Меню

Лекция электрический ток в полупроводниках кратко

Конспект лекции » Полупроводники»

Нажмите, чтобы узнать подробности

Конспект лекции » Полупроводники» содержит необходимый материал для учителя и учеников по данной теме

Просмотр содержимого документа
«Конспект лекции » Полупроводники»»

Полупроводники

Полупроводники – большой класс веществ, удельное сопротивление которых изменяется в широких пределах от 10 -5 до 10 10 Ом∙м.

Полупроводники обладают промежуточными свойствами между металлами и диэлектриками. Характерным для полупроводников является не величина удельного сопротивления, а то, что она под воздействием внешних условий изменяется в широких пределах.

К полупроводникам относятся:

а) элементы III, IV, V и VI групп периодической системы элементов, например Si, Ge, As, Se, Te;

б) сплавы некоторых металлов;

в) оксиды (окислы металлов);

г) сульфиды (сернистые соединения);

д) селениды (соединения с селеном).

Сопротивление полупроводников зависит от:

в) наличия примесей.

ρ

полупроводники

t, C

Терморезисторы – специальные полупроводниковые приборы, в которых используется зависимость электрического сопротивления полупроводников от температуры.

Электрическое сопротивление полупроводников уменьшается и при освещении их светом.

Фоторезисторы – приборы, в которых используется свойство полупроводников изменять своё электрическое сопротивление при освещении светом.

1. Собственная проводимость полупроводников.

Собственная проводимость – электрическая проводимость химически чистого полупроводника.

В типичном полупроводнике (кристалле кремния Si) атомы объединены ковалентной (атомной) связью. При комнатной температуре средняя энергия теплового движения атомов в кристалле полупроводника составляет 0,04 эВ. Это значительно меньше энергии, необходимой для отрыва валентного электрона, например, от атома кремния (1,1 эВ). Однако вследствие неравномерности распределения энергии теплового движения или при внешних воздействиях некоторые атомы кремния ионизируются. Образуются свободные электроны и вакантные места в ковалентной связи – так называемые дырки. Под воздействием внешнего электрического поля возникает упорядоченное движение свободных электронов и упорядоченное движение в противоположном направлении такого же количества дырок.

Электронная проводимость или проводимость n-типа (от лат. negative – отрицательный) – проводимость полупроводников, обусловленная электронами.

Дырочная проводимость или проводимость p-типа (от лат. positive – положительный) – проводимость полупроводников, обусловленная дырками.

Таким образом, собственная проводимость полупроводника обусловлена одновременно двумя типами проводимости – электронной и дырочной.

2. Примесная проводимость полупроводников.

Примесная проводимость – электрическая проводимость полупроводников, обусловленная наличием примесей (примеси – атомы посторонних элементов).

Наличие в полупроводнике примеси существенно изменяет его проводимость. Например, при введении в кремний примерно 0,001 ат.% бора его проводимость увеличивается примерно в 10 6 раз.

В основном, атомы примеси имеют валентность, отличающуюся на единицу от валентности основных атомов.

Донорные примеси – примеси с большей валентностью, сообщающие полупроводнику электронную проводимость.

Полупроводник (кремний) + донор (мышьяк) = полупроводник n-типа.

Акцепторные примеси – примеси с меньшей валентностью, сообщающие полупроводнику дырочную проводимость.

Полупроводник (кремний) + акцептор (индий) = полупроводник р-типа.

3. Полупроводниковые диоды и триоды. Их применение.

Принцип действия большинства полупроводниковых приборов основан на использовании свойств pn-перехода.

Электронно-дырочный переход (или pn–переход) – граница соприкосновения двух полупроводников с различными типами проводимости.

Через границу раздела происходит диффузия электронов и дырок, которые встречаясь рекомбинируют.

На границе раздела в электронном полупроводнике остаются положительные ионы донорной примеси, а в дырочном образуются отрицательные ионы акцепторов. Образуется так называемый запирающий слой (двойной электрический слой), напряжённость которого Езап направлена от электронного полупроводника к дырочному. Через этот двойной слой могут прорваться из n-полупроводника в p-полупроводник только такие электроны, которые обладают для этого достаточно большими энергиями. Внешнее электрическое поле, приложенное к двум разнородным полупроводникам, в зависимости от своего направления может и ослаблять поле запирающего слоя.

Запирающий слой обладает односторонней проводимостью: запирающий слой пропускает ток в направлении, противоположном полю запирающего слоя, и не пропускает ток в направлении, совпадающем с полем запирающего слоя.

Полупроводниковый диод – прибор с одним pn-переходом.

Вольт-амперная характеристика – зависимость силы тока I от напряжения U , приложенного к диоду.

Полупроводниковый триод (или транзистор) – прибор с двумя pn-переходами.

Транзисторы (как и ламповые триоды) служат для усиления слабых электрических сигналов.

Контрольные вопросы

1. Какие вещества называются полупроводниками?

2. Чем отличаются полупроводники от проводников и диэлектриков?

3. От чего зависит электропроводность полупроводников?

4. Какие свойства полупроводников используются в термо- и фоторезисторах?

5. Каков механизм собственной проводимости полупроводников?

6. Как образуются свободные электроны и дырки?

7. Каков механизм примесной проводимости полупроводников?

8. Какие примеси называются донорными, а какие – акцепторными?

9. Как объяснить одностороннюю проводимость pn-перехода?

10. Какова вольт-амперная характеристика pn-перехода? Объясните возникновение прямого и обратного тока.

11. Какое направление в полупроводниковом диоде является пропускным для тока?

12. Что такое полупроводниковый триод (или транзистор)?

Источник

Физика. 10 класс

Конспект урока

Физика, 10 класс

Урок 33. Электрический ток в полупроводниках

Перечень вопросов, рассматриваемых на уроке:

1) собственная и примесная проводимость;

3) электрический ток в полупроводниках;

4) зависимость тока от напряжения;

5) зависимость силы тока от внешних условий.

Глоссарий по теме:

Полупроводник — вещество, занимающее промежуточное положение в электропроводности между проводниками и диэлектриками.

Собственная проводимость — проводимость чистых полупроводников

Примесная проводимость — проводимость, вызванная введением примесей.

Полупроводниковый диод представляет собой устройство, содержащее p-n-соединение и способное передавать ток только в одном направлении.

Транзистор представляет собой устройство, содержащее два p-n переходов, прямые направления которых противоположны.

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Соцкий Н. Н. Физика. 10 класс. Учебник для образовательных организаций М.: Просвещение, 2017. С. 362-371.

2. Рымкевич А.П. Сборник задач физики. 10-11 класс М.: Дрофа, 2009.

3. Зегря Г.Г. Перел В.И. Основы физики полупроводников. М.: Физматлит, 2009.

Открытые электронные ресурсы по теме урока:

Теоретический материал для самостоятельного изучения

В полупроводниках атомы связаны ковалентными (попарно электронными) связями, которые сильны при низких температурах и освещенности. С ростом температуры и освещенности эти связи могут разрушаться, образуя свободный электрон и «дырку».

Реальные частицы — это только электроны. Электронная проводимость обусловлена движением свободных электронов. Дырочная проводимость вызвана движением связанных электронов, которые переходят от одного атома к другому, поочередно заменяя друг друга, что эквивалентно движению «дырок» в противоположном направлении. «Дырке» условно приписывают «+» заряд.

Читайте также:  Переменные по направлению импульсные токи это ответ

В чистых полупроводниках концентрация свободных электронов и «дырок» одинакова.

Примеси, которые легко отдают электроны, называются донорными. Если мы их добавим, мы получим полупроводник n-типа с электронной проводимостью.

Примеси, которые легко принимают электроны, называются акцепторными. Если мы их добавим, мы получим полупроводник р-типа с дырочной проводимостью.

Когда два полупроводника с разными типами проводимости входят в контакт, образуется так называемый p-n-переход. Он имеет одностороннюю проводимость. При контакте полупроводников p- и n-типа в результате диффузии электронов в полупроводник р-типа и дырок в полупроводник n-типа образуется контактное электрическое поле. Для основных носителей заряда создан барьерный слой.

При включении в цепь p-n-перехода, когда область с электронной проводимостью связана с отрицательным полюсом источника тока, а область с дырочной проводимостью с положительным полюсом, внешнее электрическое поле ослабляет контактное поле и обеспечивает ток значительной силы, называемый прямым и обусловленным движением основных носителей заряда.

Когда переход включён обратном направлении, внешнее поле усиливает контактное поле, а пограничный слой обеднен основными носителями заряда. Очень малый ток течёт из-за движения через р-п-переход неосновных носителей заряда, которых очень мало.

Полупроводниковый диод представляет собой устройство, содержащее p-n-переход и способное пропускать ток в одном направлении и не передавать его в противоположном направлении.

Транзистор или триод полупроводника — это устройство, содержащее два p-n-перехода, прямые направления которых противоположны.

Современная электроника основана на микросхемах и микропроцессорах, которые включают в себя огромное количество транзисторов. Транзисторы стали широко распространены в современных технологиях. Они заменили электронные лампы в электрических цепях научной, промышленной и бытовой техники

Примеры и разбор решения заданий

1. Выберите правильный ответ на вопрос: «Почему сопротивление полупроводников уменьшается с ростом температуры?»

1) концентрация свободных носителей заряда уменьшается;

2) концентрация свободных носителей заряда увеличивается;

3) скорость электронов увеличивается.

Правильный вариант: 2) концентрация свободных носителей заряда увеличивается.

Подсказка: обратите внимание, что при нагревании полупроводников в них образуется больше свободных носителей заряда.

2. Решите задачу: Концентрация электронов проводимости в германии при комнатной температуре n = 3·10 19 м -3 . Плотность германия ρ = 5400 кг/м 3 , молярная масса германия μ = 0,073 кг/моль. Каково отношение числа электронов проводимости к общему числу атомов?

Источник

Электрический ток в полупроводниках

Урок 75. Физика 10 класс

Доступ к видеоуроку ограничен

Конспект урока «Электрический ток в полупроводниках»

Совсем недавно мы говорили об электронной проводимости металлов и выяснили, что их сопротивление линейно растет с увеличением температуры.

Так вот, пожалуй, главное отличие полупроводников от проводников — это совсем иная зависимость сопротивления от температуры. Если в металлических проводниках, сопротивление линейно растет с увеличением температуры, то в полупроводниках, сопротивление с увеличением температуры резко падает.

Как видно из графика, при очень низких температурах, удельное сопротивление полупроводников настолько велико, что они ведут себя как диэлектрики. И, наоборот, при очень высоких температурах, сопротивление полупроводников очень резко уменьшается. К полупроводникам относятся такие вещества, как германий, кремний, селен, мышьяк, фосфор, сера и некоторые другие вещества. Для того, чтобы понять, от чего зависит проводимость полупроводников, нам нужно рассмотреть их строение. Мы рассмотрим наиболее распространенный элемент среди полупроводников — кремний. Обратившись к таблице Менделеева, можно убедиться, что кремний находится в четвертой группе. То есть, атом кремния обладает четырьмя валентными электронами. Если мы рассмотрим кристаллическую решетку кремния, то убедимся, что взаимодействие атомов осуществляется посредством ковалентной связи.

На нашем рисунке электроны обозначены черточками, поскольку именно они образуют связи между атомами. При такой структуре, каждый валентный электрон атома кремния участвует в связях между атомами, которые очень прочны при низких температурах. Это говорит нам о том, что при низких температурах в кристаллах кремния нет свободных электронов, которые могли бы обеспечить электронную проводимость. Следовательно, ток проходить через кремний не будет. Но, как вы знаете, высокие температуры способны разрушить химические связи. Именно это и происходит при нагревании полупроводников. Электроны покидают свои места и становятся свободными, точно так же, как электроны в металле.

Это обеспечивает электронную проводимость в полупроводниках при высоких температурах. Но, надо сказать, что проводимость в полупроводниках обусловлена не только электронной проводимостью. Дело в том, что на месте, которое покинул электрон, образуется избыточный положительный заряд. Такое место называется дыркой.

Поскольку дырка обладает избыточным положительным зарядом, электроны, обеспечивающие связь с соседними атомами, могут покинуть свое место и занять место дырки. Таким образом, получается, что положение дырок не является постоянным, и можно с уверенностью сказать, что они двигаются. Это явление называется дырочной проводимостью. Итак, полупроводники обладают электронно-дырочной проводимостью, то есть ток проводят два типа зарядов. В чистых полупроводниках электронно-дырочную проводимость называют собственной проводимостью полупроводника.

Существует также понятие примесной проводимости. То есть, при наличии различных примесей в полупроводниках возникает дополнительная проводимость. Если мы будем изменять концентрацию примесей, то это может существенно изменить число носителей заряда. Примесная проводимость разделяется на два вида: донорная и акцепторная. Донорные примеси легко отдают электроны, тем самым увеличивая электронную проводимость. Акцепторные примеси — наоборот образуют дырки, тем самым увеличивая дырочную проводимость.

Примером донорной примеси является мышьяк. Атомы мышьяка имеют пять валентных электронов, а для образования ковалентных связей с атомами кремния нужно только четыре электрона. В результате, оставшийся электрон очень слабо связан с атомом мышьяка и легко покидает его, то есть становится свободным.

Полупроводники с донорными примесями называются проводниками n-типа. В таких полупроводниках электроны являются основными носителями заряда.

В качестве примера акцепторной примеси, рассмотрим примесь индия.

Атомы индия имеют три валентных электрона, а для образования ковалентных связей с атомами кремния нужно четыре электрона. В результате, атому индия не хватает одного электрона, и на месте этого электрона образуется дырка. В этом случае, дырочная проводимость преобладает над электронной, то есть дырки становятся основными носителями заряда. Полупроводники с акцепторными примесями называются полупроводниками р-типа.

Читайте также:  Применение электрического тока картинки

А теперь давайте рассмотрим, что будет при контакте полупроводников обоих типов.

При образовании контакта этих полупроводников, между полупроводниками разных типов образуется так называемая зона перехода. Такой контакт полупроводников называется рп или п-р переходом. При таком контакте электроны и дырки начинают диффундировать, то есть часть электронов переходят в полупроводник р-типа, а дырки — наоборот переходят в полупроводник п-типа. Таким образом, полупроводник п-типа заряжается положительно, а полупроводник р-типа — отрицательно.

Однако, диффузия со временем прекращается. Дело в том, что в зоне перехода возникает электрическое поле, которое становится достаточно сильным, чтобы помешать перемещению дырок и электронов.

Ну а теперь, давайте рассмотрим, как это все можно использовать. Подключим полупроводник с р-п переходом к источнику тока таким образом, что бы положительный полюс источника тока соединяется с полупроводником р-типа, а отрицательный полюс источника тока — с полупроводником п-типа.

Как вы понимаете, в этом случае ток будет обусловлен движением основных носителей. То есть из области п в область р будут перемещаться электроны, а из области р в область п — дырки. Этот переход называется прямым переходом. Надо сказать, что проводимость при прямом переходе довольно велика, а вот, сопротивление — наоборот, мало.

Если же теперь мы подключим батарею наоборот (то есть сменим полярность), то будет наблюдаться другая картина. Теперь электроны, наоборот идут из области р в область п, а дырки — из области п в область р. Вы, наверное, догадались, что в этом случае, ток будет значительно меньше. Действительно, ведь теперь ток обусловлен значительно меньшим количеством носителей заряда. Этот вид перехода называется обратным переходом.

Мы можем изобразить графически вольт-амперные характеристики прямого и обратного перехода.

На графике синей кривой обозначена вольт-амперная характеристика прямого перехода. Конечно, нужно понимать, что на графике изображена вольт-амперная характеристика одного и того же полупроводника, и мы условно разделили ее на две кривые только для наглядности. Как вы видите, сила тока очень быстро растет с увеличением напряжения из-за маленького сопротивления. Если же мы рассмотрим красную кривую, которой обозначена вольт-амперная характеристика обратного перехода, то убедимся, что такой переход обладает незначительной проводимостью. Действительно, сопротивление при этом достаточно велико, и даже при высоком напряжении ток остается слабым. На графике сила тока и напряжение при обратном переходе обозначены за отрицательные, поскольку мы сменили полярность батареи, и, тем самым, изменили направление тока на противоположное.

Итак, используя р-п переход, можно выпрямлять переменный ток. Устройство для подобных целей называется полупроводниковым диодом. Полупроводниковый диод проводит ток только в одном направлении, при этом, не давая протекать току в обратном направлении. Это и есть процесс выпрямления тока, то есть преобразование переменного тока в постоянный.

Источник



Урок физики на тему «Полупроводники. Электрический ток через контакт полупроводников p-n типов. Полупроводниковый диод. Транзисторы»

Презентация к уроку

Назад Вперёд

Урок в 10-м классе.

Тема: «Полупроводники. Электрический ток через контакт полупроводников р- и nтипов. Полупроводниковый диод. Транзисторы».

Цели:

  • образовательные: сформировать представление о свободных носителях электрического заряда в полупроводниках при наличии примесей с точки зрения электронной теории и опираясь на эти знания выяснить физическую сущность p-n-перехода; научить учащихся объяснять работу полупроводниковых приборов, опираясь на знания о физической сущности p-n-перехода;
  • развивающие: развивать физическое мышление учащихся, умение самостоятельно формулировать выводы, расширять познавательный интерес, по­знавательную активность;
  • воспитательные: продолжить формирование научного мировоззрения школьников.

Оборудование: презентация по теме: «Полупроводники. Электрический ток через контакт полупроводников р- и nтипов. Полупроводниковый диод. Транзистор», мультимедийный проектор.

Ход урока

I. Организационный момент.

II. Изучение нового материала.

Слайд 1.

Слайд 2. Полупроводник – вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры, а это значит, что электрическая проводимость (1/R) увеличивается.

Наблюдается у кремния, германия, селена и у некоторых соединений.

Слайд 3.

Механизм проводимости у полупроводников

Слайд 4.

Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние Слайд 5.электроны связаны с соседними атомами ковалентными связями.

При низких температурах у чистых полупроводников свободных электронов нет и они ведут себя как диэлектрики.

Полупроводники чистые (без примесей)

Если полупроводник чистый(без примесей), то он обладает собственной проводимостью, которая невелика.

Собственная проводимость бывает двух видов:

Слайд 6. 1) электронная (проводимость «n » – типа)

При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны – сопротивление уменьшается.

Свободные электроны перемещаются противоположно вектору напряженности электрического поля.

Электронная проводимость полупроводников обусловлена наличием свободных электронов.

Слайд 7.

2) дырочная (проводимость » p» – типа)

При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном – «дырка».

Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение «дырки» равноценно перемещению положительного заряда.

Перемещение дырки происходит в направлении вектора напряженности электрического поля.

Кроме нагревания, разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны освещением (фотопроводимость) и действием сильных электрических полей. Поэтому полупроводники обладают ещё и дырочной проводимостью.

Общая проводимость чистого полупроводника складывается из проводимостей «p» и «n» -типов и называется электронно-дырочной проводимостью.

Полупроводники при наличии примесей

У таких полупроводников существует собственная + примесная проводимость.

Наличие примесей проводимость сильно увеличивает.

При изменении концентрации примесей изменяется число носителей электрического тока – электронов и дырок.

Возможность управления током лежит в основе широкого применения полупроводников.

Существуют:

Слайд 8. 1) донорные примеси (отдающие) – являются дополнительными поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике.

Читайте также:  Как выбрать реле напряжения по току

Слайд 9. Это проводники » n » – типа, т.е. полупроводники с донорными примесями, где основной носитель заряда – электроны, а неосновной – дырки.

Такой полупроводник обладает электронной примесной проводимостью. Например – мышьяк.

Слайд 10. 2) акцепторные примеси (принимающие) – создают «дырки» , забирая в себя электроны.

Это полупроводники » p «- типа, т.е. полупроводники с акцепторными примесями, где основной носитель заряда – дырки, а неосновной – электроны.

Такой полупроводник обладает дырочной примесной проводимостью. Слайд 11. Например – индий. Слайд 12.

Рассмотрим, какие физические процессы происходят при контакте двух полупроводников с различным типом проводимости, или, как говорят, в р—n-переходе.

Слайд 13-16.

Электрические свойства «p-n» перехода

«p-n» переход (или электронно-дырочный переход) – область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот).

В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.

Внешнее электрическое поле влияет на сопротивление запирающего слоя.

При прямом (пропускном) направлении внешнего электрического поля электрический ток проходит через границу двух полупроводников.

Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.

Пропускной режим р-n перехода:

При запирающем (обратном) направлении внешнего электрического поля электрический ток через область контакта двух полупроводников проходить не будет.

Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается.

Запирающий режим р-n перехода:

Таким образом, электронно-дырочный переход обладает односторонней проводимостью.

Полупроводниковые диоды

Полупроводник с одним «p-n» переходом называется полупроводниковым диодом.

– Ребята, запишите новую тему: «Полупроводниковый диод».
– Какой там ещё идиот?», – с улыбкой переспросил Васечкин.
– Не идиот, а диод! – ответил учитель, – Диод, значит имеющий два электрода, анод и катод. Вам ясно?
– А у Достоевского есть такое произведение – «Идиот», – настаивал Васечкин.
– Да, есть, ну и что? Вы на уроке физики, а не литературы! Прошу больше не путать диод с идиотом!

Слайд 17–21.

При наложении эл.поля в одном направлении сопротивление полупроводника велико, в обратном – сопротивление мало.

Полупроводниковые диоды основные элементы выпрямителей переменного тока.

Слайд 22–25.

Транзисторами называют полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний.

Полупроводниковые транзисторы – также используются свойства» р-n «переходов, — транзисторы используются в схемотехнике радиоэлектронных приборов.

В большую «семью» полупроводниковых приборов, называемых транзисторами, входят два вида: биполярные и полевые. Первые из них, чтобы как – то отличить их от вторых, часто называют обычными транзисторами. Биполярные транзисторы используются наиболее широко. Именно с них мы пожалуй и начнем. Термин «транзистор» образован из двух английских слов: transfer – преобразователь и resistor – сопротивление. В упрощенном виде биполярный транзистор представляет собой пластину полупроводника с тремя (как в слоеном пироге) чередующимися областями разной электропроводности (рис. 1), которые образуют два р – n перехода. Две крайние области обладают электропроводностью одного типа, средняя – электропроводностью другого типа. У каждой области свой контактный вывод. Если в крайних областях преобладает дырочная электропроводность, а в средней электронная (рис. 1, а), то такой прибор называют транзистором структуры p – n – р. У транзистора структуры n – p – n, наоборот, по краям расположены области с электронной электропроводностью, а между ними – область с дырочной электропроводностью (рис. 1, б).

При подаче на базу транзистора типа n-p-n положительного напряжения он открывается, т. е. сопротивление между эмиттером и коллектором уменьшается, а при подаче отрицательного, наоборот – закрывается и чем сильнее сила тока, тем сильнее он открывается или закрывается. Для транзисторов структуры p-n-p все наоборот.

Основой биполярного транзистора (рис. 1) служит небольшая пластинка германия или кремния, обладающая электронной или дырочной электропроводимостью, то есть n-типа или p-типа. На поверхности обеих сторон пластинки наплавляют шарики примесных элементов. При нагревании до строго определенной температуры происходи диффузия (проникновение) примесных элементов в толщу пластинки полупроводника. В результате в толще пластинки возникают две области, противоположные ей по электропроводимости. Пластинка германия или кремния p-типа и созданные в ней области n-типа образуют транзистор структуры n-p-n (рис. 1,а), а пластинка n-типа и созданные в ней области p-типа — транзистор структуры p-n-p (рис. 1,б).

Независимо от структуры транзистора его пластинку исходного полупроводника называют базой (Б), противоположную ей по электропроводимости область меньшего объема — эмиттером (Э), а другую такую же область большего объема — коллектором (К). Эти три электрода образуют два p-n перехода: между базой и коллектором — коллекторный, а между базой и эмиттером — эмиттерный. Каждый из них по своим электрическим свойствам аналогичен p-n переходам полупроводниковых диодов и открывается при таких же прямых напряжениях на них.

Условные графические обозначения транзисторов разных структур отличаются лишь тем, что стрелка, символизирующая эмиттер и направление тока через эмиттерный переход, у транзистора структуры p-n-p обращена к базе, а у транзистора n-p-n — от базы.

Слайд 26–29.

III. Первичное закрепление.

  1. Какие вещества называются полупроводниками?
  2. Какую проводимость называют электронной?
  3. Какая проводимость наблюдается ещё у полупроводников?
  4. О каких примесях теперь вам известно?
  5. В чем заключается пропускной режим p-n- перехода.
  6. В чем заключается запирающий режим p-n- перехода.
  7. Какие полупроводниковые приборы вам известны?
  8. Где и для чего используют полупроводниковые приборы?

IV. Закрепление изученного

  1. Как меняется удельное сопротивление полупроводников: при нагревании? При освещении?
  2. Будет ли кремний сверхпроводящим, если его охладить до температуры, близкой к абсолютному нулю? (нет, с понижением температуры сопротивление кремния увеличивается).

V. Домашнее задание.

§ 113-116 – учить, пов. § 109–112.

Источник