Меню

Кратность токов для автоматов

Особенности работы автоматических выключателей с микропроцессорными расцепителями

Ни для кого не секрет, что автоматические выключатели это не просто рубильники, которые пропускают рабочий ток и обеспечивают два состояния электрической цепи: замкнутое и разомкнутое. Автоматический выключатель — это электрический аппарат, который в режиме реального времени «отслеживает» уровень протекающего тока в защищаемой цепи и отключает ее при превышении током определенного значения.

Самым распространенным сочетанием в автоматических выключателях является комбинация теплового и электромагнитного расцепителя. Именно эти два вида расцепителей обеспечивают основную защиту цепей от сверхтоков.

Тепловой расцепитель предназначен для отключения токов перегрузки электрической цепи. Тепловой расцепитель конструктивно состоит из двух слоев металлов, обладающих различными коэффициентами линейного расширения. Это и позволяет пластине изгибаться при нагреве и воздействовать на механизм свободного расцепления, в конечном итоге, отключая аппарат. Такой расцепитель еще называют термобиметаллическим расцепителем по названию основного элемента — биметаллической пластины.

Однако этот вид расцепителя обладает существенным недостатком — его свойства зависят от температуры окружающей среды. То есть, при слишком низкой температуре даже если цепь будет перегружена — тепловой расцепитель автоматического выключателя может не отключить линию. Возможна и обратная ситуация: в очень жаркую погоду автоматический выключатель может ложно отключать защищаемую линию, за счет нагрева биметаллической пластины окружающей средой. К тому же тепловой расцепитель потребляет электрическую энергию.

Электромагнитный расцепитель состоит из катушки и подвижного стального сердечника, удерживаемого пружиной. При превышении заданного значения тока, по закону электромагнитной индукции в катушке наводится электромагнитное поле, под действием которого сердечник втягивается внутрь катушки, преодолевая сопротивление пружины, и вызывает срабатывание механизма расцепления. В нормальном режиме работы в катушке также наводится электромагнитное поле, однако его силы не хватает, чтобы преодолеть сопротивление пружины и втянуть сердечник.

Устройство механизма электромагнитного расцепителя показано на примере АП50Б

Этот вид расцепителя не обладает таким большим потреблением электрической энергии, как тепловой расцепитель.

В настоящее время широкое распространение получили электронные расцепители на базе микроконтроллеров. С их помощью можно осуществлять точную настройку следующих параметров защиты:

  • уровень рабочего тока защиты
  • время защиты от перегрузки
  • время срабатывания в зоне перегрузки с функцией «тепловой памяти» и без нее
  • ток селективной отсечки
  • время селективной токовой отсечки

Реализованная функция проведения самотестирования работоспособности механизма свободного расцепления с помощью кнопки ТЕСТ позволяет проводить проверку аппарата потребителем.

Регулировка параметров настройки электрической цепи на лицевой панели устройства позволяет персоналу без лишнего труда понять, как настроена защита отходящей линии.

С помощью поворотных переключателей на лицевой панели устанавливается уровень рабочего тока цепи. Регулировка уставки рабочего тока расцепителя IR устанавливается в кратности: 0,4; 0,45; 0,5; 0,56; 0,63; 0,7; 0,8; 0,9; 0,95; 1,0 к номинальному току выключателя.

Существует два режима работы полупроводникового расцепителя при перегрузке электрической цепи:

  • с «тепловой памятью»;
  • без «тепловой памяти»

«Тепловая память» является эмуляцией работы теплового расцепителя (биметаллической пластины): микропроцессорный расцепитель программным способом задает время, которое потребовалось бы для остывания биметаллической пластины. Данная функция позволяет оборудованию и защищаемой цепи больше времени остывать и, соответственно, их срок службы не снижается.

Одним из преимуществ является установка уровня тока и времени срабатывания автоматического выключателя при коротком замыкании, что осуществляет необходимую селективность защиты. Это необходимо для того, чтобы вводной автоматический выключатель отключился позже, чем ближайшие к аварии аппараты. Важно отметить, что, в отличие от теплового расцепителя, уставки по времени в микропроцессорном расцепителе не меняются при изменении температуры окружающей среды.

