Меню

Магнитное взаимодействие токов закон ампера единица тока

Магнитное взаимодействие токов закон ампера единица тока

Магнитные явления были известны еще в древнем мире. Компас был изобретен более 4500 лет тому назад. В Европе он появился приблизительно в XII веке новой эры. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом и возникло представление о магнитном поле .

Первыми экспериментами (проведены в 1820 г.), показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Х. Эрстеда. Эти опыты показали, что на магнитную стрелку, расположенную вблизи проводника с током, действуют силы, которые стремятся ее повернуть. В том же году французский физик А. Ампер наблюдал силовое взаимодействие двух проводников с токами и установил закон взаимодействия токов.

По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля.

Источниками магнитного поля являются движущиеся электрические заряды (токи). Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).

Ученые XIX века пытались создать теорию магнитного поля по аналогии с электростатикой, вводя в рассмотрение так называемые магнитные заряды двух знаков (например, северный и южный полюса магнитной стрелки). Однако опыт показывает, что изолированных магнитных зарядов не существует.

Магнитное поле токов принципиально отличается от электрического поля. Магнитное поле, в отличие от электрического, оказывает силовое действие только на движущиеся заряды (токи).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности электрического поля. Такой характеристикой является вектор магнитной индукции который определяет силы, действующие на токи или движущиеся заряды в магнитном поле.

За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно ориентирующийся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства определить направление вектора Такое исследование позволяет наглядно представить пространственную структуру магнитного поля. Аналогично силовым линиям в электростатике можно построить линии магнитной индукции , в каждой точке которых вектор направлен по касательной. Пример линий магнитной индукции полей постоянного магнита и катушки с током приведен на рис. 1.16.1.

Обратите внимание на аналогию магнитных полей постоянного магнита и катушки с током. Линии магнитной индукции всегда замкнуты, они нигде не обрываются. Это означает, что магнитное поле не имеет источников – магнитных зарядов. Силовые поля, обладающие этим свойством, называются вихревыми . Картину магнитной индукции можно наблюдать с помощью мелких железных опилок, которые в магнитном поле намагничиваются и, подобно маленьким магнитным стрелкам, ориентируются вдоль линий индукции.

Для того, чтобы количественно описать магнитное поле, нужно указать способ определения не только направления вектора но и его модуля. Проще всего это сделать, внося в исследуемое магнитное поле проводник с током и измеряя силу, действующую на отдельный прямолинейный участок этого проводника. Этот участок проводника должен иметь длину Δ, достаточно малую по сравнению с размерами областей неоднородности магнитного поля. Как показали опыты Ампера, сила, действующая на участок проводника, пропорциональна силе тока , длине Δ этого участка и синусу угла α между направлениями тока и вектора магнитной индукции:

.

Эта сила называется силой Ампера . Она достигает максимального по модулю значения max, когда проводник с током ориентирован перпендикулярно линиям магнитной индукции. Модуль вектора определяется следующим образом:

Это соотношение принято называть законом Ампера .

В системе единиц СИ за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (Тл).

Тесла – очень крупная единица. Магнитное поле Земли приблизительно равно . Большой лабораторный электромагнит может создать поле не более .

Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику. Для определения направления силы Ампера обычно используют правило левой руки : если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник (рис. 1.16.2).

Если угол α между направлениями вектора и тока в проводнике отличен от , то для определения направления силы Ампера более удобно пользоваться правилом буравчика : воображаемый буравчик располагается перпендикулярно плоскости, содержащей вектор и проводник с током, затем его рукоятка поворачивается от направления тока к направлению вектора Поступательное перемещение буравчика будет показывать направление силы Ампера (рис. 1.16.2). Правило буравчика часто называют правилом правого винта .

Читайте также:  Что делать если при вас человека бьет током

Одним из важных примеров магнитного взаимодействия является взаимодействие параллельных токов. Закономерности этого явления были экспериментально установлены Ампером. Если по двум параллельным проводникам электрические токи текут в одну и ту же сторону, то наблюдается взаимное притяжение проводников. В случае, когда токи текут в противоположных направлениях, проводники отталкиваются.

Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот.

