Меню

Кто открыл закон взаимодействия электрических токов

Открытие электрического тока.

Доброго времени суток. Сегодня, в рубрике «Интересные факты» — Открытие электрического тока. Открытие и «приручение» электрического тока стало важнейшим в истории человечества. И теперь он служит нам верой и правдой, но не прощает ошибок и халатного обращения.

Электрический токЭто упорядоченное движение зараженных частиц. Так несколькими сухими словами разъясняют это удивительное физическое явление в учебниках. Все сферы деятельности человека связаны с электрическим током.

Возможно, Вам будет интересно – «Где зарабатывают студенты».

История открытия электрического тока.

Открытие электрического тока

Янтарь

Первооткрывателем электричества принято считать древнегреческого, философа и ученого Фалеса Милетского, жившего в седьмом веке до нашей эры. Он обратил внимание на то, что если шерстью потереть янтарь, тот обретает способность притягивать легкие мелкие предметы. Позже, еще несколько человек пытались изучать природу электричества. Аристотель в VI веке до н. э. заметил, что некоторые виды угрей способны поражать врага при помощи электрических разрядов.

Электрический угорь

Но эти робкие попытки объяснить природу непонятного явления не приносили успеха. И лишь в VII в, англичанин по национальности, Уильям Гильберт, издает труд, в нем он описывает свойства некоторых природных тел притягивать легкие предметы после их натирания. Открытие электрического тока.

Затем, в 1663 году Отто фон Герике сконструировал подобие динамо-машины, она предоставляла возможность увидеть как натертые тела не только притягиваются, но и отталкиваются друг от друга.

Открытие электрического тока

Гравюра Получение статического электричества

Новые исследования и открытия.

А немного позже, в 1672г. Готфрид Вильгельм Лейбниц смог получить электрическую искру с помощью машины фон Герике.

Англичанин Стивен Грей в 1729г. фиксирует передачу электрозарядов на малые расстояния. И формирует основу для классификации проводников и диэлектриков. Открытие электрического тока.

В 1733г. естествоиспытатель из Франции Шарль Дюфе делает открытие, в нем дает определение разноименным зарядам (положительным и отрицательным, которые он назвал стеклянным и смоляным соответственно). Немного позже, он доказал, что одноименные заряды отталкиваются, а разноименные притягиваются.

Почти одновременно в 1745г. два человека, немец фон Клейст и голландец Мушенбрук, создают конденсатор (Лейденскую банку).

Лейденские банки

Бенджамин Франклин (американский политик и естествоиспытатель) проводит эксперименты с электричеством и изучает природу молний. В 1752 году он изобрел громоотвод (молниеотвод), способный увести атмосферное электричество в сторону от объекта. Он разрабатывает теорию, в которой электричество представлено как нематериальное вещество.

А спустя немного времени, он выдвигает концепцию электродвигателя. Эти открытия дают право считать его одним из первооткрывателей электрического тока наравне с фон Клейстом и Мушенбруком.

Открытие электрического тока. Закон Кулона.

В 1785г. французский ученый Шарль Кулон открывает закон взаимодействия неподвижных (статических) зарядов. Этот закон, а также единица электрического заряда, впоследствии были названы его именем.

Открытие электрического тока

Закон Кулона

Вас может заинтересовать — «Самые востребованные профессии 2020».

Первый гальванический элемент.

Луиджи Гальвани, итальянский физик и физиолог, в 1791г. делает открытие, в котором описывает возникновение разности потенциалов при погружении двух пластин из разного материала в электролит. Александро Вольта (итальянский физик и химик) в 1800г. продолжает исследования Луиджи Гальвани и создает конструкцию в виде вертикального цилиндра из проложенных смоченными в соленой воде серебряных и цинковых пластин, так называемый «вольтов столб», который становится прообразом батарейки.

Вольтов столб

Этот прибор был способен накапливать разность потенциалов, что в итоге производило постоянный электрический ток. В 1861г. единица напряжения получает название «Вольт».

Гальванический элемент

Открытие электрического тока и обретение электричества.

Изобретение батареи постоянного тока спровоцировало огромный рост новых исследований и открытий в конце XIII начале XIX вв.