Регулировка уставки тока селективной токовой отсечки выбирается кратно рабочему току IR: 1,5; 2; 3; 4; 5; 6; 7; 8; 9; 10.

Регулировка уставки времени селективной токовой отсечки выбирается в секундах: 0 (без выдержки времени); 0,1; 0,15; 0,2; 0,25; 0,3; 0,35; 0,4.

Электромагнитная совместимость микропроцессорных расцепителей автоматических выключателей OptiMat D позволяет применять эти аппараты в общепромышленных электроустановках. В свою очередь, электромагнитные поля, создаваемые элементами микропроцессорного расцепителя не оказывают негативного влияния на окружающую технику.

Рассмотрим выбор уставок на примере микропроцессорного расцепителя MR1-D250 автоматического выключателя OptiMat D. Имеется асинхронный двигатель АИР250S2 с параметрами Р=75 кВт; cosφ=0,9; Iп/Iном=7,5; для которого нужно выбрать уставки защищающего аппарата (автоматический выключатель защищает непосредственно линию с данным электродвигателем). Примем следующие условия: пуск электродвигателя легкий и время пуска равное 2 с.

Выбираем для нашего двигателя уставку в 4 секунды с функцией тепловой памяти:

В нашем случае номинальный ток электродвигателя составляет 126,6 А. Соответственно, выставляем переключатель регулировки номинального тока выключателя на значение 0,56, чтобы ближайшее значение получилось 140 А.

Чтобы автоматический выключатель не срабатывал ложно от пусковых токов, кратность которых для выбранного двигателя составляет 7,5 примем уставку селективной токовой отсечки равную 8.

Т. к. данный выключатель будет устанавливаться непосредственно для защиты электродвигателя для обеспечения селективности в действии выключателей принимаем мгновенную селективную токовую отсечку (без выдержки по времени).

Следует также отметить, что при превышении током короткого замыкания значения в 3000 А выключатель будет срабатывать мгновенно, то есть без выдержки по времени.

Таким образом, мы рассмотрели пример выбора уставок микропроцессорного расцепителя, обеспечивающие защиту асинхронного двигателя. Данный пример выбора уставок микропроцессорного расцепителя не является техническим руководством. В конечном виде панель настройки микропроцессорного расцепителя автоматического выключателя будет выглядеть так:

Электромагнитная совместимость, соответствующая требованиям ГОСТ Р 50030.2-2010, и возможность внедрения в систему автоматизации делает автоматические выключатели Optimat D250 более надежными, удобными и выгодными решениями по многим показателям.

Источник

Характеристики срабатывания автоматических выключателей

Чувствительность электромагнитных расцепителей регламентируется параметром, называемым характеристикой срабатывания. Это важный параметр, и на нем стоит немного задержаться. Характеристика, иногда ее называют группой, обозначается одной латинской буквой, на корпусе автомата ее пишут прямо перед его номиналом, например надпись C16 означает, что номинальный ток автомата 16А, характеристика С (наиболее, кстати, распространенная). Менее популярны автоматы с характеристиками B и D, в основном на этих трех группах и строится токовая защита бытовых сетей. Но есть автоматы и с другими характеристиками.

Согласно википедии, автоматические выключатели делятся на следующие типы (классы) по току мгновенного расцепления:

  • тип B: свыше 3·In до 5·In включительно (где In — номинальный ток)
  • тип C: свыше 5·In до 10·In включительно
  • тип D: свыше 10·In до 20·In включительно
  • тип L: свыше 8·In
  • тип Z: свыше 4·In
  • тип K: свыше 12·In

