужен постоянный магнит (рис. 2.38)? Почему магнитная индукция этого магнита должна быть больше максимальной индукции, создаваемой током, проходящим по обмотке катушки телефона?

6. На вертикально отклоняющие пластины осциллографа подано напряжение u1 = Um1 cos ωt, а на горизонтально отклоняющие — напряжение u2 = Um2 cos (ωt — φ). Какую траекторию опишет электронный луч на экране осциллографа, если разность фаз между напряжениями на пластинах равна: а) φ1 = ; б) φ2 = π?

7. Кипятильник работает от сети переменного тока с напряжением U = 120 В*. При температуре t1 = 20 °С спираль имеет сопротивление R1 = 25 Ом. Температурный коэффициент сопротивления материала спирали α = 2 • 10 -2 К -1 . Определите массу воды, после закипания превратившейся в пар за время τ = 1 мин. Удельная теплота парообразования воды r = 2,26 • 10 6 Дж/кг.

8. При включении катушки в сеть переменного тока с напряжением 120 В и частотой 50 Гц сила тока в ней равна 4 А. При включении той же катупхки в сеть постоянного тока с напряжением 50 В сила тока в катупхке оказывается равной 5 А. Определите индуктивность катушки.

9. Определите сдвиг фаз между силой тока и напряжением в электрической цепи, если генератор отдает в цепь мощность Р = 8 кВт, амплитуда силы тока в цепи Im = 100 А и амплитуда напряжения на зажимах генератора Um = 200 В.

10. В сеть стандартной частоты с напряжением 100 В последовательно включены резистор сопротивлением 150 Ом и конденсатор емкостью 16 мкФ. Найдите полное сопротивление цепи, силу тока в ней, напряжения на зажимах резистора и конденсатора и сдвиг фаз между силой тока и напряжением.

11. Каковы показания приборов в цепях, представленных схемами на рисунке 2.39, а, 61 Напряжение сети U = 250 В, R = 120 Ом, С = 20 мкФ. Постройте для обеих схем векторные диаграммы.

12. В сеть переменного тока стандартной частоты с напряжением 210 В включены последовательно резистор сопротивлением 40 Ом и катушка индуктивностью 0,2 Гн. Определите силу тока в цепи и сдвиг фаз между силой тока и напряжением. Конденсатор какой емкости надо включить последовательно в цепь, чтобы сдвиг фаз оказался равным нулю? Какой будет сила тока в цепи в этом случае?

13. Каковы показания приборов в цепях, схемы которых изображены на рисунке 2.40, а, б? Напряжение сети U = 119 В, активное сопротивление R = 8 Ом, индуктивность L = 0,048 Гн. Постройте для схемы, изображенной на рисунке 2.40, б, векторную диаграмму.

14. Найдите показания приборов в цепи, схема которой представлена на рисунке 2.41. Напряжение на зажимах цепи U = 216 В, R = 21 Ом, L = 70 мГн, С = 82 мкФ. Частота стандартная. Постройте векторную диаграмму сил токов.

15. Электродвигатель мощностью Р = 10 кВт присоединен к сети с напряжением U = 240 В, cos φ1 = 0,6, частота v = 50 Гц. Вычислите емкость конденсатора, который нужно подключить параллельно двигателю для того, чтобы коэффициент мощности установки повысить до значения cos φ2 = 0,9.

16. В цепи, схема которой изображена на рисунке 2.42, R = 56 Ом, С = 106 мкФ и L = 159 мГн. Активное сопротивление катушки мало. Частота тока в сети v = 50 Гц. Определите напряжение в сети U, если амперметр показывает 2,4 А. Постройте векторную диаграмму.

17. В катушке индуктивности сила тока линейно увеличивается со скоростью = 10 А/с. Найдите ЭДС индукции, возникающую при этом в катушке, если резонансная частота колебательного контура с этой катушкой и конденсатором емкостью С = 100 пФ равна v = 100 кГц.

18. Резонанс в колебательном контуре с конденсатором емкостью С1 = 1 мкФ наступает при частоте v1 = 400 Гц. Когда параллельно конденсатору С1 подключают другой конденсатор емкостью C2, то резонансная частота становится равной V2 = 100 Гц. Определите емкость C2. Активным сопротивлением контура пренебречь.

19. На рисунке 2.43 изображены два соленоида, каждый из которых может быть использован в ламповом генераторе в качестве катушки обратной связи. В один и тот же момент в обеих катушках ток течет сверху вниз. Однако при включении одной катушки генератор работает, а при включении другой — нет. Почему?

