Меню

Конструкция ротора машины переменного тока

Устройство, принцип работы и подключения электродвигателей переменного тока

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Электродвигатели переменного тока являются электротехническими устройствами, которые преобразовывают электрическую энергию в механическую. Электромоторы нашли широкое применение во многих отраслях промышленности для привода всевозможных станков и механизмов. Без такого оборудования невозможна работа стиральных машин, холодильников, соковыжималок, кухонных комбайнов, вентиляторов и других бытовых приборов.

По принципу работы электродвигатели переменного тока делятся на синхронные и асинхронные. Асинхронные электромоторы переменного тока наиболее часто применяются в промышленности.

Стоит рассмотреть устройство электродвигателя переменного тока асинхронного.

Данный вид электромоторов состоит из главных частей — статора и ротора. В современных асинхронных электромоторах статор имеет неявно выраженные полюсы.

Для того чтобы максимально снизить потери от вихревых токов, сердечник статора изготавливают из соответствующей толщины листов электротехнической стали, подвергшихся штамповке. В пазы статора впрессовывается обмотка из медного провода. Фазовые обмотки статора устройства могут соединяться «звездой» или «треугольником». При этом все начала и концы впрессованных обмоток электромотора выводятся на корпус — в клеммную коробку. Подобное устройство статора электродвигателя оправданно, так как дает возможность включать его обмотки на различные стандартные напряжения. Сердечник статора запрессовывается в чугунный или алюминиевый корпус.

Ротор асинхронного мотора также состоит из подвергшихся штамповке листов электротехнической стали, и во все его пазы закладывается обмотка.

Учитывая конструкцию ротора, асинхронные электродвигатели подразделяются на устройства с короткозамкнутым ротором и фазным ротором.

Обмотку короткозамкнутого ротора, сделанную из медных стержней, закладывают в пазы ротора. При этом все торцы стержней соединяют при помощи медного кольца. Данный вариант обмотки считается обмоткой типа «беличья клетка». Стоит отметить, что медные стержни в пазах ротора не изолируются. Во многих асинхронных электромоторах «беличью клетку» сменяют литым ротором. Ротор напрессовывается на вал двигателя и является с ним одним целым.

Синхронные электродвигатели устанавливаются в различных электроинструментах, пылесосах, стиральных машинах. На корпусе синхронного электромотора переменного тока имеется сердечник полюса, в котором расположены обмотки. Обмотки возбуждения намотаны и на якорь. Их выводы припаяны ко всем секторам токосъемного коллектора, на которые при использовании графитовых щеток подается напряжение.

Принцип действия электродвигателя переменного тока основан на применении закона электромагнитной индукции. При взаимодействии переменного электрического тока в проводнике и магните может возникнуть непрерывное вращение.

В синхронном электродвигателе якорь вращается синхронно с электромагнитным полем полюса, а у асинхронного электромотора ротор вращается с отставанием от вращающегося магнитного поля статора.

Для работы асинхронного электромотора необходимо, чтобы ротор устройства вращался в более медленном темпе, чем электромагнитное поле статора. При подаче тока на обмотку статора между сердечником статора и ротора возникает электромагнитное поле, которое наводит ЭДС в роторе. Возникает вращающийся момент, и вал электродвигателя начинает вращаться. Из-за трения подшипников или определенной нагрузки на вал, ротор асинхронного двигателя всегда вращается в более медленном темпе.

Принцип работы электродвигателя переменного тока асинхронного заключается в том, что магнитные полюса устройства постоянно вращаются в обмотках электромотора и направление тока в роторе постоянно меняется.

Скорость вращения ротора электромотора асинхронного зависит от общего количества полюсов. Для того чтобы понизить скорость вращения ротора в таком двигателе, требуется увеличить общее количество полюсов в статоре.

В синхронных электродвигателях вращающий момент в устройстве создается при взаимодействии между током в обмотке якоря и магнитным потоком в обмотке возбуждения. При изменении направления переменного тока одновременно меняется направление магнитного потока в корпусе и якоре. При таком варианте вращение якоря всегда будет в одну сторону. Примечательно, что плавная регулировка скорости вращения таких электромоторов регулируется величиной подаваемого напряжения, при помощи реостата или переменного сопротивления.

В зависимости от напряжения сети фазные обмотки статора асинхронного электромотора могут подсоединяться в «звезду» или «треугольник». Схема электродвигателя переменного тока при подключении его в сеть с напряжением 220 Вольт обмотки соединяются в треугольник, а при подключении в сеть 380 Вольт — схема обмоток имеет вид звезды.

Источник

Ротор электродвигателя — что это?

Ротор – важная составляющая многих машин и механизмов. Наиболее важной деталью, обозначаемой при помощи данного понятия, является так называемый якорь электрического двигателя, генераторов переменного тока. Равно как и колесо, изобретение и использование ротора позволили сделать человечеству огромный шаг навстречу электрификации. Более подробно о том, что такое ротор, в каких механизмах и машинах он применяется, каких видов бывает, будет рассказано в этой статье.


Ротор

Определение

С точки зрения электротехники, классический ротор – это вращающееся цилиндрическое тело, имеющее следующее строение:

  • Вал из прочной инструментальной стали с как минимум двумя подшипниками, расположенными по одному в передней и задней частях;
  • Сердечники из толстых металлических пластин;
  • Намотанные на собранные из пластин сердечники катушки;
  • Коллектор или пара специальных токопроводящих колец.

Для принудительного воздушного охлаждения вращающейся очень часто с большой скоростью детали служит расположенная в одном из его торцов крыльчатка. В генераторах вращение ротору передается от турбины, соединенной с ним через общий вал, или от работающего двигателя при помощи шкива, на который одет гибкий и прочный ремень (клинно-ременная передача).

Так, основная функция ротора – это вращение относительно неподвижной части. В электротехнике такой неподвижной частью является статор. Вместе ротор и статор являются важнейшими составляющими электродвигателей и генераторов переменного тока.

Устройство асинхронного двигателя

Устройство асинхронного двигателя является достаточно простым:

  • Статор – является неподвижной частью электрического двигателя, который снабжен обмотками возбуждения.
  • Ротор – вращающийся элемент мотора, который крутится под действием магнитного поля, создаваемым обмотками возбуждения, расположенными на статоре. Различают 2 типа двигателя от конструкции ротора: короткозамкнутые и фазные.
  • Фланцы – статическая часть электрического двигателя, в которой находятся опорные подшипники, удерживающие ротор и являющиеся своего рода крепежом для статора. Он зажимается между двумя фланцами-крышками стяжными болтами. Либо они прикручены к корпусу статора.
  • Клеммная коробка – часть статической конструкции двигателя, в которую выводятся концы обмоток со статора. Посредством его осуществляется подключение двигателя к схеме управления.
  • Крыльчатка и защитный кожух – используется для обеспечения принудительной вентиляции, а кожух предохранит обслуживающий персонал от травматизма.
  • Дополнительные сервисные обмотки – при необходимости совместно с обмоткой возбуждения на статоре может быть дополнительная, предназначенная для контроля и измерения рабочих параметров мотора во время его работы.
  • Термодатчики – промышленные асинхронные двигателя, кроме обмоток, также имеются датчики температуры, контролирующие перегрев на случай резкого возрастания тока потребления.

Читать также: Мощность smd резисторов по размерам

Также двигателя могут быть оборудованными планарными редукторами и изготовленными в едином корпусе. Это преимущественно промышленные типы агрегатов, применяемые на станках, конвейерах и прочих видах оборудования.

Виды электромеханических устройств

Статор — понятие и принцип действия

Используют ротор в таких электромеханических устройствах, как двигатели, работающие на постоянном и переменном электрическом токе, генераторы.

Агрегаты, работающие на переменном токе

К таким агрегатам относятся различные электродвигатели. Наиболее распространенная модель данного устройства состоит из следующих частей:

  • Алюминиевый или чугунный ребристый корпус с монтажной коробкой для подключения обмоток статора и ротора;
  • Статор – неподвижная часть в виде полого цилиндра, расположенная внутри корпуса. Обмотка статора состоит из 3 пар расположенных друг напротив друга намотанных в пазы корпуса катушек из медного изолированного провода
  • Цельнометаллический цилиндрический ротор с валом и пазами, в которые впаяны обладающие высокой токопроводящей способностью алюминиевые стержни.


Двигатель, запитываемый от переменного тока

Вращается ротор на двух опорных подшипниках, запрессованных на его валу. Охлаждение работающего на больших оборотах электродвигателя происходит, благодаря крыльчатке – небольшому вентилятору, состоящему из множества лопастей и расположенному на одном из концов вала ротора. Также эффективному охлаждению работающего агрегата способствует ребристая структура алюминиевого корпуса.

Принцип работы подобного двигателя заключается в следующем:

  1. При подключении тока к агрегату он попеременно проходит через одну из трех пар катушек статора.
  2. При протекании по парам статорных катушек электрического тока они создают магнитное поле, силовые линии которого пересекают ротор.
  3. Попеременно запитываемые пары катушек создают подвижное магнитное поле, которое по закону электромагнитной индукции провоцирует появление в неподвижных металлических стержнях ротора электрического тока.
  4. Индуцированный ток в роторе приводит к появлению силы, выталкивающей его из магнитного поля статора. Так как частота подачи тока на катушки статора в среднем составляет порядка 30 импульсов в секунду, появившаяся в роторе выталкивающая сила приводит к его вращению с большой скоростью.

Важно! В зависимости от одновременности вращения ротора и порождающего это движение магнитного поля электрический двигатель переменного тока может быть синхронный (ротор агрегата вращается синхронно с магнитным полем статора) и асинхронный (вращение якоря не синхронизировано с движением магнитного поля статора). Первый вид отличается высокой мощностью и надежностью, в то время как второй характеризуется большим разнообразием конструкций и областей применения.

Машины постоянного тока

Наиболее распространенный электродвигатель постоянного тока щеточного вида представляет собой электрический агрегат, состоящий из:

  • Чугунного корпуса с ребрами охлаждения и специальным монтажным коробом для подключения обмоток агрегата;
  • Вала из прочной инструментальной стали с двумя подшипниками;
  • Якоря, состоящего из сердечника (набора пластин из специальной электротехнической стали), якорной обмотки (размещенных в пазах сердечника катушек из медного провода);
  • Индуктора, состоящего из полюсов возбуждения с намотанными на них катушками из медного провода;
  • Коллектора – расположенных на валу медных пластин, к которым подключаются выводы катушек якорной обмотки;
  • Подпружиненных графитовых или металлографитовых щеток (щеточной группы).
Читайте также:  Как складывается ток аккумулятора

Охлаждается такой двигатель, как и аналог, работающий от переменного тока, – расположенной на валу крыльчаткой.