При этом википедия ссылается на ГОСТ Р 50345-2010. Я специально перечитал весь этот стандарт, но ни о каких типах L, Z, K в нем ни разу не упоминается. В другом месте ссылались на уже не действующий ГОСТ Р 50030.2-94 — но я и в нем упоминания о них не нашел. Да и в продаже я что-то не наблюдаю таких автоматов. У европейских производителей классификация может несколько отличаться. В частности, имеется дополнительный тип A (свыше 2·In до 3·In). У отдельных производителей существуют дополнительные кривые отключения. Например, у АВВ имеются автоматические выключатели с кривыми K (8 — 14·In) и Z (2 — 4·In), соответствующие стандарту МЭК 60947-2. В общем, будем иметь в виду, что, кроме B, C и D существуют и иные кривые, но в данной статье будем рассматривать только эти. Сами по себе кривые отключения одинаковы — они вообще показывают зависимость времени срабатывания теплового расцепителя от тока. Разница лишь в том, до какой отметки доходит кривая, после чего она резко обрывается до значения, близкого к нулю. Посмотрите на следующую картинку, обратите внимание на разброс параметров тепловой защиты автоматических выключателей. Видите два числа сверху графика? Это очень важные числа. 1.13 — это та кратность, ниже которой никакой исправный автомат никогда не сработает. 1.45 — это та кратность, при которой любой исправный автомат гарантированно сработает. Что они означают на деле? Рассмотрим на примере. Возьмем автомат на 10А. Если мы пропустим через него ток 11.3А или меньше, он не отключится никогда. Если мы увеличим ток до 12, 13 или 14 А — наш автомат может через какое-то время отключиться, а может и не отключиться вовсе. И только когда ток превысит значение 14.5А, мы можем гарантировать, что автомат отключится. Насколько быстро — зависит от конкретного экземпляра. Например, при токе 15А время срабатывания может составлять от 40 секунд до 5 минут. Поэтому, когда кто-то жалуется, что у него 16-амперный автомат не срабатывает на 20 амперах, он это делает напрасно — автомат совершенно не обязан срабатывать при такой кратности. Более того — эти графики и цифры нормированы для температуры окружающей среды, равной 30°C, при более низкой температуре график смещается вправо, при более высокой — влево.

Читайте также:  Дроссель в цепях постоянного тока

разброс характеристик автоматов

Для характеристик k, l, z кривые несколько другие: кратность гарантированного несрабатывания 1.05, а срабатывания 1.3. Извините, более красивого графика не нашел:

Что нам следует иметь в виду, выбирая характеристику отключения? Здесь на первый план выходят пусковые токи того оборудования, которое мы собираемся включать через данный автомат. Нам важно, чтобы пусковой ток в сумме с другими токами в этой цепи не оказался выше тока срабатывания электромагнитного расцепителя (тока отсечки). Проще тогда, когда мы точно знаем, что будет подключаться к нашему автомату, но когда автомат защищает группу розеток, тогда мы только можем предполагать, что и когда туда будет включено. Конечно, мы можем взять с запасом — поставить автоматы группы D. Но далеко не факт, что ток короткого замыкания в нашей цепи где-нибудь на дальней розетке будет достаточен для срабатывания отсечки. Конечно, через десяток секунд тепловой расцепитель нагреется и отключит цепь, но для проводки это окажется серьезным испытанием, да и возгорание в месте замыкания может произойти. Поэтому нужно искать компромисс. Как показала практика, для защиты розеток в жилых помещениях, офисах — там, где не предполагается использование мощного электроинструмента, промышленного оборудования, — лучше всего устанавливать автоматы группы B. Для кухни и хозблока, для гаражей и мастерских обычно ставятся автоматы с характеристикой C — там, где есть достаточно мощные трансформаторы, электродвигатели, там есть и пусковые токи. Автоматы группы D следует ставить там, где есть оборудование с тяжелыми условиями пуска — транспортеры, лифты, подъемники, станки и т.д.