20. Конец пружины опущ;ен в ванночку со ртутью (рис. 2.44). Что произойдет, если замкнуть ключ и пропустить через пружину достаточно сильный ток?

* В этой и последующих задачах даются действующие значения напряжения и силы тока.

Источник

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование
Читайте также:  Формула тока для переменного тока частотой 50 гц

Как сказал.

Наблюдай внимательно за природой, и ты будешь всё понимать намного лучше.

Альберт Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

Урок 45. Лабораторная работа № 11. Исследование зависимости силы тока от электроемкости конденсатора в цепи переменного тока

Лабораторная работа №11

Исследование зависимости силы тока от электроёмкости конденсатора в цепи переменного тока

Цель работы: изучить влияние электроёмкости на силу переменного тока.

Оборудование: набор неполярных конденсаторов известной ёмкости, регулируемый источник переменного тока ЛАТР, миллиамперметр с пределом измерения до 100 мА переменного тока, вольтметр с пределом измерения до 75 В переменного напряжения, соединительные провода.

Теория

Постоянный ток не проходит через конденсатор, так как между его обкладками находится диэлектрик. Если конденсатор включить в цепь постоянного тока, то после зарядки конденсатора ток в цепи прекратится.

Если же включить конденсатор в цепь переменного тока, то заряд конденсатора (q=CU) вследствие изменения напряжения непрерывно изменяется, поэтому в цепи течёт переменный ток. Сила тока тем больше, чем больше ёмкость конденсатора и чем чаще происходит его перезарядка, т.е. чем больше частота переменного тока.

Сопротивление, обусловленное наличием электрической ёмкости в цепи переменного тока, называют ёмкостным сопротивлением XC. Оно обратно пропорционально ёмкости С и круговой частоте ω:

или, с учётом, что ω=2πν, где ν- частота переменного тока, (1).

Из закона Ома для участка цепи переменного тока, содержащего ёмкостное сопротивление, действующее значение тока в цепи равно: (2).

Из формулы (2) следует, что в цепи с конденсатором переменный ток изменяется прямо пропорционально изменению ёмкости конденсатора при неизменной частоте тока.

Графически зависимость силы тока от электроёмкости конденсатора в цепи переменного тока изображается прямой линией (рис.1).

В этом и предстоит убедиться опытным путём в данной работе.

1. Собрать электрическую схему согласно рисунка 2 и перечертить её в тетрадь:

2. Подготовить таблицу для результатов измерений и вычислений:

Источник



Упражнение 2 на тему: Электрические колебания

1. После зарядки конденсатора емкостью С от источника постоянного напряжения U переключатель замыкают на катушку индуктивностью L1 (см. рис. 2.5, б). В контуре возникают гармонические колебания с амплитудой силы тока Im1. Опыт повторяют по прежней схеме, заменив катушку на другую индуктивностью L2 = 2L1 Найдите амплитуду силы тока Im2 во втором случае.

2. Колебательный контур состоит из дросселя индуктивностью L = 0,2 Гн и конденсатора емкостью С = 10 -5 Ф. Конденсатор зарядили до напряжения U = 20 В. Чему равна сила тока при разрядке конденсатора в момент, когда энергия контура оказывается распределенной поровну между электрическим и магнитным полями?

3. Определите частоту собственных колебаний в контуре, состоящем из соленоида длиной l = 15 см, площадью поперечного сечения S1 = 1 см 2 и плоского конденсатора с площадью пластин S2 = 6 см 2 и расстоянием между ними d = 0,1 см. Число витков соленоида N = 1000.

4. Электрический контур состоит из конденсатора постоянной емкости и катушки, в которую может вдвигаться сердечник. Один сердечник спрессован из порошка магнитного соединения железа (феррита) и является изолятором. Другой сердечник изготовлен из меди. Как изменится частота собственных колебаний контура, если в катушку вдвинуть: а) медный сердечник; б) сердечник из феррита?

магнитная индукция

5. Для чего в телефонной трубке нужен постоянный магнит (рис. 2.38)? Почему магнитная индукция этого магнита должна быть больше максимальной индукции, создаваемой током, проходящим по обмотке катушки телефона?

