Меню

Максимальный ток а rs485

Максимальный ток а rs485

12.4 RS-485 Interfaсe

RS-485 Interface применяется в сетях Profibus лишь в случае использования DP и FMS спецификаций протокола .

RS-485 ( Recommended Standard 485), применяемое на практике название интерфейса. Разработан двумя ассоциациями (EIA — Electronics Industries Association) и (TIA — Telecommunications Industry Association). В настоящее время EIA/TIA официально заменил и «RS -485 » на «EIA/TIA — 485 » для идентификаци и происхождения своих стандартов.

Работает на ф изическ ом уровен е (physical layer) — нижний уровень модели OSI . Канал связи, одна линия — витая пара ITP. Стандарт EI A/TIA- 485 определяет, что соединение между передающим и принимающим устройствами осуществляется с помощью двух или трех проводов: провод с данными, провод с инвертированными данными и, часто, нулевой провод (земля, 0 В). Два провода с данными представляют собой витую пару, которая заключена в металлический экран, который заземляется и представляет собой нулевой провод. Использование экранированного кабеля позволяет уменьшить влияние помех и шумов и, следовательно, уменьшить искажение передаваемой информации . На скоростях меньше 500 Kbit/s допустимо использовать не экранированную витую пару.

RS-485 – полудуплексный (half-dupleх) интерфейс, т.е. в определённый момент времени линию может использовать только один (передатчик-transmittser или Driver-ведущий(Master)) для передачи и другой (приёмник-Receiver(Slave)) для приёма информации.

При работе нескольких абонентов п рием и передача идут по очереди, по одной паре проводов с разделением по времени. В сети может быть много приёмопередатчиков ( transceiver, transmmitter receiver ), при этом, при связи двоих, остальные передатчики могут отключаются и ждать своей очереди.

Каждый абонент (приёмник и передатчик) имеют свой адрес и любой Master- передатчик может связаться , по очереди, с любым Slave – приёмником. В некоторых сетях используют дуплексный метод связи, который называют также полнодуплексным (full-duplex). При этом абоненты используют канал связи одновременно, пример: телефония, интрфейс RS-422 – в канале связи две линии,одна для передачи, а другая для приёма).

В RS-485 используют универсальный асинхронный приёмопередатчик ( Universal Asynchronous Receiver Transmitter ( UART ) ) — микросхема, имеющая в свом составе и передатчик и приемник, предназначенный для связи с другими такими же цифровыми устройствами. Он реализует обычный асинхронный (в отличие от синхронного, в нём нет потактной синхронизации) последовательный протокол, то есть переда тчик по очереди выдает в линию 0 и 1, а при ёмник отслеживает их и запоминает.

Тактовые генераторы приемник а и передатчи ка в начале связи синхронизируются по частоте специальными стробирующими (тактовыми) синхроимпульсами, для обеспечения точной согласованности их работы. Это очень важн о. Если частоты передатчика и приемника не будут совпадать, то передачи может не быть вообще, либо будут приняты ошибочные данные. Скорости обмена 62,5 кбит/с, 375 кбит/с, 2400 кбит/с оговорены стандартом RS-485. На скоростях обмена свыше 500 кбит/с рекомендуется использовать экранированные витые пары.

RS-485 обеспечивает передачу данных со скоростью до 1 2 Мbit/s. Максимальная дальность зависит от скорости: при скорости 1 2 Мbit/s максимальная длина линии — 120 м, при скорости 185,5 Kbit/s — 1200 м.

Стандарт не нормирует формат информационных кадров и протокол обмена. Наиболее часто для передачи байтов данных используются те же фреймы, что и в интерфейсе RS-232 : стартовый бит, биты данных, бит чётности (если нужно), стоповый бит .

В исходном состоянии, при отсутствии передачи, в линии установлено высокий уровень напряжения, т.е. «1». Вначале передачи передатчик устанавливает в линии в низкий уровень «0» — это старт бит.

После окончания старт бита п риемник , с каждым тактом генератора, считывает все биты передаваемого байта. Передача байта заканчивается стоп битом. Для повышения надежности, перед стоп битом может быть бит ч ё тности (бит паритета), который дополняет число единиц в байте до четного числа. Приёмник примет байт только в том случае, если число битов в нём будет чётным, этим и повышается надёжность передачи.

Электрический сигнал кадра посылки выглядит так:

Рис. 65 PROFIBUS UART-кадр . Источник: http://www.musidora.ru/format485.htm

Перед началом связи между двумя устройствами необходимо настроить их приемопередатчики на одинаковую скорость связи и формат кадра. По такому же протоколу работает COM порт компьютера, разница лишь в раз личии формирования напряжений сигнала . В RS-232 сигнал передается импульсами в одном проводе относительно общего провода «земли» и нав едённый сигнал помехи в это м провод е может исказить сигнал относительно хорошо поглощающего наводки общего провода. Кроме того, на сопротивлении длинного общего провода , если он заземлён с обоих концов, будет падать разность потенциалов зем ли, которая может быть дополнительной помехой . Поэтому длина линии связи в RS-232 не превышает 15м.

В RS-485 лежит принцип дифференциальной (балансной) передачи данных. Сигналы интерфейса RS-485 передаются дифференциальными (разностными) перепадами напряжения величиной (0,2…6) V на расстояние до 1200м. Полезный с игнал передаётся по двум проводам в разной полярности . Причем если по одному проводу идет оригинальный сигнал, то по другому — его инве р сная копия.

Ч асто оба проводника PROFIBUS обозначают как А-проводник и В-проводник. При этом А-проводник соответствует RxD/TxD-N (Green – A-line (RxD/TxD-N)) , а В-проводник -RxD/TxD-P ( Red – B-line (RxD/TxD-P)) .

Рис. 66 Сигналы А-проводник и В-проводник интерфейса RS-485.

Источник: SIEMENS , Сети SIMATIC NET PROFIBUS-DP Руководство пользователя .

Расмотренный способ передачи обеспечивает высокую устойчивость к синфазной помехе. Синфазной называют помеху, действующую на оба провода линии связи одинаково , т.е. наведённые в обоих проводах напряжения помехи будут совпадать по фазе . К примеру, электромагнитная волна, проходя через участок линии связи, наводит в обоих проводах линии напряжение синфазной помехи.

Рис. 67 Синфазная помеха.

С ин яя стрелка показывает направление движения полезн огр (информационн ого ) сигнал а по линии к нагкузке R н , а красн ая , направление сигнала синфазн ой помех и наведенн ого на об оих проводникаü линии. На R н происходит суммирование обоих сигналов, что приводит к искажению сигнала.

А при дифференциальной передаче искажения не происходит. В самом деле, если два провода пролегают близко друг к другу, да еще перевиты, то наводка на оба провода одинакова. Потенциал обоих входов приёмника А и B , от действия помехи изменяется одинаково, но при этом разность потенциалов между ними, соответствующая передаваемой информации, остается без изменений. Скручивание проводов линии ещё уменьшает влияние помехи. Это показано на Рис.68. Электромагнитное поле силового кабеля, охватывая линию связи, индуцирует в петлях линии токи помехи, направление которых соответствует правилу буравчика. Направление этих токов, в соседних петлях одного и того же провода, противоположны и они компенсируются.

Рис. 68 К омпенсация влияния электромагнитных полей на витую пару.

Для осуществления связи в RS-485 используются приёмопередатчики (трансиверы), которые управляются контроллером на приём или передачу и подключаются к проводам А и B линии связи (витая пара) с соблюдением маркировки т.е. полярности. При неправильной полярности, подключённый трансивер работать не будет.

Рис. 69 Блок схема трансивера с цоколёвкой компании Maxim Integrated Products Источник: http://www.compeljournal.ru/enews/2009/3/2

D (driver) — передатчик;

R (receiver) — приемник;

DI (driver input) — цифровой вход передатчика;

RO (receiver output) — цифровой выход приемника;

DE (driver enable) — разрешение работы передатчика;

RE (receiver enable) — разрешение работы приемника;

A — прямой дифференциальный вход/выход;

B — инверсный дифференциальный вход/выход.