Французский ученый Андре Ампер в 1821г. в своих трудах доказывает взаимосвязь между магнитными и электрическими явлениями, которых не может быть в неподвижности электричества и вводит понятие «Электрический ток». В честь него силу электрического тока называют «Ампер». Открытие электрического тока.

В 1826г. немецкий физик Георг Ом выводит закон связи напряжения, сопротивления и силы тока — (сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению). Также он вводит новые определения – электродвижущая сила, падение напряжения на участке цепи и проводимость. Единица сопротивления названа в его честь в 1960г.

Открытие электрического тока

Закон Ома

Майкл Фарадей.

Английский естествоиспытатель Майкл Фарадей в 1831г. открывает электромагнитную индукцию и конструирует первый электромотор. Он предсказывает такое явление, как электромагнитные волны и создает трактат об электромагнитном поле.

Электромотор Фарадея

Открытие электрического тока в жизнь.

Первым применение электрическому току нашел русский ученый Александр Лодыгин. Именно он в конце XIII в. изобрел и запатентовал первую в мире электрическую лампочку накаливания. Так началась эра электрического тока. В последствии было еще много открытий, связанных с электротоком, но толчком послужили вышеописанные легендарные исследования.

Открытие электрического тока

Лампа накаливания Лодыгина

Источник

Закон Ампера простыми словами

На основе магнитных явлениях построено действие электротехнических устройств. Все современные электромоторы, генераторы и множество других электромеханических приборов работают по принципу взаимодействия электрического тока с окружающими его магнитными полями. Эти взаимодействия описывает знаменитый закон Ампера, названный так в честь своего первооткрывателя.

Читайте также:  Типы сопротивлений в цепях переменного тока

Влияние электричества на поведение магнитной стрелки впервые обнаружил Х. К. Эрстед. Он заметил, что вопреки ожиданию, магнитное поле не параллельно вектору тока, а перпендикулярно ему. Развивая выводы Эрстеда, и продолжая исследования в этом направлении, Мари Ампер установил [1], что электричество взаимодействует не только с магнитами, но и между собой. Заслуга Ампера в том, что он теоретически обосновал взаимное влияние токов и предоставил формулу, позволяющую вычислять силы этого взаимодействия.

Определение и формула

Экспериментальным путём Ампер установил, что между двумя параллельными проводниками, подключенными к постоянному току, действует притяжение (однонаправленные токи) либо отталкивание (если направления противоположные). Эти силы взаимодействия определяются параметрами токов (прямо пропорциональная зависимость), и расстоянием между проводниками (обратно пропорциональная зависимость).

Расчёт амперовой силы на единицу длины проводника осуществляется по формуле:

Формула расчета амперовой силы

где F – сила, I1, I2 – величина тока в проводниках, а μ – магнитная проницаемость среды, окружающей проводники (см. рис. 1).

Природой взаимодействия является магнитное поле, образованное перемещаемыми по проводникам электрическими зарядами. Под влиянием магнитного поля на электрические заряды возникает сила магнитной индукции, которую обозначают символом B.

Линии, в каждой точке которых касательные к ним совпадают с направлением соответствующих векторов магнитной индукции, получили название линий электромагнитной индукции. Применяя мнемоническое правило буравчика, можно определить ориентацию в пространстве линий магнитной индукции. То есть, при ввинчивании буравчика в сторону, куда направлен вектор электрического тока, движение концов его рукоятки укажет направление векторов индукции.

Из сказанного выше следует, что в проводниках, с одинаково ориентированными токами, направления векторов магнитной индукции совпадают, а значит, векторы сил направлены навстречу друг к другу, что и вызывает притяжение.

Взаимодействие параллельных проводников

Рис. 1. Взаимодействие параллельных проводников

Подобным образом проводники взаимодействуют не только между собой, но и с магнитными полями любой природы. Если такой проводник окажется в магнитном поле, то на элемент, расположенный в зоне действия магнита, будет действовать сила, которую именуют Амперовой:

Амперова сила

Для вычисления модуля этой силы пользуются формулой: dF = IBlsinα , где α — угол, образованный векторами индукции и ориентацией тока.