Существует разница в токе срабатывания электромагнитного расцепителя (отсечки) в зависимости от того, переменный или постоянный ток проходит через автомат. Если мы знаем значение переменного тока, при котором срабатывает отсечка, то при постоянном токе срабатывание произойдет при значении, равном амплитудному значению переменного тока. То есть ток нужно умножить примерно на 1.4. Часто приводят вот такие графики (по-моему, не очень верные, но подтверждающие то, что разница между пременным и постоянным током есть):

Все написанное выше относится к обычным модульным автоматическим выключателям. У автоматов других типов характеристики несколько другие. Например, кривые срабатывания для автоматов АП-50 — в частности, можно заметить одно существенное отличие: кратности токов гарантийного срабатывания и несрабатывания у них другие.

Характеристики срабатывания селективных автоматов

Другие кратности и у селективных автоматов (специальные автоматы, применяемые в качестве групповых). Главное отличие селективных автоматов — их срабатывание происходит с небольшой задержкой, для того, чтобы не отключать всю группу, если авария произошла на одной из линий, защищенной нижестоящим автоматом. Ниже приведены характеристики E и K для селективных автоматических выключателей серии S750DR фирмы ABB:

Источник

Время токовые характеристики автоматических выключателей

Характеристики выключателей и их группы

Для автомата существует несколько важных характеристик, по которым выбирают автомат для разных нагрузок. Одна из них характеристика срабатывания автоматических выключателей.

Время токовые характеристики для трех групп B,C,D

На графике№1 показаны различие время токовых характеристик 3 -х основных групп автоматов

Кривая характеристики показывает, как время срабатывания автомата меняется от величины отношения тока через контакты автомата к номинальному его значению. Линия зависимости отображается графически. Например, автоматы одного номинала при разных характеристиках кривых автоматических выключателей имеют разное время отключения.Также на графике №1 отмечены прямоугольниками зоны действия тепловой защиты и электромагнитной защиты автоматов.

Характеристики автоматических выключателей A, B, C, D

Чтобы точно подобрать автомат под нагрузку, их разбивают на четыре группы с отличающимися время токовыми характеристиками автоматических выключателей.

Список групп:
А – ток(2-3) ln;
B – ток(3-5) ln;
C – ток(5-10) ln;
D – ток(10-20) ln;
где – ln номинальный ток (предельный ток для длительной работы).

Читайте также:  Как проверить ток в лампочке мультиметром

С характеристикой А автоматы применяются не часто, там где имеется незначительное превышение номинального значения тока.

Автоматический выключатель характеристика B

Этот график отражает зависимость времени срабатывания всех видов защиты автомата от проходящего по нему величины тока. По оси X отображается кратность предельного тока к номинальному току – величина (I/In). По оси Y отображается время в секундах.

На графике изображены две линии кривая времени срабатывания тепловой защиты устройств автоматических выключателей) и кривая срабатывания электромагнитной защиты. Линии внизу графика отображают горячее состояние автомата, наверху показывают холодное его состояние. Пунктиром обозначены верхние значения автоматов до 32 А. Все графики составлены для рабочей температуры автоматических выключателей +30°С.

Время токовые характеристики для группы B

График №2 Время токовые характеристики для группы B с током превышения номинального тока в 3 – 5 раз

На графике №2 видно, что проходящий ток автомата 3ln, и он отключается через время 0, 02 сек. в подогретом состоянии, а отключается за 32 секунды в не разогретом виде, в случае автомата до 32 А, автомат выше 32А отключится за 78 сек. При токе через автомат в 5In отключение происходит за 0,01 сек. для горячей линии и за 0,03 сек. для холодного автомата.

Характеристика автомата B используется для защиты чисто активной нагрузки. Это – электропечи, освещение, обогреватели. Чтобы соблюдать селективность автоматических выключателей в складах, домах и магазинах на вводе используют автомат характеристики C, для вторичных линий освещения, бытовых электроприборов с характеристикой В, с меньшим током пуска.

Автоматические выключатели характеристика С

Все автоматы характеристики С имеют большее значение кратности тока к номиналу – I/In, относительно автоматов с характеристикой В, кратность от 5 до 10In. Смотрим на графике №3, при токе 5In автомат отключается в течении 0,02 секунды в разогретом виде, и за 11 сек. для холодного автомата ниже 32 ампер, и через 27 сек. отключение произойдет для автомата выше 32 А.