Опыты показали, что модуль силы, действующей на отрезок длиной Δ каждого из проводников, прямо пропорционален силам тока 1 и 2 в проводниках, длине отрезка Δ и обратно пропорционален расстоянию между ними:

В Международной системе единиц СИ коэффициент пропорциональности принято записывать в виде:

= μ / 2π,

где μ – постоянная величина, которую называют магнитной постоянной . Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно

μ = 4π·10 –7 H/A 2 ≈ 1,26·10 –6 H/A 2 .

Для того, чтобы при магнитном взаимодействии параллельные токи притягивались, а антипараллельные отталкивались, линии магнитной индукции поля прямолинейного проводника должны быть направлены по часовой стрелке, если смотреть вдоль проводника по направлению тока. Для определения направления вектора магнитного поля прямолинейного проводника также можно пользоваться правилом буравчика: направление вращения рукоятки буравчика совпадает с направлением вектора если при вращении буравчик перемещается в направлении тока (рис. 1.16.3).

Рис. 1.16.4 поясняет закон взаимодействия параллельных токов.

Магнитное взаимодействие параллельных проводников с током используется в Международной системе единиц (СИ) для определения единицы силы тока – ампера:

Ампер – сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии один от другого в вакууме, вызвал бы между этими проводниками силу магнитного взаимодействия, равную на каждый метр длины.

Источник

Закон Ампера простыми словами

На основе магнитных явлениях построено действие электротехнических устройств. Все современные электромоторы, генераторы и множество других электромеханических приборов работают по принципу взаимодействия электрического тока с окружающими его магнитными полями. Эти взаимодействия описывает знаменитый закон Ампера, названный так в честь своего первооткрывателя.

Влияние электричества на поведение магнитной стрелки впервые обнаружил Х. К. Эрстед. Он заметил, что вопреки ожиданию, магнитное поле не параллельно вектору тока, а перпендикулярно ему. Развивая выводы Эрстеда, и продолжая исследования в этом направлении, Мари Ампер установил [1], что электричество взаимодействует не только с магнитами, но и между собой. Заслуга Ампера в том, что он теоретически обосновал взаимное влияние токов и предоставил формулу, позволяющую вычислять силы этого взаимодействия.

Определение и формула

Экспериментальным путём Ампер установил, что между двумя параллельными проводниками, подключенными к постоянному току, действует притяжение (однонаправленные токи) либо отталкивание (если направления противоположные). Эти силы взаимодействия определяются параметрами токов (прямо пропорциональная зависимость), и расстоянием между проводниками (обратно пропорциональная зависимость).

Расчёт амперовой силы на единицу длины проводника осуществляется по формуле:

Формула расчета амперовой силы

где F – сила, I1, I2 – величина тока в проводниках, а μ – магнитная проницаемость среды, окружающей проводники (см. рис. 1).

Природой взаимодействия является магнитное поле, образованное перемещаемыми по проводникам электрическими зарядами. Под влиянием магнитного поля на электрические заряды возникает сила магнитной индукции, которую обозначают символом B.

Линии, в каждой точке которых касательные к ним совпадают с направлением соответствующих векторов магнитной индукции, получили название линий электромагнитной индукции. Применяя мнемоническое правило буравчика, можно определить ориентацию в пространстве линий магнитной индукции. То есть, при ввинчивании буравчика в сторону, куда направлен вектор электрического тока, движение концов его рукоятки укажет направление векторов индукции.

Из сказанного выше следует, что в проводниках, с одинаково ориентированными токами, направления векторов магнитной индукции совпадают, а значит, векторы сил направлены навстречу друг к другу, что и вызывает притяжение.

Взаимодействие параллельных проводников

Рис. 1. Взаимодействие параллельных проводников

Подобным образом проводники взаимодействуют не только между собой, но и с магнитными полями любой природы. Если такой проводник окажется в магнитном поле, то на элемент, расположенный в зоне действия магнита, будет действовать сила, которую именуют Амперовой:

Читайте также:  Показания амперметра то есть сила тока i 2 а

Амперова сила

Для вычисления модуля этой силы пользуются формулой: dF = IBlsinα , где α — угол, образованный векторами индукции и ориентацией тока.

Рассмотренную нами зависимость описывает закон Ампера, формулировка которого понятна из рисунка 2.

Закон Ампера

Рис. 2. Формулировка закона Ампера

Не трудно сообразить, что когда α = 90 0 , то sinα = 1. В этом случае величина F приобретает максимальное значение: F = B*L*I, где L– длина проводника, оказавшегося под действием магнитного поля.

Таким образом, из закона Ампера вытекает:

  • проводник с током реагирует на магнитные поля.
  • действующая сила находится в прямо пропорциональной зависимости от параметров тока, величины магнитной индукции и размеров проводника.

Обратите внимание, что на данном рисунке 3 проводник расположен под углом 90º к линиям магнитной индукции, что вызывает максимальное действие магнитных сил.

Проводник в магнитном поле

Рис. 3. Проводник в магнитном поле

Направление силы Ампера

Принимая к сведению то, что сила – векторная величина, определим её направление. Рассмотрим случай, когда проводник с током расположен между двумя полюсами магнитов под прямым углом к линиям магнитной индукции.

Выше мы установили, что согласно закону Ампера, действующая на данный проводник сила, равна: F = B*L*I. Направление вектора рассматриваемой силы определяется по результатам векторного произведения:

Амперова сила

Если полюса магнита статичны (неподвижны), то векторное произведение будет зависеть только от параметров электричества, в частности, от того, в какую сторону оно течёт.

Направление силы Ампера определяют по известному правилу левой руки: ладонь располагают навстречу магнитным линиям, а пальцы размещают вдоль проводника, в сторону устремления тока. На ориентацию силы Ампера указывает большой палец, образующий прямой угол с ладонью (см. рис. 4).

Интерпретация правила

Рис. 4. Интерпретация правила

Измените мысленно направление электрического тока, и вы увидите, что направление вектора Амперовой силы изменится на противоположное. Модуль вектора имеет прямо пропорциональную зависимость от всех сомножителей, но на практике эту величину удобно регулировать путём изменения параметров в электрической цепи (например, для регулировки мощности электродвигателя).

Применение

Закон Ампера, а точнее следствия, вытекающие из него, используются в каждом электромеханическом устройстве, где необходимо вызвать движение рабочих элементов. Самым распространённым механизмом, работа которого базируется на законе Ампера, является электродвигатель.

Применение электромоторов настолько широкое, что его можно увидеть практически во всех сферах человеческой деятельности:

  • на производстве, в качестве приводов станков и различного оборудования;
  • в бытовой сфере (бытовая электротехника);
  • в электроинструментах;
  • на транспорте;
  • в устройствах автоматики, в офисной технике и во многих других сферах.

Из закона Ампера вытекает возможность получения электротока путём перемещения проводников, находящихся в магнитном поле. На данном принципе построены все генераторы электрического тока. Благодаря этой уникальной возможности, у нас появился доступ к использованию электроэнергии для различных потребностей.

Мы буквально окружены проявлением закона Ампера. Например, просмотр телепередачи сопровождается звуком, который транслируется через динамики. Но диффузор динамика приводит в движение сила Ампера. Мы разговариваем по телефону – там тоже есть динамик и микрофон. Принцип действия современных микрофонов также основан на законе Ампера.

Вход в помещение через автоматическую раздвижную дверь, поднятие на лифте, поездка в троллейбусе, трамвае, запуск двигателя автомобиля – всё это было бы невозможным, если бы не существовало взаимодействия электрического тока с силами магнитной индукции.

Ампер открыл перед человечеством такие возможности, без которых развитие научно-технического прогресса было бы невозможным. Влияние этого закона в электротехнике сравнимо с законами Ньютона, которые в своё время совершили революцию в механике. В этом огромная заслуга учёного-физика Мари Ампера, труды которого увенчались открытием в 1820 г. знаменитого закона.

Источник

§ 111. Закон Ампера. Взаимодействие параллельных токов

Магнитное поле (см. § 109) оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, испытываемый рамкой, есть результат действия сил на отдельные ее элементы. Обобщая результаты исследования действия магнитного поля на различные проводники с током, Ампер установил, что сила dF, с которой магнитное поле действует на элемент проводника dl с током, находящегося в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента дли-

ной dl проводника на магнитную индукцию В:

dF = I[dl, В]. (111.1)

Направление вектора dF может быть найдено, согласно (111.1), по общим правилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы, действующей на ток.

Читайте также:  Направление при выключении в проводнике тока в рамке

Модуль силы Ампера (см. (111.1)) вычисляется по формуле

dF = IBdlsin, (111.2)

где a — угол между векторами dl и В.

Закон Ампера применяется для определения силы взаимодействия двух токов. Рассмотрим два бесконечных прямолинейных параллельных тока I1 и I2 (направления токов указаны на рис. 167), расстояние между которыми равно R. Каждый из проводников создает магнитное поле, которое действует по закону Ампера на другой проводник с током. Рассмотрим, с какой силой действует магнитное поле тока I1 на элемент dl второго проводника с током I2. Ток I1 создает вокруг себя магнитное поле, линии магнитной индукции которого представляют собой концентрические окружности. Направление вектора b1 задается правилом правого винта, его модуль по формуле (110.5) равен

Направление силы dF1, с которой поле B1 действует на участок dl второго тока, определяется по правилу левой руки и указано на рисунке. Модуль силы, согласно (111.2), с учетом того, что угол  между элементами тока I2 и вектором B1 прямой, равен

dF1=I2B1dl, или, подставляя значение для В1, получим

Рассуждая аналогично, можно показать, что сила dF2, с которой магнитное поле тока I2 действует на элемент dl первого проводника с током I1, направлена в противоположную сторону и по модулю равна

Сравнение выражений (111.3) и (111.4) показывает, что

т. е. два параллельных тока одинакового направления притягиваются друг к другу с силой

Если токи имеют противоположные направления, то, используя правило левой руки, можно показать, что между ними действует сила отталкивания, определяемая формулой (111.5).

§112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля

Если два параллельных проводника с током находятся в вакууме (=1), то сила взаимодействия на единицу длины проводника, согласно (111.5), равна

Для нахождения числового значения  воспользуемся определением ампера, со-

гласно которому при I1=I2=1А и R=1 м

dF/dl=2•10 -7 Н/м. Подставив это значение в формулу (112.1), получим 0=4•10 -7 Н/А 2 =4•10 -7 Гн/м,

где генри (Гн) — единица индуктивности (см. §126).

Закон Ампера позволяет определить единицу магнитной индукции В. Предположим, что элемент проводника dl с током I перпендикулярен направлению магнитного поля. Тогда закон Ампера (см. (111.2)) запишется в виде

Единица магнитной индукции — тесла (Тл): 1 Тл—магнитная индукция такого однородного магнитного поля, которое действует с силой в 1 Н на каждый метр длины прямолинейного проводника, расположенного перпендикулярно направлению поля, если по этому проводнику проходит ток в 1 А:

Так как = 4•10 -7 Н/А 2 , а в случае вакуума (=1), согласно (1.09.3), В =H, то для данного случая

Единица напряженности магнитного поля — ампер на метр (А/м): 1 А/м — напряженность такого поля, магнитная индукция которого в вакууме равна 4•10 -7 Тл.

Источник



Закон Ампера. Магнитное взаимодействие токов. Определение единицы силы тока в системе СИ.

date image2015-07-14
views image1587

facebook icon vkontakte icon twitter icon odnoklasniki icon

Закон Ампера устанавливает, что на проводник с током, помещенный в однородное магнитное поле, индукция которого В, действует сила, пропорциональная силе тока и индукции магнитного поля:

где α — угол между векторами магнитной индукции и тока,
B — индукция магнитного поля,
I — сила тока в проводнике,
l — длина проводника.

Эта формула закона Ампера оказывается справедливой для прямолинейного проводника и однородного поля.
Если проводник имеет произвольную формулу и поле неоднородно, то Закон Ампера принимает вид:

dF = I B dl sinα,

где dF — сила, с которой магнитное поле действует на бесконечно малый проводник с током I,
dl — элемент длины проводника.

Размерность:
[dF] = Н
[I] = A,
[B] = Н / (А · м),
[l] = м.

Направление силы dF определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила правой руки.
Сила dF максимальна, когда элемент проводника с током расположен перпендикулярно линиям магнитной индукции (α = 90, sinα = 1):

Явление взаимного притяжения разноименных и отталкивания одноименных электрических зарядов во многом сходны с явлениями притяжения и отталкивания одноименных полюсов магнита
Ампер – сила не изменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1м один от другого в вакууме, вызвал бы между этими проводниками силу магнитного взаимодействия, равную 2*10-7Н на каждый метр длины.
Сила, с которой магнитное поле действует на проводник с током, называется силой Ампер

Источник