6. На вертикально отклоняющие пластины осциллографа подано напряжение u1 = Um1 cos ωt, а на горизонтально отклоняющие — напряжение u2 = Um2 cos (ωt — φ). Какую траекторию опишет электронный луч на экране осциллографа, если разность фаз между напряжениями на пластинах равна: а) б) φ2 = π?

7. Кипятильник работает от сети переменного тока с напряжением U = 120 В*. При температуре t1 = 20 °С спираль имеет сопротивление R1 = 25 Ом. Температурный коэффициент сопротивления материала спирали α = 2 • 10 -2 К -1 . Определите массу воды, после закипания превратившейся в пар за время τ = 1 мин. Удельная теплота парообразования воды r = 2,26 • 10 6 Дж/кг.

* В этой и последующих задачах даются действующие значения напряжения и силы тока.

8. При включении катушки в сеть переменного тока с напряжением 120 В и частотой 50 Гц сила тока в ней равна 4 А. При включении той же катушки в сеть постоянного тока с напряжением 50 В сила тока в катушке оказывается равной 5 А. Определите индуктивность катушки.

9. Определите сдвиг фаз между силой тока и напряжением в электрической цепи, если генератор отдает в цепь мощность Р = 8 кВт, амплитуда силы тока в цепи Im = 100 А и амплитуда напряжения на зажимах генератора Um = 200 В.

10. В сеть стандартной частоты с напряжением 100 В последовательно включены резистор сопротивлением 150 Ом и конденсатор емкостью 16 мкФ. Найдите полное сопротивление цепи, силу тока в ней, напряжения на зажимах резистора и конденсатора и сдвиг фаз между силой тока и напряжением.

11. Каковы показания приборов в цепях, представленных схемами на рисунке 2.39, а, 64 Напряжение сети U = 250 В, R = 120 Ом, С = 20 мкФ. Постройте для обеих схем векторные диаграммы.

12. В сеть переменного тока стандартной частоты с напряжением 210 В включены последовательно резистор сопротивлением 40 Ом и катушка индуктивностью 0,2 Гн. Определите силу тока в цепи и сдвиг фаз между силой тока и напряжением. Конденсатор какой емкости надо включить последовательно в цепь, чтобы сдвиг фаз оказался равным нулю? Какой будет сила тока в цепи в этом случае?

13. Каковы показания приборов в цепях, схемы которых изображены на рисунке 2.40, а, б? Напряжение сети U = 119 В, активное сопротивление R = 8 Ом, индуктивность L = 0,048 Гн. Постройте для схемы, изображенной на рисунке 2.40, б, векторную диаграмму.

14. Найдите показания приборов в цепи, схема которой представлена на рисунке 2.41. Напряжение на зажимах цепи U = 216 В, R = 21 Ом, L = 70 мГн, С = 82 мкФ. Частота стандартная. Постройте векторную диаграмму сил токов.

15. Электродвигатель мощностью Р = 10 кВт присоединен к сети с напряжением U = 240 В, cos φ1 = 0,6, частота ν = 50 Гц. Вычислите емкость конденсатора, который нужно подключить параллельно двигателю для того, чтобы коэффициент мощности установки повысить до значения cos φ2 = 0,9.

16. В цепи, схема которой изображена на рисунке 2.42, R — 56 Ом, С = 106 мкФ и L = 159 мГн. Активное сопротивление катушки мало. Частота тока в сети ν = 50 Гц. Определите напряжение в сети U, если амперметр показывает 2,4 А. Постройте векторную диаграмму.

17. В катушке индуктивности сила тока линейно увеличивается со скоростью Найдите ЭДС индукции, возникающую при этом в катушке, если резонансная частота колебательного контура с этой катушкой и конденсатором емкостью С = 100 пФ равна v = 100 кГц.

18. Резонанс в колебательном контуре с конденсатором емкостью С1 = 1 мкФ наступает при частоте ν = 400 Гц. Когда параллельно конденсатору С1 подключают другой конденсатор емкостью С2, то резонансная частота становится равной ν2 = 100 Гц. Определите емкость С2. Активным сопротивлением контура пренебречь.

19. На рисунке 2.43 изображены два соленоида, каждый из которых может быть использован в ламповом генераторе в качестве катушки обратной связи. В один и тот же момент в обеих катушках ток течет сверху вниз. Однако при включении одной катушки генератор работает, а при включении другой — нет. Почему?

20. Конец пружины опущен в ванночку со ртутью (рис. 2.44). Что произойдет, если замкнуть ключ и пропустить через пружину достаточно сильный ток?

Источник