Для систем промышленной автоматики используются кабели с волновым сопротивлением (импедансом) от 100 до 150 Ом.

Например, широко распространённый кабель UTP-5, используемый для прокладки Ethernet, имеет импеданс 100 Ом. Однако кабели, спроектированные специально для интерфейса RS-485, имеют волновое сопротивление 120 Ом.

В качестве линии связи используется экранированная витая пара с волновым сопротивлением ≈120 Ом. Для защиты от помех экран (оплетка) витой пары заземляется в любой точке, но только один раз для исключения дополнительных помех из за разноси потенциалов земли в двух точках. Часто экран заземляют на стороне конечного приёмника. Приёмопередатчики к сети RS-485 подключаются последовательно, с соблюдением полярности контактов A и B. Длина линии связи может достигать 1200м на сегмент.

Число ответвлений от магистрали до трансивера должно быть минимальным.

Рис. 70 Схема соединения перефкрийных устройств. Источник: http://www.contravt.ru/?id=1660&template=print

Количество устройств, подключаемых к одной линии интерфейса, зависит от типа примененных в устройстве приемопередатчиков. Один стандартны й передатчик рассчитан на управление 32 стандартными приемниками.

Рис. 71 Подлючение нескольких трансиверов.

Передатчик должен обеспечивать уровень сигнала 1,5 V при максимальной нагрузке (32 стандартных входа и 2 терминальных резистора) и не более 6 V на холостом ходу. Для увеличения числа приёмников на линии использ уют приемник и с более выс оким вход ным сопротивлением , чем предусмотрено стандартом EIA/TIA-485 (R вх= 12 кОм). Например, при входном сопротивлении приемника 24 кОм к стандартному передатчику можно подключить уже 64 приемника. В ыпускаются микросхемы трансиверов для интерфейса RS-485 с возможностью подключения 64, 128 и 256 приемников в одном сегменте сети . Но увеличение количества трансиверов путем увеличения входного сопротивления приемников уменьш ает мощност ь передаваемого по линии сигнала, а это сниже ает помехоустойчивост ь сети . При использовании повторител я можно добавить к линии ещё 31 стандартное устройство и увеличить длину линии ещё на 1200 м. Даже для скоростей обмена порядка 19200 bit/s кабель уже можно считать длинной линией, а в длинной линии э лектромагнитная волна, достигая конца кабеля, отражается от него и возвращается к источнику сигнала, отражается от источника и опять проходит к концу кабеля , т. е . возникает сигнал помехи и для исключения помех от отраженного сигнала линия должна быть согласована на концах. Для этого к обоим концам линии должны быть подключены согласующие резисторы с сопротивлением равным волновому. При согласовании используются резисторы Rτ c сопротивлением 120 Ом и мощностью не менее 0,25 W – так называемы е « терминатор ы» . Терминаторы устанавливаются на обоих концах линии связи, между контактами A и B витой пары и обеспечивают согласование «открытого» конца кабеля с остальной линией, устраняя отражение сигнала.

Приемники большинства микросхем RS-485 имеют пороговое напряжние на входе приёмника A –B, UAB = 200 mV . При UAB >200 mV на выходе чётко устанавливается логическая «1».

Если IUAB I меньше порогового,то на выходе приемника RO могут быть произвольные логические уровни из-за несинфазной помехи. Такое случается либо при отсоединении приемника от линии, либо при отсутствии в линии активных передатчиков, когда никто не задает уровень. Чтобы исключить выдачу ошибочных сигналов на приемник UART, необходимо на входах A-B создать постоянную разность потенциалов: U AB > 200 m В – напряжение смещения. Это смещение при отсутствии входных сигналов обеспечивает на выходе приемника логическую «1», поддерживая, таким образом, уровень стопового бита.

Для создания напряжения смещения на линии А- B устанавливают делитель напряжения Рис.72, подсоединённый к источнику питания Vcc . Для расчёта делителя надо знать сотротивление соединённых параллельно RAB = R вх|| Rτ||Rτ . Если к линии параллельно подсоединены 32 приёмника с R вх=12 kOm , то их объщее сопротивление 12/32=0.375 kOm =375 Om . T ак как Rτ=120 Om, то RAB =375||120||120=51,7 Om. Ток делителя Iд=UAB / RAB= 200/51.7=3,87mA. Eсли Vcc=5V, то 2Rзс=Vcc — UAB/Iд=4,8/3.87mA=1.24kOm. Т аким образом величина защитного резистора R з c должна быть не больше 620 О m. Для более надёжной защиты выбирают меньшее значение 560 О m.

Рис. 72 Счема создания защитного смещения.

Источник: http://www.mu sidora.ru/format485.htm

П ередов ая технологи я , в соответствии с международны ми стандарта ми превратил а PROFIBUS в мирового лидера среди полевых шин. Эта технология характеризуется :

  • использованием открытых стандартов
  • совместимостью
  • универсальной применимостью
  • гибкостью расширения
  • высоким коэффициентом готовности

PROFIBUS, как средство обмена данными на полевом уровне, является важным компонентом Пол ной компьютерной автоматизации (Totally Integrated Automation, TIA), применяемой во всех отраслях дискретного, непрерывного и смешанного (гибридного) производства .

Рис. 73 Коммуникации на полевом уровне с помощью PROFIBUS . Источник: www.profibus.com

1. Какая линия связи используется в RS-i и почему ?

2. Можно ли использовать не экранированную линию связи?

3. Как компенсируются помехи в витой паре?

4. Что такое полудуплексный и полнодуплексный канал связи и как их можно осуществить в электрической линии связи?

5. Что такое асинхронный метод (протокол) передачи данных?

6. Что такое синхронизация приёмника и передатчика?

7. Какие скорости передачи (мин. макс.) возможны в RS-i и какая длина линии им соответствует?

8. Какие биты используются в кадре RS-i , для чего нужен бит паритета?

9. Что такое дифференциальный принцип передачи данныхи почему он более помехоустойчив?

10. Что такое трансивер и ка он подключается к линии связи?

11. Сколько стандартных трансиверов можно подключить к одному сегменту и какова максимальная длина одного сегмента линии?

12. Как можно увеличить макс. число трансиверов в линии?

13. Зачем нужен согласующий резстор( терминатор) и какова его величина?

14. Зачем нужно защитное смещение и как расчитать величины резистора защитного смещения R зс?

15. Особенности и сферы применения Profibus Рис.73.

Источник

Национальная библиотека им. Н. Э. Баумана
Bauman National Library

Персональные инструменты

RS-485

История

Стандарт RS-485 был совместно разработан двумя ассоциациями производителей: Ассоциацией электронной промышленности (EIA — Electronics Industries Association) и Ассоциацией промышленности средств связи (TIA — Telecommunications Industry Associastion). EIA некогда маркировала все свои стандарты префиксом «RS» (Рекомендованный стандарт). Многие инженеры продолжают использовать это обозначение, однако EIA/TIA официально заменил «RS» на «EIA/TIA» с целью облегчить идентификацию происхождения своих стандартов. На сегодняшний день, различные расширения стандарта RS-485 охватывают широкое разнообразие приложений.

