Меню

Контрольно измерительные приборы напряжения тока

Контрольно-измерительные приборы

Контрольно-измерительные приборы

При выполнении электромонтажных работ часто возникает необходимость измерения электрических величин, нахождения фазного провода, прозвонки электрических цепей и т.д. К наиболее распространенным контрольно-измерительным приборам относятся индикаторы фазного провода, мультиметры, электрические клещи и др.

Указатель напряжения позволяет получить более полную информацию о наличии или отсутствии напряжения, что, несомненно, очень важно в работе электриков. Он состоит из двух щупов, соединенных проводом. В один из них встроен прибор, который может показывать не только наличие напряжения, но и его значение. В качестве индикации в таких устройствах используются неоновые лампочки, светодиоды различных цветов, игровые табло. Также существуют и комбинированные указатели, где наряду со световой индикацией присутствует и звуковая, что делает работу с приборами более комфортной и безопасной.

Индикатор фазного напряжения — это отвертка, внутрь которой встроены неоновая лампочка и сопротивление. Применяется для проверки наличия напряжения на фазном проводе в пределах 150—250 В. Если жалом такой отвертки-индикатора прикоснуться к оголенному токоведущему элементу, а пальцем — к металлическому элементу на рукоятке, то при наличии напряжения загорится неоновая лампочка.

Контрольно-измерительные приборы

Перед использованием этого прибора необходимо убедиться в его исправности путем проверки напряжения на заведомо подключенном к сети устройстве.

Указатель напряжения вполне может заменить контрольную лампу. Его можно использовать также для проверки цепи на обрыв — «прозвонки».

Электроизмерительные клещи предназначены для измерения электрических величин (тока, напряжения, мощности и др.) без разрыва токовой цепи и без нарушения ее работы. Соответственно измеряемым величинам существуют клещевые амперметры, ампервольтметры, ваттметры и фазометры. Наибольшее распространение получили клещевые амперметры переменного тока, которые обычно называют токоизмерительными клещами. Электроизмерительные клещи применяются в установках до 10 кВ включительно.

Стоит отметить, что проведения различных ремонтных и монтажных работ непременно связано с покупкой различных специализированных приборов и расходных материалов, которые в нашу цифровую эпоху проще всего приобрести в магазине электрики.

Мультиметр, или тестер, — это универсальный прибор, сочетающий в себе вольтметр, амперметр и омметр и позволяющий измерять напряжение, ток и сопротивление в цепи.

Источник

Классификация измерительных приборов и список технических устройств

Измерительные приборы прочно вошли в жизнь человека. За счет обширной классификации измерительных приборов можно определить именно тот аппарат, который понадобится для конкретных операций. Это могут быть как простейшие, по типу рулетки или амперметра, так и мультифункциональные измерительные приборы. При выборе устройства следует ориентироваться на его предназначение и основные характеристики.

Общие сведения

Тестирование измерительных приборов

Измерительным прибором называют такое устройство, которое позволяет получить значение некоторой физической величины в заданном диапазоне. Последний задается с помощью приборной шкалы. А также технические приборы позволяют переводить величины в более понятную форму, которая доступна определенному оператору.

В настоящее время список измерительных приборов довольно широк, но большинство из них предназначается для контроля за проведением технологического процесса. Таким может быть датчик температуры или охлаждения в кондиционерах, нагревательных печах и других устройствах со сложной конструкцией.

Среди наименований измерительных инструментов есть как простые, так и сложные, в том числе и по конструкции. Причем сфера их применения может быть как узкоспециализированной, так и распространенной.

Чтобы узнать больше сведений о конкретном инструменте, необходимо рассмотреть определенную классификацию контрольно-измерительных устройств и приборов.

Виды измерительных приборов

В зависимости от того, какие бывают измерительные инструменты, их названия могут отличаться в разных классификациях.

Виды измерительных приборов

Обычно приборы могут быть следующего вида:

  • Аналоговые измерительные инструменты и устройства, в которых сигнал на выходе является некоторой функцией измеряемой величины.
  • Цифровые устройства, где сигнал на выходе представлен в соответствующем виде.
  • Приборы, которые непосредственно регистрируют результаты измерений снимаемых показаний.
  • Суммирующие и интегрирующие. Первые выдают показания в виде суммы нескольких величин, а вторые позволяют проинтегрировать значение измеряемой величины при помощи другого параметра.

Вышеописанные приборы являются наиболее распространенными и применяются для измерения ряда физических величин. Сложность происходящих физических процессов требует применения нескольких приборов, причисляемых к разным классам.

Классификация устройств

Классификация измерительных приборов

В разных сферах применяется своя классификация устройств, предназначенных для измерения физических величин.

Приборы могут делиться по таким критериям:

  1. Способ преобразования: прямое действие, сравнение, смешанное преобразование.
  2. По способу выдачи информации делятся на показывающие и регистрирующие.
  3. Вид выходной информации может быть представлен как аналоговым, так и цифровым сигналом.