Рассмотренную нами зависимость описывает закон Ампера, формулировка которого понятна из рисунка 2.

Закон Ампера

Рис. 2. Формулировка закона Ампера

Не трудно сообразить, что когда α = 90 0 , то sinα = 1. В этом случае величина F приобретает максимальное значение: F = B*L*I, где L– длина проводника, оказавшегося под действием магнитного поля.

Таким образом, из закона Ампера вытекает:

  • проводник с током реагирует на магнитные поля.
  • действующая сила находится в прямо пропорциональной зависимости от параметров тока, величины магнитной индукции и размеров проводника.

Обратите внимание, что на данном рисунке 3 проводник расположен под углом 90º к линиям магнитной индукции, что вызывает максимальное действие магнитных сил.

Проводник в магнитном поле

Рис. 3. Проводник в магнитном поле

Направление силы Ампера

Принимая к сведению то, что сила – векторная величина, определим её направление. Рассмотрим случай, когда проводник с током расположен между двумя полюсами магнитов под прямым углом к линиям магнитной индукции.

Выше мы установили, что согласно закону Ампера, действующая на данный проводник сила, равна: F = B*L*I. Направление вектора рассматриваемой силы определяется по результатам векторного произведения:

Амперова сила

Если полюса магнита статичны (неподвижны), то векторное произведение будет зависеть только от параметров электричества, в частности, от того, в какую сторону оно течёт.

Направление силы Ампера определяют по известному правилу левой руки: ладонь располагают навстречу магнитным линиям, а пальцы размещают вдоль проводника, в сторону устремления тока. На ориентацию силы Ампера указывает большой палец, образующий прямой угол с ладонью (см. рис. 4).

Интерпретация правила

Рис. 4. Интерпретация правила

Измените мысленно направление электрического тока, и вы увидите, что направление вектора Амперовой силы изменится на противоположное. Модуль вектора имеет прямо пропорциональную зависимость от всех сомножителей, но на практике эту величину удобно регулировать путём изменения параметров в электрической цепи (например, для регулировки мощности электродвигателя).

Применение

Закон Ампера, а точнее следствия, вытекающие из него, используются в каждом электромеханическом устройстве, где необходимо вызвать движение рабочих элементов. Самым распространённым механизмом, работа которого базируется на законе Ампера, является электродвигатель.

Применение электромоторов настолько широкое, что его можно увидеть практически во всех сферах человеческой деятельности:

  • на производстве, в качестве приводов станков и различного оборудования;
  • в бытовой сфере (бытовая электротехника);
  • в электроинструментах;
  • на транспорте;
  • в устройствах автоматики, в офисной технике и во многих других сферах.

Из закона Ампера вытекает возможность получения электротока путём перемещения проводников, находящихся в магнитном поле. На данном принципе построены все генераторы электрического тока. Благодаря этой уникальной возможности, у нас появился доступ к использованию электроэнергии для различных потребностей.

Читайте также:  Ток в емкостном элементе формула

Мы буквально окружены проявлением закона Ампера. Например, просмотр телепередачи сопровождается звуком, который транслируется через динамики. Но диффузор динамика приводит в движение сила Ампера. Мы разговариваем по телефону – там тоже есть динамик и микрофон. Принцип действия современных микрофонов также основан на законе Ампера.

Вход в помещение через автоматическую раздвижную дверь, поднятие на лифте, поездка в троллейбусе, трамвае, запуск двигателя автомобиля – всё это было бы невозможным, если бы не существовало взаимодействия электрического тока с силами магнитной индукции.

Ампер открыл перед человечеством такие возможности, без которых развитие научно-технического прогресса было бы невозможным. Влияние этого закона в электротехнике сравнимо с законами Ньютона, которые в своё время совершили революцию в механике. В этом огромная заслуга учёного-физика Мари Ампера, труды которого увенчались открытием в 1820 г. знаменитого закона.

Источник

Закон Ампера

В этой статье поговорим о законе Ампера — одном из основных законов электродинамики. Сила Ампера работает сегодня во многих электрических машинах и установках, и именно благодаря силе Ампера в 20-веке стал возможным прогресс, связанный с электрификацией во многих сферах производства. Закон Ампера незыблем по сей день, и продолжает верно служить современному машиностроению. Так давайте же вспомним, кому мы обязаны этим прогрессом, и как все начиналось.