Описание стандарта

Технические характеристики

  • Допустимое число приёмопередатчиков (драйверов) 32
  • Максимальная длина линии связи 1200 м (4000ft)
  • Максимальная скорость передачи 10 Мбит/с
  • Минимальный выходной сигнал драйвера ±1,5 В
  • Максимальный выходной сигнал драйвера ±5 В
  • Максимальный ток короткого замыкания драйвера 250 мА
  • Выходное сопротивление драйвера 54 Ом
  • Входное сопротивление драйвера 12 кОм
  • Допустимое суммарное входное сопротивление 375 Ом
  • Диапазон нечувствительности к сигналу ±200 мВ
  • Уровень логической единицы (Uab) >+200 мВ
  • Уровень логического нуля (Uab) Свойства интерфейса стандарта RS-485
  • Двунаправленная полудуплексная передача данных. Поток последовательных данных передаётся одновременно только в одну сторону, передача данных в другую сторону требует переключения приёмопередатчика. Приёмопередатчики принято называть «драйверами»(driver), это устройство или электрическая цепь, которая формирует физический сигнал на стороне передатчика.
  • Симметричный канал связи. Для приёма/передачи данных используются два равнозначных сигнальных провода. Провода означаются латинскими буквами «А» и «В». По этим двум проводам идет последовательный обмен данными в обоих направлениях (поочередно). При использовании витой пары симметричный канал существенно повышает устойчивость сигнала к синфазной помехе и хорошо подавляет электромагнитные излучения создаваемые полезным сигналом.
  • Дифференциальный (балансный способ передачи данных). При этом способе передачи данных на выходе приёмопередатчика изменяется разность потенциалов, при передаче «1» разность потенциалов между AB положительная при передаче «0» разность потенциалов между AB отрицательная. То есть, ток между контактами А и В, при передачи «0» и «1», течёт (балансирует) в противоположных направлениях.
  • Многоточечность. Допускает множественное подключение приёмников и приёмопередатчиков к одной линии связи. При этом допускается подключение к линии только одного передатчика в данный момент времени, и множество приёмников, остальные передатчики должны ожидать освобождения линии связи для передачи данных.
  • Низкоимпендансный выход передатчика. Буферный усилитель передатчика имеет низкоомный выход, что позволяет передавать сигнал ко многим приёмникам. Стандартная нагрузочная способность передатчика равна 32-м приёмникам на один передатчик. Кроме этого, токовый сигнал используется для работы «витой пары» (чем больше рабочий ток «витой пары», тем сильнее она подавляется синфазные помехи на линии связи).
  • Зона нечувствительности. Если дифференциальный уровень сигнала между контактами АВ не превышает ±200мВ, то считается, что сигнал в линии отсутствует. Это увеличивает помехоустойчивость передачи данных.
Читайте также:  Постоянный ток носители заряда

Описание обмена данными

Каждый приёмопередатчик (драйвер) RS-485 может находиться в одном из двух состояний: передача данных или приём данных. Переключение драйвера RS-485 происходит с помощью специального сигнала. Например, на рис.3 показан обмен данными с использованием преобразователя АС3 фирмы Овен. Режим преобразователя переключается сигналом RTS. Если RTS=1 (True) АС3 передает данные, которые поступают к нему от СОМ порта в сеть RS-485. При этом все остальные драйверы должны находиться в режиме приёма (RTS=0). По сути дела RS-485 является двунаправленным буферным мультиплексированным усилителем для сигналов RS-232. Ситуация когда в одно время будет работать более одного драйвера RS-485 в режиме передатчика приводит к потере данных. Эта ситуация называется «коллизией». Чтобы коллизии не возникали в каналах обмена данными необходимо использовать более высокие протоколы (OSI). Такие как MODBUS, DCON, DH485 и др. Либо программы, которые напрямую работают с RS-232 и решают проблемы коллизий. Обычно эти протоколы называют 485-тыми протоколами. Хотя на самом деле, аппаратной основой всех этих протоколов служит, конечно, RS-232. Он обеспечивает аппаратную обработку всего потока информации. Программную обработку потока данных и решение проблем с коллизиями занимаются протоколы высшего уровня (Modbus и др.) и ПО.

Реализация приемопередатчиков(драйверов) RS-485

Многие фирмы изготовляют приемопередатчики RS485. Называют их обычно конверторы RS232 — RS485 или преобразователи RS232-RS485. Для реализации этих приборов выпускается специальные микросхемы. Роль этих микросхем сводится к преобразованию уровней сигналов RS232C к уровню сигналов RS485 (TTL/CMOS) и обратно, а также обеспечение работы полудуплексного режима.

По способу переключения в режим передачи различают приборы:

  1. Переключающиеся с помощью отдельного сигнала. Для перехода в режим передачи необходимо выставить активный сигнал на отдельном входе. Обычно это сигнал RST (СОМ порта). Эти приемопередатчики сейчас редко встречаются. Но, тем не менее, они иногда не заменимы. Допустим нужно прослушивать обмен данными между контроллерами промышленного оборудования. При этом, ваш приёмопередатчик не должен переходить в режим передачи, чтобы не создать коллизию в данной сети. Использование приёмопередатчика с автоматическим переключением здесь не допустимо.
  2. С автоматическим переключением и без проверки состояния линии. Наиболее распространённые конверторы, которые переключаются автоматически при появлении на их входе информационного сигнала. При этом они не контролируют занятость линии связи. Эти конверторы требуют осторожного применения из-за высокой вероятности возникновения коллизий.
  3. С автоматическим переключением и с проверкой состояния линии. Наиболее продвинутые конверторы, которые могут передавать данные в сеть только при условии, что сеть не занята другими приёмопередатчиками и на входе имеется информационный сигнал.

Описание работы RS-485

Так как стандарт, RS-485 описывает только физический уровень процедуры обмена данными, то все проблемы обмена, синхронизации и квитирования, возлагаются на более высокий протокол обмена. Наиболее часто, это стандарт RS-232 или другие верхние протоколы (ModBus , DCON и т.п.). Сам RS-485 выполняет только следующие действия:

  1. Преобразует входящую последовательность «1» и «0» в дифференциальный сигнал.
  2. Передает дифференциальный сигнал в симметричную линию связи.
  3. Подключает или отключает передатчик драйвера по сигналу высшего протокола.
  4. Принимает дифференциальный сигнал с линии связи.

Если подключить осциллограф к контактам А-В (RS-485) и контактам GND-TDx(RS-232), то вы не увидите разницы в форме сигналов передаваемых в линиях связи. На самом деле, форма сигнала RS-485 полностью повторяет форму сигнала RS-232, за исключением инверсии ( в RS-232 логическая единица передается напряжением -12 В, а в RS-485 +5 В).

Рис.2 Форма сигналов RS-232 и RS-485 при передаче двух символов «0» и «0».

Достоинства и недостатки

Достоинства

  1. Хорошая помехоустойчивость.
  2. Большая дальность связи.
  3. Однополярное питание +5 В.
  4. Простая реализация драйверов.
  5. Возможность широковещательной передачи.
  6. Многоточечность соединения.

Недостатки

  1. Большое потребление энергии.
  2. Отсутствие сервисных сигналов.
  3. Возможность возникновения коллизий.

Стандарты основанные на стандарте RS-485

  • ISO/IEC 8482 (1993г. действующий)

Издатель: ISO, IEC Название: Information technology — Telecommunications and information exchange between Systems — Twisted pair multipoint interconnections. Старые редакции: ISO 8284 (1987г. не действующий)

  • ITU-T v.11 (1996г. действующий)

Издатель: INTERNATIONAL TELECOMMUNICATION UNION Название: Electrical characteristics for balanced double-current interchange circuits opertiong at data signalling rates up to 10 Mbit/s. Старые редакции: ITU-T v.11 (1993г. не действующий) CCITT v.11 (1988г. не действующий)

  • ANSI/TIA-485-A (1998г. действующий)

Издатель: American National Standards Institute, ANSI Название: Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems.

Источник

Интерфейс RS 485: описание

Определение понятия

Интерфейс RS 485 (расшифровка аббревиатуры: Recommended Standard 485) — стандарт физического уровня (электрическая и физическая среда для передачи информации) для асинхронного интерфейса (узла вычислительной техники, предназначенного для организации связи с иными электронными, цифровыми устройствами). В технической литературе также можно встретить следующее наименование интерфейса RS 485: Electronic Industries Alliance-485.

Данный стандарт регламентирует электрические параметры многоточечной полудуплексной дифференциальной линии связи (ее тип — «общая шина»). Сегодня интерфейс достаточно популярен в соответствующих областях промышленности. Что можно выделить прежде всего? Он стал базой для создания целого комплекса-семейства промышленных сетей, которые применяются в производственной автоматизации.

Теперь что касается двойного названия. Интерфейс RS 485 был разработан в результате сотрудничества двух корпораций: Telecommunications Industry Association (Ассоциации промышленных средств связи) и Electronic Industries Association (Ассоциации электронного производства). Раньше EIA для своих разработок использовала маркировку RS (в переводе с английского — «рекомендованный стандарт»).