Время токовые характеристики для группы С

График №3 Время токовые характеристики для группы автоматов С

Проходящий ток в 10In вызовет отключение через 0,01 сек. для горячей линии и 0,027 сек. для холодной. С такой характеристикой автоматы устанавливают в защите двигателя с не большими пусковыми токами, для освещения, в офисах, домах, квартирах, подсобных помещениях.

Характеристика D автоматического выключателя

Смотрите график №4. Проходящий ток в 10In вызовет отключение через 0,015 сек. горячего режима, и за 3 сек. для холодного режима и автоматов ниже 32 ампер и 8 секунд в холодном режиме автомата выше 32 ампер. Когда ток достигает 20In, автомат сработает за 0,008 сек. в подогретом виде и 0,018 – в холодном.

Время токовые характеристики для группы D

График №4 Время токовые характеристики для автоматов группы D

Применение этих автоматов находит в случаях тяжелых пусков с большими пусковыми токами или с частными запусками. На всех графиках показан широкий диапазон кривых, которые обусловлены большим расхождениям параметров автоматов. Эти параметры зависят от наружной температуры и температуры автомата, зависящей от значения проходящего через него тока.

Когда величина I/Iн≤1 меньше или соответствует номинальному току то, время выключения автомата будет бесконечно. Также на графике видно, что чем значительнее ток относительно номинальной величине, тем быстрее сработает автомат.

Источник



Время-токовые характеристики (ВТХ) автоматических выключателей

Введение

Как известно автоматические выключатели могут иметь следующие виды расцепителей обеспечивающих защиту электрической цепи от сверхтоков: электромагнитный — защищающий сеть от коротких замыканий, тепловой — обеспечивающий защиту от токов перегрузки и комбинированный представляющий собой совокупность электромагнитного и теплового расцепителя (подробнее читайте статью «автоматические выключатели«).

Примечание: Современные автоматические выключатели предназначенные для защиты электрических сетей до 1000 Вольт имеют, как правило, комбинированные расцепители.

Расцепители автоматических выключателей — это исполнительные механизмы которые обеспечивают отключение (расцепление) электрической цепи при возникновении в ней тока выше допустимого, причем чем больше это превышение тем быстрее должно произойти расцепление.

Зависимость времени расцепления автоматического выключателя от величины проходящего через него тока и называется время-токовой характеристикой или сокращенно — ВТХ.

Условия и значения ВТХ

ВТХ автоматов определяются следующими значениями:

1) Ток мгновенного расцепления — минимальное значение тока, вызывающее автоматическое срабатывание выключателя без преднамеренной выдержки времени. (ГОСТ Р 50345-2010, п. 3.5.17)

Примечание: срабатывание без преднамеренной выдержки времени обеспечивается электромагнитным расцепителем автомата.

Ток мгновенного расцепления определяется так называемой «характеристикой расцепления» или как ее еще называют — характеристика срабатывания.

Согласно ГОСТ Р 50345-2010 существуют следующие типы характеристик срабатывания автоматических выключателей:

стандартные характеристики срабатывания (расцепления) автоматов

Примечание: существуют так же и другие, нестандартные типы характеристик, о них мы говорили в статье «автоматические выключатели«.

Как видно из таблицы выше ток мгновенного расцепления указывается в виде диапазона значений, например характеристика «B» предполагает, что автомат обеспечит мгновенное расцепление при протекании через него тока в 3 — 5 раз превышающего его номинальный ток, т.е. если автоматический выключатель с данной характеристикой имеет номинальный ток 16 Ампер, то он обеспечит мгновенное расцепление при токе от 48 до 80 Ампер.