Двигатель, работающий от постоянного тока

Важно! В отличие от электродвигателя переменного тока частотой вращения ротора в таком силовом агрегате управляет специальный блок, который при помощи установленного на валу датчика Холла определяет положение ротора и его скорость.

Работает подобный агрегат следующим образом:

  1. На обмотку возбуждения подается напряжение, создавая тем самым постоянное магнитное поле;
  2. Через щетки и коллектор напряжение подается на катушки сердечника якоря – возникающее при этом магнитное поле отталкивается от такого же, образованного индуктором, вследствие чего двигатель начинает вращаться («запускается»);
  3. Впоследствии при вращении через щетки запитываются остальные катушки якорной обмотки, что приводит к равномерному вращению якоря с определённой скоростью.

Останавливают вращение такого агрегата прекращением подачи напряжения на щеточную группу.

Помимо описанных выше электромоторов, к машинам, работающим на постоянном токе, относится также роторный стартер – устройство, необходимое для запуска бензиновых и дизельных автомобильных двигателей внутреннего сгорания.

Отличие короткозамкнутого ротора от фазного

В короткозамкнутом роторе электродвигателя, в отличие от фазного варианта, нет обмоток. Их заменяют замкнутые с торцов между собой кольцами стержни, изготовленные из алюминия или меди. Визуально конструкция такого ротора напоминает беличье колесо, от чего он и получил свое название – “беличья клетка”.

Короткозамкнутый ротор приводится во вращение за счет наведения тока магнитным полем статора. Чтобы исключить пульсирование магнитного поля в роторе, стержни “беличьей клетки” располагаются параллельно между собой, но под наклоном относительно оси вращения. АД с короткозамкнутым ротором обладают высокой надежностью за счет отсутствия щеток, которые со временем перетираются. Кроме того, их стоимость меньше, чем у вариантов с фазным ротором.

Читать также: Что делать сел аккумулятор на машине

Типы роторов

Генератор тока переменного

В зависимости от области применения и строения, роторы бывают следующих типов:

  • Фазный – якоря данного типа представляют собой совокупность намотанных на сердечник катушек, расположенных относительно друг другу под углом 1200. Концы проводов катушек выводятся к пластинам коллектора и запитываются при помощи щёточного узла.
  • Короткозамкнутый –ротор такого типа состоит из цельного цилиндра с пазами, в которые укладываются стержни из электролитической меди или алюминия. Концы таких стержней соединяются между собой кольцом. Коллектора и щеточного узла в агрегатах, оборудованных подобным якорем, не имеется.

Двигатели с фазным типом якоря отличаются большими размерами и весом, но при этом обладают прекрасным пуском и регулировкой. Агрегаты с короткозамкнутыми роторами имеют меньшие размеры, меньшую подверженность поломкам, простоту в эксплуатации.

Разобравшись в том, что такое собой представляют ротор и статор, можно получить не только полезные теоретические знания, но и практические навыки: зная устройство агрегатов, работающих на постоянном и переменном токе, можно при наличии неисправности проверить работоспособность их основных узлов, определить, виноваты ли в поломке намотка якоря, статор, щеточный или коллекторный узел.

Также ответив на вопрос «ротор что это такое» и углубившись в устройство данной детали, можно производить перемотку сгоревших обмоток самостоятельно, что, в свою очередь, является достаточно востребованной и высокооплачиваемой работой.

Ротор

Ротор асинхронного электродвигателя бывает двух видов: короткозамкнутым и фазным. Чаще всего встречаются машины с короткозамкнутым ротором. Их преимущество в простоте конструкция и несложной технологии изготовления. Что еще важно, в таких моторах отсутствует контакт с динамической конструкцией. Это повышает долговечность, делает обслуживание более редким и простым.

Строение ротора асинхронного двигателя

Асинхронный двигатель может быть с короткозамкнутым и фазным

Асинхронные электромоторы с фазным ротором имеют более сложную конструкцию. Но они позволяют плавно регулировать скорость без дополнительных устройств, со старта имеют высокий крутящий момент. Так что приходится выбирать: более простая конструкция или возможность регулировки скорости вращения.

Устройство короткозамкнутого ротора

Ротор состоит из вала и цилиндрической конструкции из короткозамкнутых стержней. Внешне эта конструкция очень напоминает беличье колесо, поэтому так часто называют короткозамкнутую обмотку ротора.

Строение ротора асинхронного двигателя

Устройство короткозамкнутого ротора

Изначально и стержни, и замыкающие кольца изготавливались из меди. Роторы современных асинхронных двигателей мощностью до 100 кВт делают из алюминиевых стержней, с алюминиевыми же замыкающими дисками. Расстояние между стержнями заливается снова-таки алюминиевым сплавом. Получается короткозамкнутый ротор, но уже со сплошным покрытием.

Так как при работе выделяется значительное количество тепла, для охлаждения перемычки «беличьего колеса» делают с дополнительными вентиляционными лопатками. Так во время работы происходит самоохлаждение. Оно работает тем эффективнее, чем выше скорость вращения.

Строение ротора асинхронного двигателя

Как устроен асинхронный двигатель: устройство и компоновка деталей

Ротор устанавливается в статор, концы вала фиксируются при помощи крышек с вмонтированными подшипниками. Это двигатель без щеток (безщеточный). Никаких дополнительных контактов и электрических соединений. Подвижная часть мотора начинает вращаться при наличии магнитного поля на статоре. Оно возникает после подачи питания. Это поле вращается, заставляя вращаться и предметы, которые находятся в его поле. Простая и надёжная конструкция, которая обусловила популярность электрических двигателей этого типа.

Читать также: Как аккумуляторный шуруповерт переделать на сетевой видео

Как сделан фазный ротор

Устройство фазного ротора мало чем отличается от обмотки статора. Те же наборные кольца с пазами под укладку медных катушек. Количество обмоток ротора три, соединены они обычно «звездой».

Строение ротора асинхронного двигателя

Так выглядит фазный ротор асинхронного двигателя

Концы роторных обмоток крепят к контактным кольцам из меди. Эти кольца жёстко закреплены на валу. Кроме того, они обязательно изолированы между собой, не имеют электрического контакта со стальным валом (крепятся к стержню через диэлектрические прокладки). Так как наличие колец отличительная черта этого типа движков, иногда их называют кольцевыми.

Строение ротора асинхронного двигателя

Асинхронный двигатель с фазным ротором

Для фиксации ротора к корпусу статора делают две крышки с подшипниками. На одной из крышек закрепляются щетки, которые прижимаются к кольцам на валу, за счёт чего имеют с ними хороший контакт. Для регулировки скорости вращения щетки соединены с реостатом. Изменяя его сопротивление, меняем напряжение, а с ним и скорость вращения.

Что лучше короткозамкнутый или фазный?

Несмотря на то что двигатели с фазовым ротором лучше стартуют, позволяют в процессе работы плавно менять скорость при помощи обычного реостата, чаще применяется моторы короткозамкнутого типа. В этой конструкции отсутствуют щетки, которые выходят из строя первыми. Кроме того, более простое устройство подвижной части снижает стоимость двигателя, агрегат служит дольше, уход и техобслуживание проще.

Строение ротора асинхронного двигателя

Какой лучше: короткозамкнутый ротор или фазный

Тем не менее стоит более подробно ознакомиться с достоинствами и недостатками обоих типов асинхронных двигателей. Итак, достоинства короткозамкнутого асинхронного двигателя:

  • Простая конструкция.
  • Лёгкое обслуживание.
  • Более высокий КПД.
  • Нет искрообразования.
  • Малый пусковой крутящий момент.
  • Высокий пусковой ток (в 4-7 раз выше номинального).
  • Нет возможности регулировать скорость.

Строение ротора асинхронного двигателя

Магнитное поле трехфазного статора толкает ротор

Из-за высокого пускового тока прямое включение допускается для двигателей мощностью до 200 кВт. Более мощные требуют пускорегулирующей аппаратуры. Обычно используют частотный преобразователь, который плавно увеличивает ток, обеспечивая плавный старт без перегрузок.

Преимущество асинхронного фазного двигателя:

  • Быстрый и беспроблемный старт.
  • Позволяет менять скорость в процессе работы.
  • Прямое подключение возможно, практически без ограничения мощности.

Недостатки тоже есть: наличие щёток, возможность искрения, сложное и частое обслуживание.

Как регулируется частота вращения

Как уже писали, частота вращения ротора зависит от количества полюсов статора. Чем больше количество полюсов, тем меньше скорость. Но это не только так можно регулировать скорость вращения. Она еще зависит от напряжения и частоты питания.

Строение ротора асинхронного двигателя

Способы регулирования частоты асинхронного двигателя

Напряжение можно регулировать, установив потенциометр на входе. Частоту регулируют поставив частотный преобразователь. Частотник — более выгодное решение, так как он ещё и снижает стартовые токи и может быть программируемым.

Источник

Машины переменного тока: устройство, принцип работы, применение

Электрические машины выполняют ответственную функцию преобразования энергии в рабочих механизмах и генераторных станциях. Такие устройства находят свое место в разных областях, снабжая исполнительные органы достаточным силовым потенциалом. Одну из самых востребованных систем данного типа представляют машины переменного тока (МПТ), которые имеют несколько разновидностей и отличий внутри своего класса.

Общие сведения об МПТ

Сегмент МПТ или электромеханических преобразователей можно условно разделить на однофазные и трехфазные системы. Также на базовом уровне выделяют асинхронные, синхронные и коллекторные устройства, при этом общий принцип действия и конструкционное исполнение у них имеет много схожего. Данная классификация машин переменного тока носит условный характер, поскольку современные станции электромеханического преобразования частично задействуют рабочие процессы от каждой группы устройств.

Пылеулавливающий агрегат (ПУ). Типы пылеулавливающих агрегатов Вам будет интересно: Пылеулавливающий агрегат (ПУ). Типы пылеулавливающих агрегатов

Машина переменного тока с обмотками

Как правило, в основе МПТ находится статор и ротор, между которыми предусматривается воздушный зазор. Опять же, независимо от типа машины, рабочий цикл строится на вращении магнитного поля. Но если в синхронной установке движение ротора соответствует направлению силового поля, то в асинхронной машине ротор может двигаться в другом направлении и с разными частотами. Это различие обуславливает и особенности применения машин. Так, если синхронные могут выступать и в качестве генератора, и как электромеханический двигатель, то асинхронные в основном используют как двигатели.

Читайте также:  Химические источники тока 11 класс конспект урока химии

Кожевенное производство: история, описание и применяемые технологии Вам будет интересно: Кожевенное производство: история, описание и применяемые технологии

Что касается количества фаз, то выделяют одно- и многофазные системы. Причем, с точки зрения практического использования, заслуживают внимание представители второй категории. Это по большей части трехфазные машины переменного тока, в которых функцию энергоносителя как раз выполняет магнитное поле. Однофазные же устройства ввиду эксплуатационной непрактичности и крупных размеров постепенно выходят из практики применения, хотя в некоторых сферах решающим фактором их выбора является низкая стоимость.

Отличия от машин постоянного тока

Принципиальная конструкционная разница заключается в расположении обмотки. В системах переменного тока она охватывает статор, а в машинах постоянного тока – ротор. В обеих группах электродвигатели различаются по типу возбуждения тока – смешанные, параллельные и последовательные. Сегодня машины переменного и постоянного тока используются в промышленности, сельском хозяйстве и в бытовой сфере, однако первый вариант более привлекателен по своим эксплуатационным качествам. Генераторы и двигатели переменного тока выигрывают за счет более технологичной конструкции, надежности и высокой энергетической отдачи.

Вам будет интересно: «Корвет-57»: устройство, технические характеристики, отзывы

Устройство машины переменного тока

Применение устройств, работающих на постоянном токе, распространено в сферах, где на первый план выходят требования к точности регулирования рабочих параметров. Это могут быть тяговые механизмы транспорта, обрабатывающие станки и сложные измерительные приборы. В плане производительности машины постоянного и переменного тока имеют высокий КПД, но с разными возможностями технико-конструкционной подстройки под конкретные условия применения. Работа с постоянным током дает больше возможностей для управления частотой вращения, что важно при обслуживании серводвигателей и шаговых моторов.

Устройство асинхронной МПТ

Для технической основы данного устройства в виде ротора и статора используется листовая сталь, которую перед сборкой покрывают изоляционным масляно-канифольным слоем с обеих сторон. В машинах малой мощности сердечник может выполняться из электрической стали без дополнительного покрытия, поскольку изолятором в данном случае выступает естественный оксидный слой на металлической поверхности. Статор фиксируется в корпусе, а ротор на валу. В асинхронных машинах переменного тока большой мощности сердечник ротора может крепиться и на ободе корпуса втулкой, насаженной на вал. Непосредственно вал должен вращаться на подшипниковых щитах, которые также фиксируются к основе корпуса.

Принцип работы машины переменного тока

Внешние поверхности ротора и внутренние поверхности статора изначально обеспечиваются пазами для размещения проводников обмотки. У статора машин переменного тока обмотка чаще выполняется трехфазной и подключается к соответствующей сети на 380 В. Ее также называют первичной. Аналогично выполняется и обмотка ротора, окончания которой обычно формируют соединение в конфигурации звезды. Предусматриваются и контактные кольца, через которые дополнительно может подключаться реостат для регулировки или трехфазный пусковой элемент.

Важно отметить и параметры воздушного зазора, который выполняет функцию демпферной зоны, снижающей шум, вибрации и нагрев при работе устройства. Чем габаритнее машина, тем больше должен быть зазор. Его величина может варьироваться от одного до нескольких миллиметров. Если конструкционно невозможно оставить достаточно места для воздушной зоны, то предусматривается система дополнительного охлаждения установки.

Принцип работы асинхронной МПТ

Реактивно-бомбометная установка (РБУ-6000) «Смерч-2»: история и тактико-технические характеристики Вам будет интересно: Реактивно-бомбометная установка (РБУ-6000) «Смерч-2»: история и тактико-технические характеристики

Трехфазную обмотку в данном случае подключают к симметричной сети с трехфазным напряжением, в результате чего в воздушном зазоре формируется магнитное поле. Относительно обмотки якоря принимаются специальные меры для достижения гармонического пространственного распределения поля для демпферного зазора, что образует систему вращающихся магнитных полюсов. Согласно принципу действия машины переменного тока, на каждом полюсе формируется магнитный поток, который пересекает контуры обмотки, тем самым провоцируя генерацию электродвижущей силы. В трехфазной обмотке индуцируется трехфазный ток, обеспечивающий вращающий момент двигателя. На фоне взаимодействия тока ротора с магнитными потоками происходит формирование электромагнитной силы на проводниках.

Если ротор под действием внешней силы приводится в движение, направление которого соответствует направлению потоков магнитного поля машины переменного тока, то ротор начнет обгонять темпы вращения поля. Это происходит в тех случаях, когда частота вращения статора превосходит номинальную синхронную частоту. В то же время будет изменено направление движения электромагнитных сил. Таким образом формируется тормозящий момент с обратным действием. Данный принцип работы позволяет использовать машину и в качестве генератора, работающего в режиме отдачи активной мощности в сеть.

Устройство и принцип действия синхронных МПТ

Электрическая машина переменного тока

В части исполнения и расположения статора синхронная машина похожа на асинхронную. Обмотка называется якорем и выполняется с тем же количеством полюсов, как и в предыдущем случае. У ротора предусматривается обмотка возбуждения, энергетическое снабжение которой обеспечивают контактные кольца и щетки, подключенные к источнику постоянного тока. Под источником подразумевается маломощный генератор-возбудитель, устанавливаемый на одном валу. В синхронной машине переменного тока обмотка выполняет функцию генератора первичного магнитного поля. В процессе проектирования конструкторы стремятся создавать условия для того, чтобы индукционное распределение поля возбуждения на поверхностях статора было как можно ближе к синусоидальному.

При повышенных нагрузках обмотка статора формирует магнитное поле с вращением в направлении ротора с аналогичной частотой. Таким образом образуется единое поле вращения, при котором поле статора будет оказывать воздействие на ротор. Данное устройство машин переменного тока позволяет их использовать как электродвигатели, если изначально обеспечивается подводка трехфазного тока к синхронной обмотке. Такие системы создают условия для координированного вращения ротора с частотой, соответствующей полю статора.

Явнополюсные и неявнополюсные синхронные машины

Главным отличием явнополюсных систем является присутствие в конструкции выступающих полюсов, которые крепятся к специальным выступам вала. В типовых механизмах фиксация выполняется с помощью Т-образных хвостовых крепежей к ободу крестовины или валу через втулку. В устройстве машин переменного тока малой мощности эта же задача может решаться болтовыми соединениями. В качестве материала обмотки используется полосовая медь, которую наматывают на ребро, изолируя специальными прокладками. В наконечниках с полюсами в пазах размещаются стержни обмотки для пуска. В этом случае применяется материал с высоким удельным сопротивлением наподобие латуни. Контуры обмотки по торцам приваривают к короткозамыкающим элементам, образуя общие кольца для короткого замыкания. Явнополюсные машины с силовым потенциалом на 10-12 кВт могут выполняться в так называемой обращенной конструкции, когда якорь вращается, а полюса индуктора сохраняют неподвижное состояние.

Промышленные машины переменного тока

У неявнополюсных машин конструкция базируется на цилиндрическом роторе, выполняемом из стальной поковки. В роторе присутствуют пазы для формирования обмотки возбуждения, полюса которой рассчитываются на высокие частоты вращения. Однако применение такой обмотки в электрических машинах с переменным током большой мощности невозможно из-за высокой степени износа ротора в жестких условиях эксплуатации. По этой причине даже в установках средней мощности для роторов применяют высокопрочные компоненты из цельных поковок на основе хромоникельмолибденовых или хромоникелевых сталей. В соответствии с техническими требованиями к прочности, максимальный диаметр рабочей части у ротора неявнополюсной синхронной машины не может быть выше 125 см. Это объясняет необычный форм-фактор ротора с удлиненным корпусом, хотя и по данному параметру есть ограничения, связанные с увеличением вибраций у слишком длинных элементов. Предельная длина ротора составляет 8,5 м. К неявнополюсным агрегатам, которые используются в промышленности, можно отнести различные турбогенераторы. С их помощью, в частности, связывают рабочие моменты паровых турбин с тепловыми энергостанциями.

Особенности вертикальных гидрогенераторов

Отдельный класс явнополюсных синхронных МПТ, обеспеченных вертикальным валом. Такие установки подключаются к гидравлическим турбинам и подбираются под мощности обслуживаемых потоков по частоте вращения. Большинство машин переменного тока данного типа являются тихоходными, но при этом имеют большое количество полюсов. Среди ответственных рабочих компонентов вертикального гидрогенератора можно отметить упорный подшипник и подпятник, на который приходится нагрузка от вращающихся частей движка. На подпятник, в частности, накладывается и давление от потоков воды, которая действует на турбинные лопасти. Кроме того, для остановки вращения предусматривается тормоз, а в рабочей структуре также присутствуют направляющие подшипники, воспринимающие радиальные усилия.

Из чего делают ткань? Классификация тканей по типу сырья, свойствам и назначению Вам будет интересно: Из чего делают ткань? Классификация тканей по типу сырья, свойствам и назначению

В верхней части машины наряду с гидрогенератором могут размещаться вспомогательные агрегаты – например, возбудитель генератора и регулятор. К слову, последний представляет собой самостоятельную машину переменного тока с обмоткой и полюсами на постоянных магнитов. Данная установка обеспечивает питание двигателя для обеспечения функции автоматического регулятора. В больших вертикальных гидрогенераторах возбудитель может заменяться синхронным генератором, который вместе с возбудительными узлами и ртутными выпрямителями обеспечивает энергоснабжение силовых устройств, обслуживающих рабочий процесс основного гидрогенератора. Конфигурация машины с вертикальным валом также используется в качестве приводного механизма мощных гидравлических насосов.

Коллекторные МПТ

Гидрогенератор переменного тока

Наличие коллекторного узла в конструкции МПТ зачастую обуславливается необходимостью выполнения функции преобразования частоты вращения в электрической связи разночастотных цепей на обмотках ротора и статора. Это решение позволяет наделять устройство дополнительными эксплуатационными свойствами, в числе которых автоматическая регуляция рабочих параметров. Коллекторные машины переменного тока, которые подключаются к трехфазным сетям, получают по три щеточных пальца в каждом сегменте двойного полюсного деления. Соединение щеток между собой выполняется по параллельной схеме перемычками. В этом смысле коллекторные МПТ похожи на электродвигатели с постоянным током, но отличаются от них количеством применяемых щеток на полюсах. Помимо этого, статор в данной системе может иметь несколько дополнительных обмоток.

Замкнутая обмотка якоря при использовании коллектора с трехфазными щетками будет представлять собой трехфазную комплексную обмотку с соединением в виде треугольника. В процессе вращения якоря каждая фаза обмотки сохраняет неизменную позицию, однако секции поочередно переходят от одной фазы к другой. Если в коллекторной машине переменного тока используется шестифазный комплект щеток со сдвигом на 60° относительно друг друга, то формируется шестифазная обмотка с соединением по схеме многоугольника. На щетках многофазной машины с коллекторной группой частота тока определяется вращением магнитного потока по отношению к неподвижным щеткам. Направление вращения ротора может быть как встречным, так и согласованным.

Читайте также:  Ток потребляемый конденсаторной установкой

Применение МПТ

Сегодня МПТ используются всюду, где в том или ином виде требуется генерация механической или электрической энергии. Крупные производительные агрегаты применяются в обслуживании инженерных систем, энергетических станций и подъемно-транспортных узлов, а маломощные – в обычной бытовой технике от вентиляторов до насосов. Но в обоих случаях назначение машин переменного тока сводится к выработке энергетического потенциала в достаточном объеме. Другое дело, что имеют принципиальное значение конструкционные отличия, реализация внутренней конфигурации статора и ротора, а также управляющая инфраструктура.

Хотя общее устройство МПТ на протяжении длительного времени сохраняет один и тот же набор функциональных компонентов, повышающиеся требования к эксплуатации таких систем заставляют разработчиков вносить дополнительные органы контроля и управления. На современном этапе технологического развития особенно в контексте применения машин переменного тока в производственной сфере эксплуатацию подобных двигателей и генераторов сложно представить без высокоточных средств регуляции рабочих параметров. Для этого используются самые разные способы управления – импульсный, частотный, реостатный и т.д. Внедрение автоматики в регулирующую инфраструктуру также является характерной чертой современной эксплуатации МПТ. Управляющая электроника подключается к силовой установке с одной стороны, а с другой – к программным контроллерам, которые по заданному алгоритму дают команды на установку конкретных параметров работы механизма.

Заключение

Машина-генератор переменного тока

Генераторы тока и электродвигатели являются обязательным силовым компонентом в современной промышленности. За счет их функции работают станки, транспорт, коммуникационные установки и прочие электротехнические агрегаты и приборы, требующие энергоснабжения. При этом существует огромный массив видов и подвидов электрические машины переменного и постоянного тока, особенности и характеристики которых в итоге определяют нишу для их эксплуатации. К технико-эксплуатационным особенностям МПТ можно отнести более простое конструкционное устройство и относительно низкие требования к обслуживанию. С другой стороны, машины постоянного тока оказываются более привлекательным решением задач энергоснабжения в сложных ответственных системах питания. Отечественный производственный сегмент энергетического промышленного оборудования имеет огромный опыт в проектировании и выпуске электрических машин обоих типов. Крупные предприятия все больший упор делают на разработку индивидуальных решений с конструкционными и эксплуатационными особенностями. Отклонения от типовых проектов часто связаны с необходимостью подключения вспомогательных функциональных узлов и оборудования наподобие систем охлаждения, защитных средств от перегрева и сетевых колебаний, дополнительного и резервного питания. Кроме того, на часть конструкционных свойств электрических машин немалое влияние оказывает внешняя среда эксплуатации, что также учитывается на этапах проектирования и создания техники.

Источник



Устройство, виды и принцип действия асинхронных электродвигателей

Наука в области электричества в XIX и XX веках стремительно развивалась, что привело к созданию электрических асинхронных двигателей. С помощью таких устройств развитие промышленной индустрии шагнуло далеко вперед и теперь невозможно представить заводы и фабрики без силовых машин с использованием асинхронных электродвигателей.

Устройство, виды и принцип действия асинхронных электродвигателей

История появления

История создания асинхронного электродвигателя начинается в 1888 году, когда Никола Тесла запатентовал схему электродвигателя, в этом же году другой ученый в области электротехники Галлилео Феррарис опубликовал статью о теоретических аспектах работы асинхронной машины.

В 1889 году российский физик Михаил Осипович Доливо-Добровольский получил в Германии патент на асинхронный трехфазный электрический двигатель.

Устройство, виды и принцип действия асинхронных электродвигателей

Все эти изобретения позволили усовершенствовать электрические машины и привели к тому, что в промышленность стали массово применяться электрические машины, которые значительно ускорили все технологические процессы на производстве, повысили эффективность работы и снизили её трудоемкость.

В настоящий момент самый распространенный электродвигатель, эксплуатируемый в промышленности, является прототипом электрической машины, созданной Доливо-Добровольским.

Устройство и принцип действия асинхронного двигателя

Главными компонентами асинхронного электродвигателя являются статор и ротор, которые отделены друг от друга воздушным зазором. Активную работу в двигателе выполняют обмотки и сердечник ротора.

Под асинхронностью двигателя понимают отличие частоты вращения ротора от частоты вращения электромагнитного поля.

Статор – это неподвижная часть двигателя, сердечник которой выполняется из электротехнической стали и монтируется в станину. Станина выполняется литым способом из материала, который не магнитится (чугун, алюминий). Обмотки статора являются трехфазной системой, в которой провода уложены в пазы с углом отклонения 120 градусов. Фазы обмоток стандартно подключают к сети по схемам «звезда» или «треугольник».

Устройство, виды и принцип действия асинхронных электродвигателей

Ротор – это подвижная часть двигателя. Роторы асинхронных электродвигателей бывают двух видов: с короткозамкнутым и фазным роторами. Данные виды отличаются между собой конструкциями обмотки ротора.

Асинхронный двигатель с короткозамкнутым ротором

Такой тип электрической машины был впервые запатентован М.О. Доливо-Добровольским и в народе называется «беличье колесо» из-за внешнего вида конструкции. Короткозамкнутая обмотка ротора состоит из накоротко замкнутых с помощью колец стержней из меди (алюминия, латуни) и вставленные в пазы обмотки сердечника ротора. Такой тип ротора не имеет подвижных контактов, поэтому такие двигатели очень надежны и долговечны при эксплуатации.

Асинхронный двигатель с фазным ротором

Устройство, виды и принцип действия асинхронных электродвигателей

Такое устройство позволяет регулировать скорость работы в широком диапазоне. Фазный ротор представляет собой трехфазную обмотку, которая соединяется по схемам «звезда» или треугольник. В таких электродвигателях в конструкции имеются специальные щетки, с помощью которых можно регулировать скорость движения ротора. Если в механизм такого двигателя добавить специальный реостат, то при пуске двигателя уменьшится активное сопротивление и тем самым уменьшатся пусковые токи, которые пагубно влияют на электрическую сеть и само устройство.

Принцип действия

При подаче электрического тока на обмотки статора возникает магнитный поток. Так как фазы смещены относительно друг друга на 120 градусов, то из-за этого поток в обмотках вращается. Если ротор короткозамкнутый, то при таком вращении в роторе появляется ток, который создает электромагнитное поле. Взаимодействуя друг с другом, магнитные поля ротора и статора заставляют ротор электродвигателя вращаться. В случае, если ротор фазный, то напряжение подается на статор и ротор одновременно, в каждом механизме появляется магнитное поле, они взаимодействуют друг с другом и вращают ротор.

Достоинства асинхронных электродвигателей

С короткозамкнутым ротором С фазным ротором
1. Простое устройство и схема запуска 1. Небольшой пусковой ток
2. Низкая цена изготовления 2. Возможность регулировать скорость вращения
3. С увеличением нагрузки скорость вала не меняется 3. Работа с небольшими перегрузками без изменения частоты вращения
4. Способен переносить перегрузки краткие по времени 4. Можно применять автоматический пуск
5. Надежен и долговечен в эксплуатации 5. Имеет большой вращающий момент
6. Подходит для любых условий работы
7. Имеет высокий коэффициент полезного действия

Недостатки асинхронных электродвигателей

С короткозамкнутым ротором С фазным ротором
1. Не регулируется скорость вращения ротора 1. Большие габариты
2. Маленький пусковой момент 2. Коэффициент полезного действия ниже
3. Высокий пусковой ток 3. Частое обслуживание из-за износа щеток
4. Некоторая сложность конструкции и наличие движущихся контактов

Асинхронные электродвигатели являются очень эффективными устройствами с отличными механическими характеристиками, и благодаря этому они являются лидерами по частоте применения.

Режимы работы

Устройство, виды и принцип действия асинхронных электродвигателей

Электродвигатель асинхронного типа универсальный механизм и по продолжительности работы имеет несколько режимов:

  • Продолжительный;
  • Кратковременный;
  • Периодический;
  • Повторно-кратковременный;
  • Особый.

Продолжительный режим — основной режим работы асинхронных устройств, который характеризуется постоянной работой электродвигателя без отключений с неизменной нагрузкой. Такой режим работы самый распространенный, используется на промышленных предприятиях повсеместно.

Кратковременный режим – работает до достижения постоянной нагрузки определенное время (от 10 до 90 минут), не успевая максимально разогреться. После этого отключается. Такой режим используют при подаче рабочих веществ (воду, нефть, газ) и прочих ситуациях.

Периодический режим – продолжительность работы имеет определенное значение и по завершении цикла работ отключается. Режим работы пуск-работа-остановка. При этом он может отключаться на время, за которое не успевает остыть до внешних температур и включаться заново.

Повторно-кратковременный режим – двигатель не нагревается максимально, но и не успевает остыть до внешней температуры. Применяется в лифтах, эскалаторах и прочих устройствах.

Особый режим – продолжительность и период включения произвольный.

В электротехнике существует принцип обратимости электрических машин — это означает, что устройство может, как преобразовывать электрическую энергию в механическую, так и совершать обратные действия.

Асинхронные электродвигатели тоже соответствуют этому принципу и имеют двигательный и генераторный режим работы.

Двигательный режим – основной режим работы асинхронного электродвигателя. При подаче напряжения на обмотки возникает электромагнитный вращающий момент, увлекающий за собой ротор с валом и, таким образом, вал начинает вращаться, двигатель выходит на постоянную частоту вращения, совершая полезную работу.

Генераторный режим – основан на принципе возбуждения электрического тока в обмотках двигателя при вращении ротора. Если вращать ротор двигателя механическим способом, то на обмотках статора образуется электродвижущая сила, при наличии конденсатора в обмотках возникает емкостный ток. Если емкость конденсатора будет определенного значения, зависящего от характеристик двигателя, то произойдет самовозбуждение генератора и возникнет трехфазная система напряжений. Таким образом короткозамкнутый электродвигатель будет работать как генератор.

Источник