Регистрирующие устройства делятся на самопишущие и печатающие разновидности. Наиболее прогрессивным вариантом являются самопишущие аппараты, поскольку у них выше точность предоставления информации и шире возможности для измерения заданных ранее параметров.

Аналоговые и цифровые

Цифровой осциллограф

Контрольно-цифровые инструменты могут быть как цифровыми, так и аналоговыми. Первые считаются более удобными. В них показатели силы, напряжения или тока переводятся в числа, затем выводятся на экран.

Но при этом внутри каждого такого прибора находится аналоговый преобразователь. Зачастую он представляет собой датчик, снимающий и отправляющий показания с целью преобразования их в цифровой код.

Хотя аналоговые инструменты менее точны, они обладают простотой и лучшей надежностью. А также существуют разновидности аналоговых инструментов и приборов, имеющих в своем составе усилители и преобразователи величин. По ряду причин они предпочтительнее механических устройств.

Для давления и тока

Каждому еще со школы или университета знакомы такие названия измерительных приборов, как барометры и амперметры. Первые предназначены для того, чтобы измерять атмосферное давление. Встречаются жидкостные и механические барометры.

Приборы вольтметры

Жидкостные разновидности считаются профессиональными из-за сложности конструкции и особенностей работы с ними. Метеостанции применяют барометры, заполненные внутри ртутью. Они наиболее точные и надежные, позволяют работать при перепадах температур и иных обстоятельствах. Механические конструкции проще, но постепенно их вытесняют цифровые аналоги.

Амперметры используются для измерения электрического тока в амперах. Шкала амперметра может градуироваться как в стандартных амперах, так и микро-, милли- и килоамперах. Лучше всего такие приборы подключать последовательно. В таком случае снижается сопротивление, а точность снимаемых показателей возрастает.

Слесарные инструменты

Слесарные измерительные приборы

Достаточно часто можно встретить измерительные слесарные инструменты. Наиболее важная характеристика — точность измерений. За счет того, что слесарные инструменты механические, удается добиться точности до 0,005 или 0,1 мм.

Читайте также:  Как мерять силу тока мультиметром

Если погрешность измерений превысит допустимый порог, то произойдет нарушение технологии работы инструмента. Тогда потребуется переточка некачественной детали или замена целого узла в устройстве. Поэтому для слесаря важно при подгонке вала под втулку использовать не линейку, а инструменты с большей точностью измерений.

Наиболее популярным инструментом с высокой точностью измерений является штангенциркуль. Но и он не сможет дать гарантии точного результата с первого измерения. Опытные рабочие делают несколько измерений, которые затем преобразуют в некоторое среднее значение.

Встречаются операции, требующие максимальной точности. Таких много в микромашинах и отдельных деталях устройств крупного размера. Тогда следует воспользоваться микрометром. С его помощью можно измерять с точностью до сотых долей миллиметров. Распространенное заблуждение о том, что он позволяет измерять микроны, является не совсем верным. Да и при проведении стандартных домашних работ такая точность может не пригодиться, поскольку достаточно действующих значений точности и погрешности.

Специальные устройства

Существует такое известное устройство для измерения под названием угломер.

Измерительный прибор угломер с нониусом

Его предназначение заключается в измерении углов деталей, а конструкция состоит из следующих элементов:

  • непосредственно устройство имеет полудиск с нанесенной измерительной шкалой;
  • линейка обладает собственным передвижным сектором, где нанесена шкала нониуса;
  • закрепление передвижного сектора линейки осуществляется стопорным винтом.

Процесс измерения таким прибором простой. Деталь прикладывается одной из граней к линейке. Сдвинуть ее надо таким образом, чтобы образовался равномерный и достаточный просвет между гранями и линейками. Затем сектор закрепляется винтом. Снимаются показатели сначала с линейки, а затем с нониуса.

Контрольно-измерительные устройства нашли довольно широкое применение в различных сферах производства, домашнего быта, слесарного дела и строительных работ. Они различаются как по сфере применения, так и по возможности измерения.

Все приборы могут подразделяться по способу преобразования, выдачи информации и виду выходной информации, предназначения и другим критериям. Имея хорошую классификацию, можно отыскать конкретный инструмент для определенных задач и операций.

Но главная цель у них состоит в измерении показаний, их записи и контроле технологических процессов производства. Рекомендуются использовать точные измерительные устройства, однако, устройство становится гораздо сложнее. Это потребует учета большого количества факторов и измерений параметров, чтобы вывести на экран точные показания.

Источник

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки

Измерительные приборы электроустановок

Измерительные приборы являются средством, при помощи которого невидимое действие электронов может быть записанно и измерено. Измерительные приборы нужны при исследовании работы цепи. Существует два типа измерительных устройств. 1-ый — это аналоговые приборы, использующие проградуированную шкалу со стрелкой. Другой тип — цифровые приборы, показывающие величину отсчета показаний в виде цифр.
Показания цифровых приборов легче читать, и они обеспечивают огромную точность, чем аналоговые. Но аналоговые приборы обеспечивают возможность проследить за резвыми переменами тока и напряжения.
Большая часть измерительных устройств помещено в защитный корпус. Выводы

Цифровые измерительные приборы

созданы для подсоединения устройств к цепи. Для правильного подсоединения прибора нужно направить внимание на полярность выводов. Цветной либо белоснежный выводы являются положительными, а темный вывод — отрицательным (либо «землей» ).
Перед внедрением аналогового прибора его стрелка должна быть установлена на ноль. На лицевой стороне хоть какого прибора находится небольшой винт, при помощи которого делается установка на ноль. Установив стрелку на ноль, разместите прибор там, где он должен употребляться. Если стрелка не стоит на нуле, используйте для поворота винта отвертку. Прибор не должен подключаться к цепи до того времени, пока не проведена установка стрелки на ноль.

Измерение тока:
Для того чтоб использовать амперметр для измерения тока, цепь должна быть разомкнута, а измерительный прибор вставлен поочередно в цепь.

При включении амперметра в цепь должна соблюдаться полярность. Два вывода на амперметре помечены: положительный — красноватым, а отрицательный (общий) — черным.

Амперметры щитовые аналоговые серии М

Предостережение:всегда отключайте источник питания перед подключением амперметра к цепи.

Отрицательный вывод должен быть подключен к более отрицательной (с наименьшим потенциалом) точке цепи, а положительный вывод к более положительной (с огромным потенциалом) точке цепи. После подсоединения амперметра, его стрелка переместится слева вправо. Если стрелка перемещается в обратном направлении, поменяйте выводы местами.

Предостережение:Амперметр никогда не должен подключаться параллельно какому-либо элементу цепи. Если его подсоединить параллельно, то перемычка в приборе расплавится и серьезно повредит прибор либо цепь. Никогда не подключайте амперметр конкретно к источнику тока.

Аналоговые токоизмерительные клещи НА 600А EXTECH AM600

После установки амперметра в цепь и перед включением питания установите прибор на наивысший предел измерения. После включения питания шкалу амперметра можно переключить на более подходящую. Это предупредит резкое движение стрелки прибора на право до упора, что может вывести из строя рамку прибора, а конкретно пружину механизма.

Внутреннее сопротивление амперметра прибавляется к сопротивлению цепи и наращивает общее сопротивление цепи. Измеренный ток в цепи может быть ниже, чем ток, текущий в отсутствие амперметра. Но так как сопротивление амперметра не достаточно по сопоставлению с сопротивлением цепи, ошибкой можно пренебречь.

Амперметр с зажимами (измерительные клещи) не просит подсоединения к измеряемой цепи. Амперметр с зажимами употребляет электрическое поле, создаваемое током для измерения величины тока в цепи.

Измерение напряжения:
Напряжение существует меж 2-мя точками, оно не течет через цепь подобно току. Как следует, вольтметр, применяемый для измерения напряжения, подсоединяется параллельно цепи.

Читайте также:  Типы трансформаторов тока для релейной защиты

Вольтметры щитовые аналоговые серии М

Предостережение: если вольтметр включить в цепь поочередно, через него может пойти большой ток и разрушить его.

Тут также принципиальна полярность. Отрицательный вывод вольтметра должен быть подсоединен к более отрицательной точке цепи (с наименьшим потенциалом), а положительный вывод — к более положительной точке цепи (с огромным потенциалом). Если точки соединения поменять местами, стрелка прибора отклонится на лево, и измерение нельзя будет провести. Если это случится, поменяйте местами выводы.

Для проведения измерений нужно поначалу отключить питание цепи, подсоединить вольтметр, а потом опять включить питание. Поначалу установите наивысший предел измерения вольтметра. После того как к цепи будет приложено напряжение, установите более подходящую измерительную шкалу прибора.

Внутреннее сопротивление вольтметра подключено параллельно к измеряемому элементу цепи. Общее сопротивление параллельно включенных резисторов всегда меньше, чем сопротивление меньшего резистора. В итоге напряжение, которое указывает вольтметр, меньше, чем реальное напряжение в отсутствие вольтметра. Почти всегда внутреннее сопротивление вольтметра довольно высочайшее и ошибка так мала, что ею можно пренебречь. Но если напряжение измеряется в цепи с высочайшим сопротивлением, сопротивление измерительного прибора может давать приметный эффект. Некие вольтметры, созданные для таких целей, имеют сверхвысокое внутреннее сопротивление.

Щитовые аналоговые омметры

Измерение сопротивления:
Главное предназначение омметра — измерение сопротивления. Как следует, омметр может быть применен для определения, какой является цепь: разомкнутой, закороченной иди замкнутой. Разомкнутая цепь имеет нескончаемо огромное сопротивление, так как через нее не течет ток. Кратко.замкнутая цепь имеет нулевое сопротивление, тяк как ток, проходя через нее, не вызывает падение напряжения. Замкнутая цепь представляет собой полный путь для прохождения тока. Ее сопротивление находится в зависимости от сопротивлений компонент цепи.

Когда измеряется сопротивление составляющие в цепи, отсоедините один конец компонента от цепи. Это избавляет параллельные пути, которые могут привести к неверному измерению сопротивления. Для получения четкого измерения устройство должно быть удалено из цепи. После чего выводы омметра подсоединяются к устройству.

Предостережение: Перед подсоединением омметра к цепи, удостоверьтесь, что нитапие выключено.

Проверка цепи на замкнутость, разомкнутость либо закороченноеть именуется проверкой цепи на непрерывность. Эта проверка указывает, является ли путь для тока непрерывным. Для того, чтоб найти замкнута цепь либо разомкнута, должка быть применена меньшая чувстзителг ность шкалы омметра. Поначалу удостоверьтесь в том, что з ие:ш отсутствуют составляющие, которые могут быть повреждены током от омметра. После чего подсоедините выводы омметра к точкам измеряемой цепи. Если омметр что-то указывает, то цепь замкнута либо закорочена. Если омметр ничего не указывает (стрелка не отклоняется) — цепь разомкнута. Эта проверка полезна для установления предпосылки, по которой цепь не работает.

Источник



24. Контрольно измерительные приборы для регистрации электрических велечин: тока,напряжения, мощности. Способы подключения.

Амперме́тр (см. ампер + …метр от μετρέω — измеряю) — прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно с тем участком электрической цепи, силу тока в котором измеряют; для увеличения предела измерений — с шунтом или через трансформатор. (Примером амперметра с трансформатором являются «токовые клещи»)

Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол, пропорциональный величине измеряемого тока.

Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

Принцип действия магнитоэлектрического прибора основан на создании крутящего момента, благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки. С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки пропорционален силе тока.

Электродинамические амперметры состоят из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействия между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки. В электрическом контуре амперметр соединяется последовательно с нагрузкой, а при высоком напряжении или больших токах — через трансформатор.

Обобщенная структурная схема вольтметров прямого преобразования показана на рис. 7.1.

Измеряемое напряжение подается на входное устройство (ВУ), с выхода которого сигнал поступает на измерительный преобразователь (ИП) и далее на измерительное устройство (ИУ). В качестве входного устройства могут использоваться делители и трансформаторы напряжения. В качестве ИП применяются преобразователи переменного сигнала в постоянный, усилители, детекторы и др. В качестве измерительного устройства могут использоваться различные приборы на основе измерительных механизмов (чаще всего используется магнитоэлектрический прибор).

Электронные вольтметры постоянного тока состоят из делителя входного напряжения, усилителя постоянного тока, и измерительного устройства, в качестве которого обычно используется магнитоэлектрических микроамперметр. Диапазон измерения составляет 100 мВ … 1000 В.

Электронные вольтметры переменного тока строятся по одной из структурных схем (рис. 7.2), различающихся типом ИП.

В вольтметрах (рис. 7.2, а) измеряемое переменное напряжениеUx преобразуется в постоянное, которое затем измеряется вольтметром постоянного тока.

В вольтметрах, построенных по схеме рис. 7.2, б, измеряемое напряжение сначала усиливается усилителем переменного тока (УПер.Т), а затем выпрямляется с помощью детектора Д и измеряется ИУ. При необходимости между детектором и ИУ может быть дополнительно включен УПТ

Электронные вольтметры, выполненные по схеме рис. 7.2, имеют меньшую чувствительность, меньшую точность, но имеют более широкий частотный диапазон (от 10 Гц до 100 . 700 МГц). Нижний предел таких вольтметров ограничивается порогом чувствительности выпрямителя и составляет обычно 0,1 … 0,2 В.

Вольтметры, выполненные по схеме рис. 7.2, б, имеют более узкий частотный диапазон (до 50 МГц), который ограничивается усилителем переменного тока, но они более чувствительны. Усилители переменного тока позволяют получить значительно больший коэффициент усиления, чем с помощью УПТ. По данной схеме можно построить микровольтметры, у которых нижний предел Ux ограничивается собственными шумами усилителя.

Читайте также:  Что заряжает аккумулятор напряжение или сила тока

Милливольтметры переменного тока в зависимости от устройства измеряют амплитудное, среднее и действующее значения переменного напряжения и строятся по схеме усилитель — выпрямитель. Шкала вольтметра градуируется, как правило, в действующих значениях для синусоидального напряжения, или в 1,11Uср для приборов, показания которых пропорциональны среднему значению напряжения, и в 0,707Um – для приборов, показания которых пропорциональны амплитудному значению.

Электронные вольтметры среднего значения служат для измерения относительно высоких напряжений. Такой вольтметр может быть выполнен по схеме рис. 7.2, б с использованием в качестве выпрямителя полупроводникового диодного моста. Показания вольтметра средних значений зависят от формы кривой измеряемого напряжения. Диапазон измерения составляет от 1 мВ до 300 В. Частотный диапазон измеряемого напряжения — от 10 Гц до 10МГц.

На рис. 7.3 показан пример схемы вольтметра переменного тока типа усилитель-выпрямитель. Данная схема представляет двухполупериодный ПСЗ с включением выпрямительных элементов в цепь обратной связи. Эта схема позволяет существенно снизить порог чувствительности в режиме измерения переменного напряжения при сохранении достаточно широкого частотного диапазона.

Электронные вольтметры действующего значения содержат преобразователь действующих значений. ПДЗ выполняется на элементах с квадратичной ВАХ. Для увеличения протяженности квадратичного участка ВАХ используются на преобразователи на диодных цепочках (см. рис. 6.9). Достоинством является независимость показаний от формы кривой измеряемого напряжения. Для расширения пределов используются емкостные делители напряжения. Диапазон измерения от 1 мВ до 1000 В. Частотный диапазон от 20 Гц до 50 МГц.

Другой метод измерения действующего значения переменного напряжения состоит в определении количества рассеиваемого тепла. Этот метод используется в термовольтметре, где входной ток течет по нити накала, нагревая ее. Выделенное тепло служит непосредственной мерой среднеквадратического значения тока.

Упрощенная функциональная схема вольтметра действующих значений с ПДЗ на термопреобразователях, включенных по способу взаимообратных преобразований показана на рис. 7.4.

В усилителе с обратной связью У1 измеряемое напряжение Ux преобразуется в ток Ix Этот усилитель должен иметь очень точный коэффициент передачи К такой, чтобы термоЭДС, возникающая термопреобразователе ТП1 была истинной мерой среднеквадратического значения измеряемого напряжения.

Второй термопреобразователь ТП2, по нагревателю которого протекает ток Ik, включен последовательно с ТП1. Выходные напряжения термопреобразователей имеют противоположную полярность, так что напряжение на входе усилителя постоянного тока У2 равно разности этих двух напряжений. Если коэффициент этого усилителя достаточно велик, то при сравнительно большом выходном напряжении Uвых разность напряжений двух термопреобразователей окажется равной нулю Е1 = Е2. Тогда

Uвых = IT∙R = α ∙IX ∙R = α ∙K∙UX ∙R. (7.1)

В этом выражении сопротивление R много больше сопротивления нагревателя термпреобразователя ТП2. Коэффициент α служит критерием согласованности термопреобразователей ТП1 и ТП2 (α ≈ 1). К – коэффициент передачи входного каскада: К = IX /UX .

Выражение (7.1) для Uвых показывает, что абсолютное значение параметров термопреобразователей ТП1 и ТП2 не имеют решающего значения; важно знать насколько хорошо они согласованы.

Примером построения вольтметра с использованием термопреобразователей является вольтметр В3-45. Погрешность данного вольтметра в рабочем диапазоне частот 40 Гц – 1 МГц не превышает 2,5%.

Термопреобразователи могут использоваться также и для построения амперметров.

Термопреобразователи могут быть заменены твердотельными интегральными схемами. Они состоят из дифференциального усилителя и пары резисторов. Оба резистора расположены очень близко к переходам база-эмиттер двух входных транзисторов дифференциального усилителя. По одному из резисторов течет ток IТ, в то время как по другому течет измеряемый ток высокой частоты IX. Любое неравенство температур резисторов вызовет появление напряжения смещения в дифференциальном усилителе. Если дифференциальная пара входных транзисторов входит в состав операционного усилителя У2, то Тп1 Тп2 и У2 (рис. 7.4) можно заменить одной интегральной схемой. Измеритель действующего значения будет хорошо работать на частотах значительно выше 100 МГц, так как паразитные импедансы гораздо меньше из-за малых размеров схемы.

Сочетание электронного усилителя с электростатическим вольтметром на выходе позволяет не использовать в схеме вольтметра действующих значений специального ПДЗ. Недостатками такого вольтметра являются: 1) неравномерность шкалы; 2) малая чувствительность и др.

Ваттме́тр (ватт + др.-греч. μετρεω «измеряю») — измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала.

По назначению и диапазону частот ваттметры можно разделить на три категории — низкочастотные (и постоянного тока), радиочастотные и оптические. Ваттметры радиодиапазона по назначению делятся на два вида: проходящей мощности, включаемые в разрыв линии передачи, и поглощаемой мощности, подключаемые к концу линии в качестве согласованной нагрузки. В зависимости от способа функционального преобразования измерительной информации и её вывода оператору ваттметры бывают аналоговые (показывающие и самопишущие) и цифровые.

НЧ-ваттметры используются преимущественно в сетях электропитания промышленной частоты для измерения потребляемой мощности, могут быть однофазные и трехфазные. Отдельную подгруппу составляют варметры — измерители реактивной мощности. Цифровые приборы обычно совмещают возможность измерения активной и реактивной мощности.

Аналоговые НЧ-ваттметры электродинамической или ферродинамической системы имеют в измерительном механизме две катушки, одна из которых подключается последовательно нагрузке, другая параллельно. Взаимодействие магнитных полей катушек создает вращающий момент, отклоняющий стрелку прибора, пропорциональный произведению силы тока, напряжения и косинуса или синуса разности фаз (для измерения соответственно активной или реактивной мощности).

ПРИМЕРЫ: Ц301, Д8002, Д5071Цифровые НЧ-ваттметры имеют в качестве входных цепей два датчика — по току и по напряжению, подключаемые соответственно последовательно и параллельно нагрузке, датчики могут быть на основе измерительных трансформаторов, термисторов, термопар и другие. Информация с датчиков через АЦП передается на вычислительное устройство, в котором рассчитываются активная и реактивная мощность, далее итоговая информация выводится на цифровое табло и, при необходимости, на внешние устройства (для хранения, печати данных и т. д.). ПРИМЕРЫ: MI 2010А, СР3010, ЩВ02

Источник

Контрольно измерительные приборы напряжения тока

Приборы КИПиА: контрольно измерительные приборы и автоматика

Приветствуем!

Вы на странице Приборы КИПиА: контрольно измерительные приборы.

Самый простой пример использование приборов автоматики — это автоматическое включение уличного освещения при наступлении сумерек или по заданному времени. Здесь популярный обзор про приборы КИПиА и их использовании.

Вступление

Всё, что человек не может увидеть, измерить, проконтролировать лично можно измерить и контролировать измерительными приборами. Более того, можно автоматически управлять самыми разнообразными технологическими процессами с помощью оборудования автоматики. Общепринятое название средств измерения и приборов автоматизации технологических процессов и производства — приборы КИПиА (КИП и А).

Оборудование КИП и А

Начнём разговор с оборудования приборов и автоматики, имеющих отношения не только к промышленности, но и домашнему быту. Это приборы котельного оборудования. Как мы понимаем, котельная может отапливать многоквартирный дом, а может отапливать один частных дом.

Котельная автоматика

Важное оборудование КИП и А для автоматического управления котлами отопления, самого разного уровня, от дачного, до промышленного. Котельная автоматика включает оборудования необходимое для работы отопительных котельных в автоматическом и полу автоматических режимах.

Характерными примерами данного оборудования являются: Управляющие блоки, устройства автоматического розжига, различные типы горелок. Контрольные приборы за пламенем, за розжигом, приборы для регулирования температуры (ручные и автоматические) и давления в котлах. Всевозможные клапаны систем отопления.

Большой выбор приборов КИПиА известных отечественных и зарубежных производителей вы найдёте на сайте https://www.kip72.ru/, компании Алетейя салон автоматики».

Приборы КИПиА

Пожалуй самый большой каталог электротехнических приборов — это каталог КИПиА (контрольно измерительные приборы и автоматика). В него можно включить все измерительные, контролирующие, управляющие вручную и автоматически приборы и оборудование. Детальное перечисление всех приборов КИПиА займёт не десятки печатных страниц.

Однако познакомится с основными типами приборов и оборудованием КИПиА необходимо. Посмотрим на их основные виды используемые, чаще в промышленности.

Для измерения температуры и её регулирования в различных средах (термометр, тепловизор, термопара, и т.п.)

Измерение давления и его регулирования (манометр, датчики и реле давления/напора/тяги, регуляторы и калибраторы давления).

Приборы измерения расхода (счётчики воды/пищевых жидкостей/промышленных и бытовых стоков/паров/горючего/вязких сред, тепловые и электрические счётчики, бесконтактные датчики).

Приборы измерения уровня (уровнемеры различного типа, сигнализаторы и регуляторы уровней).

Измерительные приборы электрических параметров

Данный вид кипа используются, как в промышленности, так и в строительстве и даже быту. Все приборы и необходимое оборудование, используемое для всевозможных измерений параметров электрических сетей (напряжение, ток, частота, омическое сопротивление) относятся к электроизмерительным приборам.

По применению данный вид кипа может быть стационарным или переносным. Например, измерительные клещи явно переносной прибор. Вольтметр установленный в электрический щит — прибор стационарной установки.

Лабораторная контрольно-измерительная аппаратура

В эту группу кипа относим всё, что специалисты используют в своих лабораторных измерениях: осциллографы, оптические приборы, генераторы сигналов и т.п.

Приборы КИПиА контроля

В эту группу относим все приборы и аппаратуру применяемые для исследований жидких, газообразных сред и твёрдых тел. Например, зонды и газоанализаторы, приборы слежения за состоянием атмосферы, замерщики плотности среды, различные измерители влажности. Так же большая группа приборов, называемых, приборы не разрушающего контроля (дефектоскопы, измерители вибрации, замерщики толщины и т.п.)

Читайте также:  Первая помощь при легком поражении электрическим током

Приборы КИПиА автоматизации

Собственно, приборы автоматизации различных технологических процессов — это базовое ядро всех КИПиА. Всё из чего собирают щиты и ящики автоматики в этой группе. Блоки питания, различные датчики и контроллеры, релейные устройства, операторский интерфейс.

Электрическое оборудование

Почти ни один прибор не работает без электричества. Поэтому в отдельную группу выделили всё электрическое оборудование. Группа перекрёстная, но всё же к ней относят:

  • Трансформаторы;
  • Стабилизаторы;
  • ИБП;
  • Измерители омического заземления.

Трубопроводная арматура

На промышленных предприятиях, где присутствует направленное движение жидких и газовых сред, не обойтись без разнообразной запорной и регулирующей аппаратуры, часто работающей в автоматическом или полуавтоматическом режимах.

Оборудование сетей низкого напряжение

Более близкая домашнему хозяину группа КИПиА, в которую входят всем знакомые УЗО, кнопки, кнопочные посты, автоматические выключатели, реле.

Заключение

Приборы КИПиА используются в самых разных областях промышленности, её традиционных, передовых и высокотехнологических сферах. Есть применение приборы КИП и А в быту и домашнем строительстве. Даже в ремонте квартиры мы используем приборы кипа не обращая на это внимания.

Источник



Трансформаторы, контрольно-измерительные приборы. химические источники тока

Трансформаторы — приборы, предназначенные для согласования напряжений в электросети и бытовом электроприборе. В быту трансформаторы применяют как приборы, понижающие напряжение для питания таких низковольтных приборов, как паяльники, лампы местного освещения и др.

Автотрансформаторы плавно или ступенчато регулируют напряжение.

Контрольно-измерительные приборы применяют для определения числовых значений силы тока (амперметры), напряжения (вольтметры), сопротивления (омметры) или для нескольких параметров (ампервольтметры).

Электросчетчики — электроизмерительный прибор, широко применяемый в быту. Основные узлы электросчетчика: корпус, электрический и постоянный магниты, алюминиевый диск с осью, счетный механизм, противосамоходное устройство, пластмассовый корпус. Счетчики имеют гарантийный срок 12 месяцев со дня продажи и не более 18 месяцев со дня отгрузки.

Химические источники тока выпускаются в виде элементов и батарей, применяются для автономного питания переносной радиоаппаратуры, электроигрушек, карманных фонарей и других приборов. Выпускаются элементы различных габаритов, напряжения, продолжительности работы, массы. Гарантийный срок хранения элементов — 18 месяцев.

Гальванические батареи состоят из последовательно соединенных элементов. Гарантийный срок хранения — 6 месяцев.

Там, где потребление тока небольшое (в детских игрушках, в часах, радиоприемниках, пультах дистанционного управления), лучше всего подходят солевые батарейки (угольно-цинковые), а там, где потребление тока более высокое (фотовспышка, плейер, электробритва), лучше применять щелочные батарейки — алка-линовые с надписью alkalne.

Источник

Классификация, назначение измерительных приборов и устройств: какие бывают виды, классы устройств и названия

Содержание

  1. Общие сведения
  2. Виды измерительных приборов
  3. Классификация устройств
  4. Аналоговые и цифровые
  5. Для давления и тока
  6. Слесарные инструменты
  7. Специальные устройства

Измерительные приборы прочно вошли в жизнь человека. За счет обширной классификации измерительных приборов можно определить именно тот аппарат, который понадобится для конкретных операций. Это могут быть как простейшие, по типу рулетки или амперметра, так и мультифункциональные измерительные приборы. При выборе устройства следует ориентироваться на его предназначение и основные характеристики.

Читайте также:  Эдс источника тока закон ома для полной цепи короткое замыкание

Общие сведения

Измерительным прибором называют такое устройство, которое позволяет получить значение некоторой физической величины в заданном диапазоне. Последний задается с помощью приборной шкалы. А также технические приборы позволяют переводить величины в более понятную форму, которая доступна определенному оператору.

В настоящее время список измерительных приборов довольно широк, но большинство из них предназначается для контроля за проведением технологического процесса. Таким может быть датчик температуры или охлаждения в кондиционерах, нагревательных печах и других устройствах со сложной конструкцией.

Среди наименований измерительных инструментов есть как простые, так и сложные, в том числе и по конструкции. Причем сфера их применения может быть как узкоспециализированной, так и распространенной.

Чтобы узнать больше сведений о конкретном инструменте, необходимо рассмотреть определенную классификацию контрольно-измерительных устройств и приборов.

Виды измерительных приборов

В зависимости от того, какие бывают измерительные инструменты, их названия могут отличаться в разных классификациях.

Обычно приборы могут быть следующего вида:

  • Аналоговые измерительные инструменты и устройства, в которых сигнал на выходе является некоторой функцией измеряемой величины.
  • Цифровые устройства, где сигнал на выходе представлен в соответствующем виде.
  • Приборы, которые непосредственно регистрируют результаты измерений снимаемых показаний.
  • Суммирующие и интегрирующие. Первые выдают показания в виде суммы нескольких величин, а вторые позволяют проинтегрировать значение измеряемой величины при помощи другого параметра.

Вышеописанные приборы являются наиболее распространенными и применяются для измерения ряда физических величин. Сложность происходящих физических процессов требует применения нескольких приборов, причисляемых к разным классам.

Классификация устройств

В разных сферах применяется своя классификация устройств, предназначенных для измерения физических величин.

Приборы могут делиться по таким критериям:

  1. Способ преобразования: прямое действие, сравнение, смешанное преобразование.
  2. По способу выдачи информации делятся на показывающие и регистрирующие.
  3. Вид выходной информации может быть представлен как аналоговым, так и цифровым сигналом.

Регистрирующие устройства делятся на самопишущие и печатающие разновидности. Наиболее прогрессивным вариантом являются самопишущие аппараты, поскольку у них выше точность предоставления информации и шире возможности для измерения заданных ранее параметров.

Аналоговые и цифровые

Контрольно-цифровые инструменты могут быть как цифровыми, так и аналоговыми. Первые считаются более удобными. В них показатели силы, напряжения или тока переводятся в числа, затем выводятся на экран.

Но при этом внутри каждого такого прибора находится аналоговый преобразователь. Зачастую он представляет собой датчик, снимающий и отправляющий показания с целью преобразования их в цифровой код.

Хотя аналоговые инструменты менее точны, они обладают простотой и лучшей надежностью. А также существуют разновидности аналоговых инструментов и приборов, имеющих в своем составе усилители и преобразователи величин. По ряду причин они предпочтительнее механических устройств.

Для давления и тока

Каждому еще со школы или университета знакомы такие названия измерительных приборов, как барометры и амперметры. Первые предназначены для того, чтобы измерять атмосферное давление. Встречаются жидкостные и механические барометры.

Читайте также:  Типы трансформаторов тока для релейной защиты

Жидкостные разновидности считаются профессиональными из-за сложности конструкции и особенностей работы с ними. Метеостанции применяют барометры, заполненные внутри ртутью. Они наиболее точные и надежные, позволяют работать при перепадах температур и иных обстоятельствах. Механические конструкции проще, но постепенно их вытесняют цифровые аналоги.

Амперметры используются для измерения электрического тока в амперах. Шкала амперметра может градуироваться как в стандартных амперах, так и микро- , милли- и килоамперах. Лучше всего такие приборы подключать последовательно. В таком случае снижается сопротивление, а точность снимаемых показателей возрастает.

Слесарные инструменты

Достаточно часто можно встретить измерительные слесарные инструменты. Наиболее важная характеристика — точность измерений. За счет того, что слесарные инструменты механические, удается добиться точности до 0,005 или 0,1 мм.

Если погрешность измерений превысит допустимый порог, то произойдет нарушение технологии работы инструмента. Тогда потребуется переточка некачественной детали или замена целого узла в устройстве. Поэтому для слесаря важно при подгонке вала под втулку использовать не линейку, а инструменты с большей точностью измерений.

Наиболее популярным инструментом с высокой точностью измерений является штангенциркуль. Но и он не сможет дать гарантии точного результата с первого измерения. Опытные рабочие делают несколько измерений, которые затем преобразуют в некоторое среднее значение.

Встречаются операции, требующие максимальной точности. Таких много в микромашинах и отдельных деталях устройств крупного размера. Тогда следует воспользоваться микрометром. С его помощью можно измерять с точностью до сотых долей миллиметров. Распространенное заблуждение о том, что он позволяет измерять микроны, является не совсем верным. Да и при проведении стандартных домашних работ такая точность может не пригодиться, поскольку достаточно действующих значений точности и погрешности.

Специальные устройства

Существует такое известное устройство для измерения под названием угломер.

Его предназначение заключается в измерении углов деталей, а конструкция состоит из следующих элементов:

  • непосредственно устройство имеет полудиск с нанесенной измерительной шкалой;
  • линейка обладает собственным передвижным сектором, где нанесена шкала нониуса;
  • закрепление передвижного сектора линейки осуществляется стопорным винтом.

Процесс измерения таким прибором простой. Деталь прикладывается одной из граней к линейке. Сдвинуть ее надо таким образом, чтобы образовался равномерный и достаточный просвет между гранями и линейками. Затем сектор закрепляется винтом. Снимаются показатели сначала с линейки, а затем с нониуса.

Контрольно-измерительные устройства нашли довольно широкое применение в различных сферах производства, домашнего быта, слесарного дела и строительных работ. Они различаются как по сфере применения, так и по возможности измерения.

Все приборы могут подразделяться по способу преобразования, выдачи информации и виду выходной информации, предназначения и другим критериям. Имея хорошую классификацию, можно отыскать конкретный инструмент для определенных задач и операций.

Но главная цель у них состоит в измерении показаний, их записи и контроле технологических процессов производства. Рекомендуются использовать точные измерительные устройства, однако, устройство становится гораздо сложнее. Это потребует учета большого количества факторов и измерений параметров, чтобы вывести на экран точные показания.

Источник