Определить характеристику срабатывания автоматического выключателя, как правило, можно по маркировке нанесенной на его корпусе:

маркировка характеристики срабатывания на автоматическом выключателе

2) Условный ток нерасцепления — установленное значение тока, который автоматический выключатель способен проводить, не срабатывая, в течение заданного (условного) времени*. (ГОСТ Р 50345-2010, п. 3.5.15) Согласно пункту 8.6.2.2 ГОСТ Р 50345-2010 условный ток нерасцепления равен 1,13 номинального тока автомата.
3) Условный ток расцепления — установленное значение тока, которое вызывает срабатывание автоматического выключателя в течение заданного (условного) времени*. (ГОСТ Р 50345-2010, п. 3.5.16) Согласно пункту 8.6.2.3 ГОСТ Р 50345-2010 условный ток расцепления равен 1,45 номинального тока автомата.

* Условное время равно 1 ч для выключателей с номинальным током до 63 А включительно и 2 ч с номинальным током свыше 63 А. (ГОСТ Р 50345-2010, п.8.6.2.1)

Время-токовая характеристика автоматического выключателя определяется условиями и значениями приведенными в таблице 7 ГОСТ Р 50345-2010:

значения ВТХ автоматов таблица 7 ГОСТ Р 50345-2010

Примечание: Таблица действительна для автоматов, смонтированных в соответствии с условиями испытаний приведенными ниже работающих при температуре 30 +5 °С

Читайте также:  Если ногу простреливает как током

Графики ВТХ

Для удобства производителями в паспортах на автоматические выключатели время-токовые характеристики указываются в виде графика где по оси X откладывается кратность тока электрической цепи к номинальному току автомата (I/In), а по оси Y время срабатывания расцепителя.

Для подробного рассмотрения в качестве примера возьмем график ВТХ для автоматического выключателя с характеристикой «B»

ПРИМЕЧАНИЕ: Все приведенные ниже графики предоставлены в качестве примера. У различных производителей графики ВТХ могут отличаться (смотрите в паспорте автомата), однако они в любом случае должны соответствовать требованиям ГОСТ Р 50345-2010 и в частности значениям указанным в таблице 7 приведенной выше.

расшифровка графика ВТХ автомата

Как видно график ВТХ представлен двумя кривыми: первая кривая (красная) — это характеристика автомата в так называемом «горячем» состоянии, т.е. автомата находящегося в работе, вторая (синяя) — характеристика автомата в «холодном» состоянии, т.е. автомата через который только начал протекать электрический ток.

При этом синяя кривая имеет дополнительно штриховую линию, эта линия показывает характеристику автомата (его теплового расцепителя) с номинальным током до 32 Ампер, это различие в характеристиках автоматов с номиналами до и выше 32 Ампер обусловлено тем, что в автоматах с большим номинальным током биметаллическая пластина теплового расцепителя имеет большее сечение и соответственно ей необходимо больше времени что бы разогреться.

Кроме того каждая кривая имеет два участка: первый — показывающий плавное изменение времени срабатывания в зависимости от тока электрической цепи является характеристикой теплового расцепителя, второй — показывающий резкое снижение времени срабатывания (при токе от 3 In в горячем состоянии и от 5 In в холодном состоянии ), является характеристикой электромагнитного расцепителя автоматического выключателя.

чтение графика ВТХ автомата

Как видно, на графике ВТХ отмечены основные значения характеристик автомата согласно ГОСТ Р 50345-2010 при 1.13In (Условный ток нерасцепления) автомат не сработает в течении 1-2 часов, а при токе в 1,45 In (Условный ток расцепления) автомат отключит цепь за время менее 50 секунд (из горячего состояния).

Как уже было сказано выше ток мгновенного расцепления определяется характеристикой срабатывания автомата, у автоматических выключателей с характеристикой «B» он составляет от 3In до 5In, при этом согласно вышеуказанному ГОСТу (таблице 7) при 3In автомат не должен сработать за время менее 0,1 секунды из холодного состояния, но должен отключиться за время менее 0,1 секунды из холодного состояния при токе в цепи 5In и как мы можем увидеть из графика выше данное условие выполняется.