Однако потом корпорация заменила данный префикс на EIA/TIA, чтобы стало возможным легко идентифицировать создателей стандарта. Но все же многие инженеры предпочитают использовать в работе, технических статьях прежнюю маркировку RS.

разветвитель интерфейса rs 485

Описание интерфейса

Чтобы разобраться с преобразователем интерфейса RS 485/RS 232 (последний мы кратко представим в заключении статьи), нужно знать основные параметры. Разберем самые главные:

  • Дальность и скорость. Интерфейс может обеспечить передачу информации со скоростью до 10 Мбит в секунду. Максимальная дальность тут будет зависеть от скорости.
  • Количество соединяемых аппаратов. Число устройств, подключенных к одной линии, зависит от разновидности применяемых приемопередатчиков. Один рассчитан на управление 32 приемниками стандартного типа.
  • Разъемы и протоколы. Разработанный стандарт не нормирует протокол обмена и форматы информационных кодов. Почему часто используются преобразователи интерфейсов RS 232/RS 485? Для передачи байтов информации здесь используются идентичные фреймы: стоповый и стартовый бит, биты паритета и данных. В большинстве систем протоколы будут функционировать по принципу «ведущий-ведомый». Как это выглядит? Одно из устройств магистрали избирается ведущим. Оно инициирует обмен, посылая соответствующие запросы подчиненным устройствам. Последние различаются по логическим адресам.

Технохарактеристики интерфейса

RS 485 — это одна витая пара проводов, которая и используется для приема и передачи данных. В некоторых случаях ее сопровождает общий провод или экранизирующая обводка.

Данные тут передаются путем дифференцированных сигналов. Логическая единица — разница напряжений между проводниками одной полярности, ноль — соответственно, разница напряжений между проводниками другой полярности.

Что важно знать о разветвителе интерфейса RS 485? Сам стандарт формирует только электрические и временные его (интерфейса) характеристики. При этом стандарт не будет оговаривать следующее:

  • Типы кабелей и соединителей.
  • Протокол обмена.
  • Различные протоколы качества сигнала (нормальный уровень отражений и искажений в длинных линиях).
  • Гальванические развязки линии связи.

разветвитель rs 485

Особенности временные и электрические

Приведем важные для инженеров характеристики популярного промышленного интерфейса RS 485:

  • В одном сегменте сети — до 32 приемопередатчиков.
  • Наибольшая продолжительность одного сегмента сети: 1200 метров.
  • Одномоментно активным здесь может быть только единственный передатчик.
  • Максимально допустимое число узлов в сети — 256 (учитывая количество магистральных усилителей).
  • Виды приемопередатчиков: потенциальный и дифференциальный.
  • Изменение выходных и входных напряжений на линиях А и В представлены таким образом: Ua (Ub) от −7 В до -12 В (соответственно, +7 В до +12 В).

Характеристики по скорости обмена данными, определяющей длину всей линии:

  • 62,5 Кбит/сек. — 1,2 тыс. метров (используется одна витая пара).
  • 375 Кбит/сек. — 500 метров (используется одна витая пара).
  • 500 Кбит/сек.
  • 1000 Кбит/сек.
  • 2400 Кбит/сек. — 100 метров (используются две витых пары).
  • 10000 Кбит/сек. — 10 метров.

Важное примечание для интерфейса RS 485. Стандарт оговаривает только следующие скорости: 62,5 Кбит/сек, 2400 Кбит/сек, 375 Кбит/сек. На всех иных (более 500 Кбит/сек) рекомендовано использование витых пар с экраном.

Теперь перейдем к требованиям, установленным для выходного каскада. Он должен представлять собой источник напряжения, имеющий малое сопротивление: |U вых|=1,5:5,0 В (не меньше 1,5 В и не больше 6,0 В). Отсюда выходит следующее:

  • Состояние логического «1»: Ua меньше Ub — MARK, OFF. Для данного случая гистерезис 200 мВ.
  • Состояние логического «0»: Ua больше Ub — SPACE, ON. Для данного случая гистерезис также 200 мВ. Надо сказать, что производители устройств (драйверов, микросхем) выбирают меньшие показатели — гистерезис от 10 мВ.
  • Выходной каскад обязательно должен выдерживать режимы короткого замыкания, а также иметь наибольший выходной ток 259 мА, схемы ограничения выходных мощностей, быстроту увеличения выходных сигналов 1,2 В/мкс.

При использовании разветвителя интерфейса RS 485 также важно быть в курсе требований, указанных для входного каскада. Он представляет собой дифференциальный вход, имеющий высокое входное сопротивление. Его пороговые характеристики: от +200 мВ до -200 мВ. Следующие важные сведения:

  • Входной сигнал представляется дифференциальным напряжением (Ui +0,2 В и больше).
  • Допустимый диапазон (относительно земли) входных напряжений: промежуток от -7 до +12 В.
  • Чтобы узнать уровни приемника входного каскада, следует обратиться к состоянию передатчика выходного каскада.

подключение rs 485

Характеристики сигнала

Повествуя о подключении RS 485, приведем и эту информацию. Для передачи сигнала стандартом определяются следующие линии:

  • Неинвертирующая А.
  • Инвертирующая В.
  • Ноль, необязательная общая линия С.

Согласно стандарту, также определяется следующее:

  • VA больше VB. Неравенство соответствует логическому 0. Это активное состояние шины.
  • VA меньше VB. Неравенство соответствует логической 1. Соответственно, это неактивное состояние шины.

Здесь при описании состояний шины будет применяться инверсная логика. А логика однополярных сигналов на выходе приемника и входе передатчика не будет определяться.

Хоть приведенное выше определение весьма недвусмысленное, нередко возникает путаница по поводу того, как следует правильно обозначать неинвертирующие и инвертирующие линии — А или В. Чтобы избежать ее (при подключении RS 485), инженерами используются иные обозначения. Например, «минус» и «плюс».

Но при этом большинство производителей все же придерживаются предписаний стандарта. Неинвертирующая линия обозначается символом А. Соответственно, высокий сигнальный уровень на входе передатчика станет соответствовать состоянию VA> VB на шине. Также неравенство будет тождественно высокому уровню сигнала, наблюдаемого на выходе приемника.

rs 232 rs 485

Смещение и согласование

Что важно знать в продолжение темы о разветвителе RS 485 еще? Предлагаем вам затронуть также информацию о помехах, которые могут возникнуть в линии связи.

И вот что важно знать об искажениях. При большой продолжительности линии связи часто появляются эффекты длинных линий. Корень проблемы кроется в распределенных индуктивных и емкостных свойствах кабелей. Что выходит в итоге? Сигнал, переданный в линию каким-либо из узлов, начинает искажаться по продолжительности распространения в ней (линии). Появляются сложные резонансные явления.

Так как кабель на своей длине отличается одинаковой конструкцией, одинаковыми распределенными параметрами погонной индуктивности и емкости, данное свойство будет характеризоваться специальным параметром. Это волновое сопротивление.

Если на одном конце кабеля будет подключен резистор с сопротивлением, идентичным волновому сопротивлению линии, то в итоге резонансные явления станут значительно слабее. Название подобного резистора — терминатор. Для сетей вида RS 485 он помещается на каждой из оконечностей длинных линий, так как обе стороны могут оказаться приемными. Волновое сопротивление самых популярных витых пар САТ5 — 100 ОМ. Иные разновидности имеют показатели в 150 Ом и более. А ленточные плоские кабели — до 300 Ом.

На практике номинал резистора выбирают и большего значения, нежели волновое сопротивление, так как омическое сопротивление кабеля порой становится настолько большим, что сигнальная амплитуда на приемной стороне становится слишком малой для устойчивого приема. Тут находят равновесие между резонансными и амплитудными искажениями, повышая номинал терминатора и снижая скорость интерфейса.

Разветвители RS 485 — широко применяемые устройства. Опять же стоит быть в курсе того, что для передачи сигнала через подсоединяемую витую пару характерен еще один источник его искажения. Это разные скорости распространения низкочастотных и высокочастотных сигналов (последние будут распространяться несколько быстрее).

Чтобы не было помех, линия связи должна последовательно обходить все передатчики. И еще важный момент. У витой пары не должно быть длинных отводов (участков-отрезов кабеля для подсоединения к узлу). Исключение: использование повторителей интерфейса, низкие скорости передачи данных (менее 9600 бит/с).

Если активный передатчик отсутствует, то уровень сигнала в линиях не определяется. Чтобы предотвратить ситуацию, когда разница между выходами В и А менее 200 мВ (неопределенное состояние), можно применить смещение с помощью специальной схемы или резисторов. Приемники станут принимать сигнал помехи в том случае, если состояние линий не определено. Для их стабилизации, качественного начала приема порой применяются передачи служебных последовательностей.

Читайте также:  Ограничитель бросков тока схема

преобразователь rs 232 rs 485

Особенности подключения

Кроме преобразователей RS 485, хочется подробнее остановиться на подключении. На основе этого интерфейса конструируется локальная сеть, объединяющая в себе несколько приемопередатчиков.

Самое важное здесь — правильно подсоединить сигнальные цепи, обозначенные А и В. Переполюсовка не будет страшной ошибкой. Но устройство в таком случае функционировать откажется.

При подключении рекомендуется иметь в виду следующие рекомендации специалистов:

  • Среда передачи сигнала — кабель на базе витой пары.
  • На концах кабеля обязательна заглушка терминальными резисторами (в пределах 120 Ом).
  • Сеть прокладывается без ответвлений, по топологии шины.
  • Устройства подключаются к кабелю при помощи проводов наименьшей длины.

Примеры использования

Преобразователи RS 485 распространены в промышленной сфере. Рассмотрим также сетевые протоколы, использующие данный стандарт:

  • High-Level Data Link Control.
  • ModBus.
  • LanDrive.
  • IEC 60870-5.
  • DMX512.

На основе RS 485 построены следующие промышленные сети:

  • ModBus.
  • LanDrive.
  • ProfiBus DP.

интерфейс rs 485

Рекомендации по программированию

Сфера применения преобразователя интерфейса RS 485 широка. В данном пункте мы подробнее остановимся на программировании тех приложений для контроллеров, что для связи используют данный интерфейс:

  • Перед началом посылки отключается передатчик. Необходимо выдержать паузу, которая по длительности равна одному фрейму (или же превышает его), включая при этом как стартовые, так и стоповые биты. Чем это хорошо? Приемник успеет нормализоваться и полностью подготовится к первой передаче фрейма данных.
  • После выдачи финального байта информации также рекомендуется выждать паузу перед дезактивацией передатчика. С чем это связано? У контроллеров последовательного порта два регистра: сдвиговый выходной для последовательного вывода и входной для передачи информации. Прерывание по передаче формируется контроллером только при опустошении его входного регистра. Информация здесь, получается, уже выложена в сдвиговой регистр, но еще не выдана. Поэтому с момента прерывания до дезактивации передатчика должна выдерживаться пауза. Ее ориентировочная продолжительность — на 0,5 бита более фрейма. Чтобы рассчитать точные значения, необходимо изучить сопроводительную документацию контроллера последовательного порта.
  • Так как и приемник, и передатчик данного интерфейса подключены к одной и той же линии, то возникает своеобразная ситуация. Приемник слышит передачу данных от собственного же передатчика. Если для системы характерен произвольный доступ к линии, то такая особенность применяется для проверки отсутствия «столкновений» между собой двух передатчиков. Если система работает по принципу «ведущий-ведомый», на время передачи просто советуется закрывать от приемника прерывания.

rs 485

Отличия интерфейсов RS 232, 422, 485

Давайте сравним эти популярные стандарты. Объединяет интерфейсы RS 232, RS 485, RS 422 то, что они используются для передачи цифровой информации. При этом 232 более известен как СОМ-порт компьютера. А другие два распространены в промышленной среде для соединения между собой различного оборудования.

Различия RS 232, RS 485 возможно отследить, представив техническую характеристику этих интерфейсов. Начнем с 232:

  • Тип передачи данных: полный дуплекс.
  • Максимальная протяженность: 15 метров при 9600 бит/сек.
  • Контакты, что задействованы в работе: TxD, RxD, RTS, CTS, DTR, DSR, DCD, GND.
  • Топология: «точка-точка».
  • Наибольшее число подключаемых устройств: одно.

Теперь в сравнении RS 232, RS 485, RS 422 следующий интерфейс. Это 422:

  • Тип передачи данных: полный дуплекс.
  • Максимальная протяженность: 1200 метров при 9600 бит/сек.
  • Контакты, что задействованы в работе: TxA, TxB, RxA, RxB, GND.
  • Топология: «точка-точка».
  • Наибольшее число подключенных устройств: одно (десять в режиме приема).

Сравниваются между собой преобразователи RS 232, RS 485. Приведем краткую характеристику последнего интерфейса, главного в нашем рассказе:

  • Тип передачи данных: полудуплекс (то есть два провода) или полный дуплекс (четыре провода).
  • Максимальная протяженность: 1200 метров при 9600 бит/сек.
  • Контакты, что задействованы в работе: DataA, DataB, GND.
  • Топология: многоточечная.
  • Наибольшее число подключенных устройств: 32 (с повторителями их число может дорасти до 256).

Вот и все, что мы хотели рассказать об интерфейсе RS 485, широко применяемом сегодня в промышленности для передачи информации между устройствами, аппаратурой. По каким-то характеристикам он схож с родственными стандартами, по каким-то (подключение, передача данных, устранение помех) существенно отличается от них.

Интерфейс RS 485: описание на News4Auto.ru.

Наша жизнь состоит из будничных мелочей, которые так или иначе влияют на наше самочувствие, настроение и продуктивность. Не выспался — болит голова; выпил кофе, чтобы поправить ситуацию и взбодриться — стал раздражительным. Предусмотреть всё очень хочется, но никак не получается. Да ещё и вокруг все, как заведённые, дают советы: глютен в хлебе — не подходи, убьёт; шоколадка в кармане — прямой путь к выпадению зубов. Мы собираем самые популярные вопросов о здоровье, питании, заболеваниях и даем на них ответы, которые позволят чуть лучше понимать, что полезно для здоровья.

Источник

Рекомендации по разводке сети интерфейса RS-485

Звезда активнаЗвезда активнаЗвезда активнаЗвезда активнаЗвезда активна

Рекомендации по разводке сети интерфейса RS-485

RS-485 (EIA/TIA-485) — это стандарт, определяющий электрические характеристики приемников и передатчиков информации для использования в балансных цифровых многоточечных системах. Интерфейс RS-485 является одним из наиболее распространённых стандартов физического уровня в современных средствах промышленной автоматизации.

Как было сказано выше стандарт содержит электрические характеристики приемников и передатчиков, которые могут быть использованы для передачи двоичных сигналов в многоточечных сетях, при этом стандарт не оговаривает другие характеристики: такие как качество сигнала, протоколы обмена, типы соединителей для подключения, линии связи. В результате неопределенности потребители часто испытывают трудности при подключении того или иного оборудования к сети RS-485. Порой неправильно разведенная сеть RS-485 способна свести к нулю затраченные на повышение автоматизации усилия, и может стать причиной постоянных отказов, сбоев и ошибок в работе оборудования. Цель данной статьи — предоставить пользователям рекомендации по подключению и практической реализации систем передачи данных на основе интерфейса RS-485.

1 Краткое описание стандарта

В основе интерфейса RS-485 лежит способ дифференциальной (балансной) передачи данных. Суть данного метода заключается в следующем: по одному проводу (условно линия А) передается нормальный сигнал, а по второму проводу (условно линия В) передается инвертированный сигнал, таким образом, между двумя проводами витой пары всегда существует разность потенциалов (рисунок 1). Для случая логической «единицы» разность потенциалов положительна, для логического «нуля» — отрицательна.

Диаграмма дифференциальной (балансной) передачи данных

Рисунок 1 — Диаграмма дифференциальной (балансной) передачи данных

Преимуществом дифференциальной (балансной) передачи данных является высокая устойчивость к синфазным помехам. Синфазная помеха — помеха, действующая на обе линии связи одинаково. Зачастую линии связи прокладываются в местах подверженных неоднородным электромагнитным полям, электромагнитная волна, проходя через участок линии связи, будет наводить в обоих проводах потенциал. В случае RS-232 интерфейса полезный сигнал, который передается потенциалом относительно общего «земляного» провода был бы утерян. При дифференциальной передаче не происходит искажения сигнала в виду того, что помеха одинаково действует на оба проводника и наводит в них одинаковый потенциал, в результате чего разность потенциалов (полезный сигнал) остается неизменной. По этой причине линии связи интерфейса RS-485 представляют собой два скрученных между собой проводника и называются витой парой. Прямые выходы «А» подключаются к одному проводу, а инверсные «В» ко второму проводу (рисунок 2). В случае неправильного подключения выходов к линиям приемопередатчики не выйдут из строя, но при этом правильно функционировать они не будут.

Конфигурация сети RS-485

Рисунок 2 — Конфигурация сети RS-485

2 Рекомендации по подключению

Конфигурация сети представляет собой последовательное присоединение приемопередатчиков к витой паре (топология «шина»), при этом сеть не должна содержать длинных ответвлений при подключении устройств, так как длинные ответвления вызывают рассогласования и отражения сигнала (рисунок 3).

Стандарт предполагает, что устройства подключаются непосредственно к шине. При этом скрутки и сращивания кабеля не допускаются. При увеличении длины линий связи при высокой скорости передачи данных имеет место так называемый эффект длинных линий. Он заключается в том, что скорость распространения электромагнитных волн в проводниках ограничена, для примера у проводника с полиэтиленовой изоляцией она ограничена на уровне около 206 мм/нс. Помимо этого электрический сигнал имеет свойство отражаться от концов проводника и его ответвлений. Для коротких линий подобные процессы протекают быстро и не оказывают влияния на работу сети, однако при значительных расстояниях в сотни метров отраженная от концов проводников волна может исказить полезный сигнал, что приведет к ошибкам и сбоям.

Проблему отражений сигнала в интерфейсе RS-485 решают при помощи согласующих резисторов — «терминаторов», которые устанавливаются непосредственно у выходов двух приемопередатчиков максимально отдаленных друг от друга. Следует отметить, что в большинстве случаев «терминаторы» уже смонтированы в потребительских устройствах и подключаются к сети при помощи соответствующих перемычек на корпусе устройства. Номинал «терминатора» соответствует волновому сопротивлению кабеля, при этом нужно помнить, что волновое сопротивление кабеля зависит от его характеристик и не зависит от его длины. К примеру, для витой пары UTP-5, используемой для прокладки Ethernet волновое сопротивление составляет 100 ±15 Ом. Специализированный кабель Belden 9841…9844 для прокладки сетей RS-485 имеет волновое сопротивление 120 Ом, поэтому расчетами резистора — «терминатора» можно пренебречь и использовать 120 Ом.

Примеры топологий сетей RS-485

Рисунок 3 — Примеры топологий сетей RS-485

Экранированные витые пары (например, кабели Belden 9841, 3106A) рекомендуется применять в особо ответственных системах, а также при скоростях обмена свыше 500 Кбит/сек.

Нужно отметить, что для обеспечения отказоустойчивости и помехозащищенности с увеличением длины линий связи скорость передачи желательно уменьшить. Зависимость скорости обмена от длины линий представлена на рисунке 4. Данная зависимость может отличаться при прочих условиях и носит скорее рекомендательный характер.

Зависимость скорости обмена от длины линии связи

Рисунок 4 — Зависимость скорости обмена от длины линии связи

Согласно стандарту RS-485 (EIA/TIA-485) передатчик должен обеспечивать передачу данных для 32 единичных нагрузок (под единичной нагрузкой подразумевается приемник с входным сопротивлением 12 кОм). В настоящее время производятся приемопередатчики с входным сопротивлением равным 1/4 (48 кОм) и 1/8 (96 кОм) от единичной нагрузки. В этом случае количество подключенных к сети устройств может быть увеличено до: 128 и 256 соответственно. Допускается использовать устройства с различным входным сопротивлением в одной сети, важно чтобы суммарное сопротивление было не менее 375 Ом.

Электрические характеристики интерфейса приведены в таблице 1.

Параметр Значение
Максимальное число приемников/передатчиков 32/32
Максимальная длина кабеля, м 1200
Максимальная скорость передачи данных, Мбит/с 10
Уровень логической «1» передатчика, В +1,5…+6
Уровень логического «0» передатчика, В –1,5…–6
Диапазон синфазного напряжения передатчика, В –1…+3
Максимальный ток короткого замыкания передатчика, мА 250
Допустимое сопротивление нагрузки передатчика, Ом 54
Порог чувствительности приемника, мВ ± 200
Допустимый диапазон напряжений приемника, В –7…+12
Уровень логической «1» приемника, мВ более +200
Уровень логического «0» приемника, мВ менее –200
Входное сопротивление приемника, кОм 12

Стандарт RS-485 (EIA/TIA-485) не регламентирует, по какому протоколу устройства сети должны связываться друг с другом. Наиболее распространенными протоколами связи на данный момент являются: Modbus, ProfiBus, LanDrive, DMX512 и другие. Передача информации осуществляется полудуплексно в большинстве случаев по принципу «ведущий» — «ведомый».

Порог чувствительности приемника составляет ± 200 мВ, то есть при разнице потенциалов на входе приемника в диапазоне от минус 200 мВ до плюс 200 мВ его выходное состояние будет находиться в состоянии неопределенности. Разность потенциалов более 200 мВ приемник принимает как логическую «1», а разность потенциалов менее минус 200 мВ приемник принимает как логический «0». Состояние неопределенности может произойти, когда ни один из передатчиков не активен, отключен от сети, либо находится в «третьем состоянии», либо все устройства сети находятся в режиме приема информации. Состояние неопределенности крайне нежелательно, так как оно вызывает ложные срабатывания приемника из-за несинфазных помех.

Использование защитного смещения позволяет исключить возможность возникновения неопределенного состояния в сети. Для этого линию А необходимо подтянуть резистором к питанию (pullup), а линию В резистором — к «земле» (pulldown). В результате, с учетом «терминаторов», получится резистивный делитель напряжения. Для надежной работы сети необходимо обеспечить смещение порядка 250…300 мВ (рисунок 5).

Защитное смещение

Рисунок 5 — Защитное смещение

Рассмотрим ситуацию, когда в сети находятся два устройства. Нам необходимо получить смещение 250мВ, при этом в сети подключены два терминальных резистора по 120Ом, и имеется источник напряжения +5В, оба приемника обладают единичной нагрузкой— их сопротивление составляет 12кОм.

Учитывая, что терминальные резисторы по 120Ом и оба приемника по 12кОм включены параллельно, то их общее сопротивление равняется:

Rсети = (Rобщ.терм · Rобщ.вх) / (Rобщ.терм + Rобщ.вх) = (60 · 6000) / (60 + 6000) = 60Ом.

Рассчитаем ток в цепи смещения:

При этом последовательное сопротивление цепи смещения составит:

Получаем сопротивление резисторов смещения:

Rсм = 1140 / 2 = 570Ом.

Выбираем ближайший номинал 560Ом.

Диаграмма передачи данных при использовании защитного смещения

Рисунок 6— Диаграмма передачи данных при использовании защитного смещения

Исходя из расчета защитного смещения можно заметить, что через делитель напряжения постоянно протекает ток (для случая выше это 4,2мА), что может быть недопустимым в системах с малым энергопотреблением. Это является серьезным недостатком защитного смещения.

Снизить потери можно увеличением номинала резисторов согласования до 1,1кОм и выше, но в данном случае придется искать компромисс между энергопотреблением и надежностью сети.

Для гальванически развязанной линии резисторы смещения следует подтягивать к «земле» и питанию со стороны изолированной линии.

Для защиты от помех экран витой пары следует заземлять в одной точке, при этом стандарт не оговаривает в какой, поэтому часто экран кабеля заземляется на одном из его концов. Иногда причиной возникновения ошибок при передаче сигнала является работающий поблизости радиопередатчик. Чтобы устранить влияние радиосигнала на передающий кабель достаточно установить высокочастотный конденсатор малой емкости между экраном кабеля и заземлением электрической сети порядка 1…10нФ.

Если приборы, объединенные в одну сеть, питаются от различных источников или находятся на значительном удалении друг от друга, то необходимо дополнительным дренажным проводом объединить «земли» всех устройств. Это правило исходит из того, что разность потенциалов между линией и «землей» по стандарту не должна превышать от минус 7 до плюс 12 В. В случае, когда устройства находятся на значительном расстоянии друг от друга, либо питаются от разных источников разность потенциалов на входе приемопередатчика может превысить в несколько раз допустимый диапазон, что приведет к выходу из строя приемопередатчика. При этом следует учитывать, что подключение устройства к сети RS-485 нужно начинать именно с дренажного провода, а производя отключение устройства в последнюю очередь отсоединять дренажный провод. Для ограничения «блуждающих» токов в дренажном проводе его следует подключать к каждой сигнальной земле через резистор номиналом 100 Ом мощностью 0,5 Вт, помимо этого необходимо через такой же резистор 100 Ом 0,5 Вт подключить дренажный провод к защитному заземлению. Рекомендуем осуществлять защитное заземление дренажного провода в одной точке, чтобы исключить постоянное протекание «блуждающего» тока через него по сравнению со случаем, когда дренажный провод заземляется у каждого устройства. Не следует использовать экран кабеля в качестве дренажного провода.

Использование дренажного провода для уравнивания потенциала «земель»

Рисунок 7 — Использование дренажного провода для уравнивания
потенциала «земель»

Для защиты сетей от синфазных перенапряжений и импульсных помех менее 2 кВ достаточно использовать приемопередатчики с гальванической развязкой. Если же высокий потенциал будет приложен дифференциально, т.е. к одному проводнику линии, то приемопередатчик будет поврежден, так как разность потенциалов между проводниками должна находиться в диапазоне от минус 7 до плюс 12 В.

Защита устройств сети RS-485 от дифференциальных перенапряжений составляющих десятки киловольт, например, попадание разряда молнии в линию, осуществляется за счет использования специальных защитных устройств. В простейшем случае все проводники линии шунтируются ограничителями напряжения на «землю» (рисунок 8а). Если заземление линии невозможно, то проводники линии шунтируются ограничителями между собой (рисунок 8б). Защита, организованная на варисторах, супрессорах, газоразрядных трубках, способна выдерживать лишь кратковременные всплески напряжения. Дополнительную защиту от токов короткого замыкания в линиях можно обеспечить при помощи установки в линию плавких предохранителей.

Варианты защиты сети RS-485 от перенапряжений и импульсных помех

Рисунок 8 — Варианты защиты сети RS-485 от перенапряжений и импульсных помех

Как правило, устройства, работающие в сетях RS-485 помимо «терминаторов» имеют встроенную защиту от перенапряжений и импульсных помех. Подробнее об этом можно прочитать в руководстве по эксплуатации на конкретное устройство. Помимо этого на рынке существует множество готовых устройств подавления импульсных помех, принцип действия которых также основан на применении варисторов и газоразрядных трубок. Стоит лишь помнить, что каждое дополнительное устройство защиты, установленное в сети, вносит дополнительную емкость, эквивалентную емкости кабеля длинной 120…130 м.

1. Следует избегать прокладки витой пары совместно с силовыми цепями, особенно в общей оплетке. Линии связи должны находиться не ближе чем 0,5 м от силовых цепей. Пересечение линий связи с силовыми цепями (если этого не избежать) желательно делать под прямым углом. Не рекомендуется использовать в качестве витой пары кабели менее 0,326 мм 2 (22 AWG). Не допускается наличие «скруток» для сращивания кабеля.

2. При использовании витой пары типа UTP-5 свободные пары рекомендуется использовать в качестве дренажного провода, либо держать их в резерве, в случае повреждения главной витой пары.

3. Сеть должна иметь топологию «шина», не допускаются длинные ответвления от основной «шины».

4. Если для конечной системы не требуется высокого быстродействия, то не рекомендуется устанавливать скорость передачи данных «как можно выше». Наоборот максимальная надежность сети достигается на низких скоростях передачи.

5. Согласующие резисторы «терминаторы» устанавливаются в наиболее удаленных точках сети RS-485, обычно они уже смонтированы в устройствах пользователя, поэтому достаточно их только подключить перемычками или переключателями согласно руководству по эксплуатации на конкретное устройство. Сопротивление согласующих резисторов должно равняться волновому сопротивлению используемого кабеля, в противном случае их установка может только навредить.

6. В сетях, где возможно возникновение состояния неопределенности необходимо с целью минимизации ошибок и сбоев устанавливать защитное смещение порядка 250…300 мВ. Необходимо учитывать при этом, что ток потребления системы увеличится.

7. Для защиты от помех экран витой пары заземляется в любой точке, но один раз.

8. При питании удаленного оборудования от различных источников рекомендуется использовать дренажный провод для уравнивания потенциала «земель», при этом следует помнить, что подключение устройства к сети следует начинать именно с дренажного провода, а при отключении устройства в последнюю очередь отключать дренажный провод.

9. Для защиты оборудования, а так же обслуживающего его персонала рекомендуется использовать устройства, имеющие гальваническую развязку.

10. Не стоит пренебрегать дополнительными устройствами защиты от перенапряжений и импульсных помех.

Компания ООО «Энергия-Источник» предлагает следующие приборы для передачи и преобразования сигналов интерфейса RS-485:

  • барьер искрозащиты с гальванической развязкой ЭнИ-БИС-3401-Ех-RS;
  • пассивный барьер искрозащиты ЭнИ-БИС-113-Ех;
  • пассивный барьер искрозащиты ЭнИ-БИС-115-Ех;
  • компактный пассивный барьер искрозащиты ЭнИ-БИС-1013-Ex-DC(+);
  • компактный пассивный барьер искрозащиты ЭнИ-БИС-1015-Ex-DC(+);
  • преобразователь интерфейсов ЭнИ-401 (RS-232 – RS-485);
  • преобразователь интерфейсов ЭнИ-402 и ЭнИ-402БП (USB – RS-485);
  • преобразователь интерфейсов ЭнИ-404 (BLUETOOTH – RS-485);
  • GSM/GPRS модем ЭнИ-405 (GSM/GPRS – RS-485/RS-232).

Источник



Что такое Modbus и RS-485 — максимально просто

Изучая оборудование систем Умный Дом мы постоянно сталкиваемся с упоминанием протокола Modbus и порта RS-485.

Например, у контроллера EasyHomePLC есть два порта RS-485 и два порта RS-232, у контроллера Wiren Board есть два порта RS-485, у контроллера Beckhoff CX-8080 есть порт RS-485 и порт RS-232. У различного оборудования есть возможность управления по протоколу Modbus: кондиционеры, вентустановки, модули ввода-вывода. А ещё программное обеспечение EasyHome связывается с контроллером по протоколу Modbus TCP. Что всё это означает? Значит ли это, что если у контроллера есть интерфейс Modbus, и у устройства есть такой интерфейс, они сразу заработают вместе? Многие так считают, но это неверно. Объясню максимально просто и понятно.

Что такое RS-485

RS-485 — это стандарт физического уровня. Что это означает? Он определяет следующие параметры общения устройств:

  • связь кабелем «витая пара» по двум жилам
  • максимальная длина кабеля 1200 метров
  • дискретные сигналы (либо 1, либо 0)
  • если напряжение жилы А больше напряжения жилы В более, чем на 200 милливольт, то сигнал считается единицей. Если наоборот, то нулем
  • скорость общения может быть до 1 мегабита в секунду по одной витой паре и до 10 мегабит по двум витым парам
  • максимальный ток в шине 250 миллиампер
  • напряжение от -7 до +12 вольт постоянного тока
  • в один момент времени может передавать информацию только одно устройство в сети

То есть, стандарт подразумевает, что на 2-проводную шину (одну витую пару) можно подключить множество устройств. Он не описывает никакой язык общения оборудования.

Что такое RS-232

Другой стандарт, тоже по кабелю «витая пара». Не буду перечислять все параметры стандарта, он используется достаточно мало сейчас. В частности, все помнят мышки, которые подключались к компьютеру через широкий COM-порт, вот это как раз была связь по RS-232. К контроллерам EasyHomePLC и Beckhoff подключается GSM модем для приёма и отправки смс как раз через порт RS-232. Длина кабеля совсем небольшая.

Существуют переходники с RS-232 на RS-485 и обратно. Мы получаем возможность подключить на порт RS-232 что-то, что подключается по RS-485 или сделать длинную линию связи для устройств RS-232, поставив в начале линии переходник на 485, а в конце обратно.

Что такое Modbus

Переходим к более интересной вещи. Modbus — это уже протокол. Он определяет правила общения устройств. Например, он говорит, что одно устройство должно быть ведущим (master), а остальные ведомыми (slave). Ведущее посылает в шину связи сообщение определённого формата, в котором либо указан адрес нужного slave устройства, либо сообщение предназначено для всех устройств. Устройство slave, на которое отправлено сообщение, может ответить мастеру. Протокол регламентирует формат сообщения, его длину, возможные значения элементов сообщения. Есть также контрольная сумма, которая нужна для проверки того, что сообщение дошло неискажённым.

Но протокол Modbus не регламентирует, какими могут быть сами команды и какая среда передачи данных используется. Есть Modbus serial — это работа по RS-485 или RS-232, то есть, по одной перевитой паре кабелей. Есть Modbus TCP — это работа в компьютерной сети TCP/IP, где у каждого устройства есть IP адрес и порт.

Можно привести аналогию с человеческим общением. Среда передачи данных — это обычно звук. Стандарт подразумевает, что есть минимальная громкость и максимальная громкость, и громкость речи находится в этом диапазоне. Можно говорить по очереди, а можно одновременно. Есть некий диапазон скоростей передачи звуков, который может использоваться. Есть также диапазон частот звуков. Есть максимальное расстояние, на которое можно передавать звук. А можно общаться не звуком, а световыми вспышками, текстом, хлопками в ладоши или жестами. На каждый способ общения есть некий набор правил. Вот что определяет стандарт.

Протокол общения — это ещё не язык, нет. Протокол даёт нам такие понятия как то, что сообщение состоит из слов, разделяемых тишиной. Слова состоят из слогов. А ещё то, что в начале общения надо здороваться, а в конце прощаться. Говорить может только один в один момент времени. Как-то так.

И вот мы подошли к главному вопросу. У нас контроллер имеет порт (он же разъём, он же шлюз) RS-485 и в него программно заложена возможность общения по Modbus. Также у нас есть кондиционер, у которого также есть физический разъём RS-485 и в паспорте указана возможность работы по Modbus. Что это для нас значит? Это значит, что устройства теоретически могут работать совместно.
Как люди, имеющие возможность говорить, теоретически могут общаться. Для нас такая возможность подразумевает полноценное управление и контроль обратной связи. Но заставить их работать вместе не так просто. Нужно в контроллере написать драйвер для работы именно с этим устройством. Для этого в инструкции к устройству надо найти карту регистров, то есть, описание возможных команд устройства. Вот пример некоторых регистров для вентмашины:

[Request0]
Direction=read
Type=bit
Baudrate=115200
Address=1
Period=100
var0=3800#bool#SCo_Зима/

Мест
var2=3802#bool#SCo_Таймер
var3=3803#bool#SCo_Блокировка
var4=3804#bool#SCo_Пуск/

Пуск/Стоп var6=3806#bool#SCoРежимR2 var7=3807#bool#SCoРежимR3 var8=3808#bool#SCoРежимR4 var9=3809#bool#SCoРежимR5 var10=380a#bool#SCoРежим_R6

Чем сложнее устройство, тем вариантов команд больше. В вентмашине или кондиционере их может быть до сотни. Также по протоколу RS-485 мы можем общаться с инфракрасными приёмопередатчиками, генераторами, конвекторами, электрокарнизами, кондиционерами, термостатами, датчиками и различными элементами расширения контроллера на DIN рейку: модулями входов и выходов, диммерами.

Написать драйвер связи теоретически несложно, но это большая работа. Нужно предусмотреть нюансы работы техники, придумать удобный интерфейс управления и получения обратной связи, прописать в драйвере возможные коды ошибок. После подключения реального устройства может потребоваться доналадка, если не всё было учтено в инструкции или в драйвере. Стоимость этой работы может быть достаточно высокой, поэтому стоит обращать внимание на то, какие драйверы уже присутствуют в программном обеспечении, прилагаемом к контроллеру.

Например, в программном обеспечении EasyHome есть поддержка ИК-передатчиков ICPDas и Insyte, модулей связи с кондиционерами Mitsubishi и Daikin, конвекторов Varmann, счётчиков электричества Delta, блоков расширения Овен, Razumdom, Bolid, вентмашин Komfovent и ещё много чего. Нужно смотреть конкретные поддерживаемые модели, у разных моделей разные спецификации команд.

Есть устройства с поддержкой Modbus TCP, там нужно, чтобы оно было включено в локальную сеть, отдельный порт RS-485 контроллера не нужен.

К системам на Z-Wave напрямую ничего по Modbus не подключить, там нет такой возможности. Только используя промежуточный контроллер, который поддерживает и Modbus, и Z-Wave, например, Wiren Board.

Есть важная особенность работы устройств по Modbus. У Modbus есть устройство-мастер (это контроллер) и устройство-слейв (то, что к нему подключается). Слейв не может сам инициировать передачу данных, поэтому мастер постоянно опрашивает все подключенные к нему слейвы на предмет их состояния. Если у нас датчик подключен к дискретному входу устройства Овен МВ, то при изменении состояния датчика меняется состояние входа, но модуль не может сразу же сообщить об этом контроллеру, так как не может сам инициировать связь. Нужно дождаться, пока контроллер опросит этот модуль, тогда модуль отправит ему в ответ своё состояние и контроллер поймёт, что датчик изменил состояние и что-то сделает.

Что произойдёт, если на вход Овен МВ пришёл сигнал о сработке датчика, а потом датчик изменил состояние на первоначальное, а контроллер не успел его опросить? В программе модуля МВ есть счётчики количества сработок каждого входа, вот их-то контроллер и считывает, и видит, что было изменение.

Скорость опроса модулей контроллером ограничена, поэтому контроллер не мгновенно узнаёт о событии, это зависит от того, какая скорость опроса, насколько она оптимизирована, и сколько модулей расширения подключено к контроллеру. Если у нас очень много модулей, которых контроллер по очереди опрашивает, то весь цикл опроса занимает некоторое время, пока очередь нужного нам модуля не подойдёт, об изменении состояния мы не узнаем. А потом контроллер должен будет отправить нужную команду соответствующему модулю реле для изменения его состояния. У EasyHomePLC при количестве модулей расширения не более 5 максимальная задержка отрабатывания события не превышает 1.5 секунды, что достаточно быстро. Зависит от того, что опрашивалось в момент изменения состояния входа. У контроллеров Beckhoff связь между модулями расширения происходит по собственному протоколу связи, там независимо от количества модулей всё отрабатывает мгновенно.

Версии Modbus — TCP и RTU

Ещё раз обозначим разницу между версиями связи по ModBus.

Modbus RTU, он же Modbus Serial — работа по RS-485 или RS-232. Подключение устройств по витой паре, где контроллер мастер, а остальные устройства — слейвы, которые не могут сами инициировать связь. Самый распространённый вариант связи.

Modbus TCP или Modbus TCP/IP — общение устройств происходит по обычной компьютерной сети TCP/IP, включающей работу через интернет и через Wi-Fi. То есть, возможна связь между устройствами на любом расстоянии, когда оба подключены к интернет.

Есть ещё несколько разновидностей: Modbus RTU/IP (отличается от TCP наличием контрольной суммы), Modbus over UDP, Modbus Plus (собственный протокол фирмы Schneider Electric, в сети могут быть несколько мастеров).

Ещё небольшая статья про работу устройств по протоколу Modbus в системах Умный Дом: RS-485 Modbus в системах Умного Дома.

240,571 просмотров всего, 164 просмотров сегодня

Источник