В 1820 году великий французский физик Андре Мари Ампер сообщил о своем открытии. Он рассказал в академии наук о явлении взаимодействия двух проводников с током: проводники с противоположными токами взаимно отталкиваются, а с однонаправленными — взаимно притягиваются. Ампер также предположил, что магнетизм имеет полностью электрическую природу.

Еще некоторое время ученый проводил свои эксперименты, и в конце концов подтвердил свое предположение. Наконец, в 1826 году он опубликовал труд «Теория электродинамических явлений, выведенная исключительно из опыта». С этого момента идея магнитной жидкости была отброшена за ненадобностью, поскольку магнетизм, как оказалось, имеет своей причиной электрические токи.

Постоянный магнит

Ампер заключил, что и постоянные магниты тоже имеют внутри себя электрические токи, круговые молекулярные и атомарные токи, перпендикулярные оси, проходящей через полюса постоянного магнита. Подобно постоянному магниту ведет себя и катушка, по которой течет по спирали ток. Ампер получил полное право на то, чтобы уверенно утверждать: «все магнитные явления сводятся к действиям электрическим».

Закон Ампера

В процессе своей исследовательской работы, Ампер нашел и связь силы взаимодействия элементов тока с величинами этих токов, нашел он и выражение для данной силы. Ампер указал на то, что силы взаимодействия токов не являются центральными, как например гравитационные. Формула, которую вывел Ампер, входит сегодня в каждый из учебников электродинамики.

Ампер установил, что токи противоположного направления отталкиваются, а токи одного направления притягиваются, если же токи перпендикулярны, то магнитное взаимодействие между ними отсутствует. Таким был итог исследования ученым взаимодействий электрических токов, как истинных первопричин магнитных взаимодействий. Ампер открыл закон механического взаимодействия электрических токов, и решил таким образом проблему магнитных взаимодействий.

Для выяснения закономерностей, по которым силы механического взаимодействия токов связаны с другими величинами, можно и сегодня провести эксперимент, наподобие эксперимента Ампера. Для этого относительно длинный проводник с током I1 закрепляют неподвижно, а короткий проводник с током I2 делают подвижным, допустим, нижняя сторона подвижной рамки с током будет вторым проводником. Рамка соединяется с динамометром для измерения силы F, действующей на рамку, когда проводники с токами располагаются параллельно.

Изначально система уравновешивается, а расстояние R между проводниками экспериментальной установки делается значительно меньшим по сравнению с длиной l этих проводников. Цель эксперимента — измерить силу отталкивания проводников.

Ток, как в неподвижном, так и в подвижном проводниках, можно регулировать посредством реостатов. Варьируя расстояние R между проводниками, изменяя ток в каждом из них можно легко обнаружить зависимости, увидеть, как от тока и от расстояния зависит сила механического взаимодействия проводников.

Если ток I2 в подвижной рамке неизменен, а ток I1 в неподвижном проводнике увеличивать в определенное количество раз, то и сила F взаимодействия проводников возрастет во столько же раз. Аналогичным образом складывается ситуация и в том случае, если ток I1 в неподвижном проводнике неизменен, а ток I2 в рамке изменяется, тогда сила F взаимодействия меняется точно так же, как и при изменении тока I1 в неподвижном проводнике при неизменном токе I2 в рамке. Таким образом, приходим к очевидному выводу — сила взаимодействия проводников F прямо пропорциональна силе тока I1 и силе тока I2.

Если теперь изменять расстояние R между взаимодействующими проводниками, то окажется, что с увеличением этого расстояния, сила F уменьшается, и уменьшается во столько же раз, во сколько увеличено расстояние R. Таким образом, сила механического взаимодействия F проводников с токами I1 и I2 обратно пропорциональна расстоянию R между ними.

Изменяя размер l подвижного проводника легко убедиться и в том, что сила связана и с длиной взаимодействующей стороны прямо пропорционально.

Читайте также:  Как определить выходную силу тока трансформатора

В итоге можно ввести коэффициент пропорциональности и записать:

Эта формула позволяет найти силу F, с которой магнитное поле, порожденное бесконечно длинным проводником с током I1 действует на параллельный ему участок проводника с током I2, при том, что длина участка равна l, а R — расстояние между взаимодействующими проводниками. Данная формула крайне важна при исследованиях магнетизма.

Коэффициент пропорциональности может быть выражен через магнитную постоянную как:

Тогда формула примет вид:

Сила F называется теперь силой Ампера, а закон, определяющий величину этой силы — законом Ампера. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током:

«Сила dF, с которой магнитное поле действует на элемент dl проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока dI в проводнике и векторному произведению элемента длины dl проводника на магнитную индукцию B»:

Направление силы Ампера определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила левой руки, которое относится к основным законам электротехники, а модуль силы Ампера можно вычислить по формуле:

Здесь альфа — угол между вектором магнитной индукции и направлением тока.

Очевидно, сила Ампера максимальна когда элемент проводника с током расположен перпендикулярно линиям магнитной индукции В.

Определение силы Ампера

Именно благодаря силе Ампера работают сегодня многие электрические машины, в которых проводники с током взаимодействуют друг с другом и с электромагнитным полем. Подавляющее большинство генераторов и моторов так или иначе используют в своей работе силу Ампера. Роторы электродвигателей вращаются в магнитном поле их статоров благодаря силе Ампера.

Электротранспорт: трамваи, электрички, электрокары — все они используют силу Ампера чтобы их колеса в конечном итоге вращались. Электрические замки, двери лифтов и т. д. Динамики, громкоговорители, — в них магнитное поле катушки с током взаимодействует с магнитным полем постоянного магнита, формируя звуковые волны. Наконец, в токамаках благодаря силе Ампера сжимается плазма.

Источник



Закон Ампера

Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера.

Ампер первым установил, что проводники, по которым течет электрический ток, взаимодействуют механически (притягиваются или отталкиваются).

Конкретное направление силы Ампера можно найти с помощью правила левой руки. Левую руку надо расположить так, чтобы линии поля входили в ладонь, четыре пальца были направлены по току, тогда отогнутый на 90 градусов большой палец укажет направление силы Ампера.

Еще Ампер установил, что два параллельных проводника с током притягиваются, если токи имеют одинаковые направления и отталкиваются, если токи текут в противоположные стороны. Это просто объяснить, если представить, что один проводник создает магнитное поле, а другой проводник в него помещен и это поле действует на него. Можно использовать правило левой руки и выяснить, как направлена сила.

Закон Ампера

Сила Ампера – сила, действующая на проводник тока, находящийся в магнитном поле и равная произведению силы тока в проводнике, модуля вектора индукции магнитного поля, длины проводника и синуса угла между вектором магнитного поля и направлением тока в проводнике.

Для прямолинейного проводника сила Ампера имеет вид:

где: \( I \) — сила тока, которая течет в проводнике, \( \overrightarrow \) — вектор индукции магнитного поля, в которое проводник помещен, \( \overrightarrow \) — длина проводника в поле, направление задано направлением тока, \( \alpha \) — угол между векторами \( \overrightarrowи\ \overrightarrow \) .

Этой формулой можно пользоваться:

  • если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой;
  • если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).

Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:

Значение закона Ампера

На основании закона Ампера устанавливают единицы силы тока в системах СИ и СГСМ. Так как ампер равен силе постоянного тока, который при течении по двум параллельным бесконечно длинным прямолинейным проводникам бесконечно малого кругового сечения, находящихся на расстоянии 1м друг от друга в вакууме вызывает силу взаимодействия этих проводников равную \( 2\cdot <10>^<-7>Н \) на каждый метр длины.

Ток в один ампер – это такой ток, при котором два однородных параллельных проводника, расположенные в вакууме на расстоянии один метр друг от друга взаимодействуют с силой \( 2\cdot <10>^ <-7>\) Ньютона.

Закон взаимодействия токов – два находящихся в вакууме параллельных проводника, диаметры которых много меньше расстояний между ними, взаимодействуют с силой прямо пропорциональной произведению токов в этих проводниках и обратно пропорциональной расстоянию между ними.

Источник