Так же по время-токовой характеристике можно определить время срабатывания автомата при любых других значениях тока, например: в цепи установлен автомат с характеристикой «B» и номинальным током 16 Ампер, при работе в данной цепи произошла перегрузка и ток вырос до 32 ампер, определяем время срабатывания автомата следующим образом:

  1. Делим ток протекающий в цепи на номинальный ток автомата

32А/16А=2

Определив что ток в цепи в два раза больше номинала автомата, т.е. составляет 2In откладываем данное значение по оси X графика и поднимая от нее условную линию вверх смотрим где она пересекается с кривыми графика:

срабатывание автомата при двукратном токе в цепи

Как мы видим из графика при токе 32 Ампера автомат с номинальным током 16 Ампер разомкнет цепь за время менее 10 секунд — из горячего состояния и за время менее 5 минут — из холодного состояния.

Приведем примеры ВТХ автоматических выключателей всех стандартных характеристик срабатывания (B, C, D):

время-токовая характеристика автомата типа B

время-токовая характеристика автомата типа C

время-токовая характеристика автомата типа D

ПРИМЕЧАНИЕ: Время-токовые характеристики согласно ГОСТ Р 50345-2010 указываются для автоматов работающих при температуре +30 +5 о C смонтированных в соответствии с определенными условиями:

Условия испытания. Поправочные коэффициенты.

Согласно ГОСТ Р 50345-2010 При испытаниях выключатели устанавливают отдельно, вертикально, на открытом воздухе в месте, защищенном от чрезмерного внешнего нагрева или охлаждения.

испытания автоматических выключателей проводят при любой температуре воздуха, а результаты корректируют по температуре +30 °С на основании поправочных коэффициентов, предоставленных изготовителем.

При этом в любом случае отклонение испытательного тока от указанного в таблице 7 не должно превышать 1,2% на 1 °С изменения температуры калибровки.

Изготовитель должен подготовить данные по изменению характеристики расцепления для температур калибровки, отличных от контрольного значения.

Таким образом, что бы точно узнать время отключения автоматических выключателей, эксплуатируемых при условиях отличающихся от условий испытания необходимо воспользоваться поправочными коэффициентами которые должен предоставить изготовитель данных выключателей.

Приведем пример таких поправочных коэффициентов (обычно их всего 2):

  • Температурный коэффициент (Кt)

Температурный коэффициент учитывает отличие температуры окружающей среды при которой автоматический выключатель испытывался от фактической температуры окружающей среды при которой он эксплуатируется:

поправочный температурный коэффициент автоматического выключателя

Как видно из графика, чем ниже температура окружающей среды тем выше данный коэффициент. Объясняется это просто — чем ниже температура окружающей среды, тем больший ток должен протекать через автоматический выключатель что бы нагреть расцепитель до температуры необходимой для его срабатывания.

  • Коэффициент, учитывающий количество установленных рядом автоматов (Кn)

Как было сказано выше, автоматические выключатели при их испытании устанавливаются отдельно, однако на практике они устанавливаются в электрических щитах в один ряд с другими автоматами, что соответственно ухудшает их охлаждение за счет ухудшения циркуляции воздуха и тепла от установленных рядом выключателей:

поправочный коэффициент учитывающий количество автоматических выключателей

Соответственно, как и можно увидеть из графика, чем больше рядом установлено автоматов, тем меньше данный коэффициент.

Зная поправочные коэффициенты можно скорректировать номинальный ток автомата в зависимости от условий его эксплуатации.

Например: имеется автоматический выключатель с номинальным током 16 Ампер установленный в щитке с 5 другими автоматами при температуре окружающего воздуха +10 о C.

  1. По графикам выше найдем поправочные коэффициенты:
  • Кt=1,05
  • Кn=0,8
  1. Зная поправочные коэффициенты скорректируем номинальный ток автомата:

In / = In* Кt* Кn=16*1.05*0.8=13.44 Ампер

Соответственно при эксплуатации автоматического выключателя в вышеуказанных условиях для определения времени его срабатывания необходимо принимать ток не 16 Ампер, а 13,44 Ампера.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник