Меню

Механическая характеристика генератора переменного тока

Как устроен генератор переменного тока — назначение и принцип действия

Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.

Как устроен генератор переменного тока - назначение и принцип действия

Превращение механической энергии в электрическую

Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

Как устроен генератор переменного тока - назначение и принцип действия

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Как устроен генератор переменного тока - назначение и принцип действия

Схема генератора переменного тока

Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

Классификация и виды агрегатов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

Синхронный

Как устроен генератор переменного тока - назначение и принцип действия

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Газовый генератор

Как устроен генератор переменного тока - назначение и принцип действия

В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

  • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
  • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
  • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
  • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.

Дизельный генератор

Как устроен генератор переменного тока - назначение и принцип действия

Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:

  • Относительная дешевизна топлива;
  • Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
  • Высокий уровень противопожарной безопасности;
  • В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
  • Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.

Бензогенератор

Как устроен генератор переменного тока - назначение и принцип действия

Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:

  • Малые габариты при высокой мощности;
  • Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
  • В случае перегрузки генератора автоматически срабатывает защита;
  • Просты в обслуживании и ремонте;
  • Во время работы не издают много шума;
  • Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.

Источник

Характеристики генераторов переменного тока

Основными характеристиками генераторов переменного тока являются: 1) внешняя; 2) скоростная регулировочная и 3) токоскоростная характеристики.

Внешняя характеристика – это зависимость выходного напряжения генератора от выходного тока Uг(Iг) при постоянной частоте вращения (n = const). Она может определяться при самовозбуждении и при независимом возбуждении.

При увеличении нагрузки (а значит и силы тока) происходит снижение выходного напряжения генератора (рис.1.9). Причинами этого являются: 1) падение напряжения в обмотках статора; 2) размагничивающее действие реакции якоря, уменьшающей магнитный поток в воздушном зазоре; 3) падение напряжения в цепи выпрямителя; 4) в случае самовозбуждения – падение напряжения на обмотке возбуждения. Из семейства внешних характеристик определяется максимальный ток, который обеспечивается при заданном или регулируемом значении напряжения.

Читайте также:  Как найти эдс источника тока при последовательном соединении

Рис. 1.9. Внешняя характеристика генератора переменного тока с независимым возбуждением

Скоростная регулировочная характеристика Iв(n) – зависимость тока в обмотке возбуждения от частоты вращения генератора при постоянном напряжении на выходе генератора (рис.1.10, а). Минимальное значение тока возбуждения определяется при токе нагрузки генератора, равном нулю, и максимальной частоте вращения. Скоростные регулировочные характеристики позволяют определить диапазон изменения тока возбуждения с изменением нагрузки при постоянном напряжении.

Токоскоростная характеристика Iг(n) – зависимость выходного тока генератора от частоты вращения генератора при постоянном напряжении на выходе генератора (рис.1.10, б).

Рис. 1.10. Характеристики генератора переменного тока при Uг=const: а – скоростная регулировочная характеристика; б – токоскоростная характеристика

Все автомобильные генераторы обладают свойством самоограничения максимального тока: при изменении частоты вращения генератора в зоне больших частот сила тока генератора остается неизменной.. Это связано с тем, что с увеличением частоты вращения ротора генератора, а следовательно, с увеличением частоты индуцированного в обмотке статора переменного тока увеличивается индуктивное сопротивление обмотки статора генератора. При большой частоте вращения генератора полное сопротивление цепи Zц, в которую включен генератор, становится практически равным индуктивному сопротивлению XL обмотки статора, так как в этом случае XL>>Rн (Rн – сопротивление нагрузки). ЭДС генератора и индуктивное сопротивление XL обмотки статора изменяются, как известно, пропорционально частоте вращения генератора n. Поэтому при изменении частоты вращения генератора в диапазоне больших частот сила тока генератора остается неизменной:

ЛЕКЦИЯ 5

Регуляторы напряжения

Выходное напряжение генератора зависит от трех величин: 1) частоты вращения его ротора, 2) выходной силы тока генератора и 3) силы тока в обмотке возбуждения генератора. Так как первые две величины в автомобильном генераторе постоянно изменяются, то для обеспечения стабильного напряжения необходимо соответствующим образом воздействовать на силу тока в обмотке возбуждения генератора. Для этого в генераторную установку вводится регулятор напряжения.

Любой регулятор напряжения (рис. 1.11) содержит измерительное устройство, устройство сравнения; задающее устройство и устройство воздействия. Измерительное устройство преобразует выходное напряжение генератора в величину, пропорциональную этому напряжению. Устройство сравнения сравнивает величину на выходе измерительного устройства с эталонной величиной. Эталонной величиной может быть как напряжение, так и любая другая достаточно стабильная физическая величина, например, сила натяжения пружины в вибрационных и контактно-транзисторных регуляторах. Значение эталонной величины устанавливается с помощью задающего устройства. В зависимости от результатов сравнения устройство сравнения формирует соответствующий сигнал и подает его наустройство воздействия. Устройство воздействия непосредственно влияет на силу тока, протекающего через обмотку возбуждения генератора.

Рис. 1.11. Структурная схема регулятора напряжения

По своей конструкции регуляторы делятся на вибрационные (реле-регуляторы), контактно-транзисторные и бесконтактные (транзисторные) регуляторы.

В вибрационных регуляторах устройством сравнения является электромагнитное реле. При повышенном напряжении на выходе генератора это реле своими контактами включает в цепь питания обмотки возбуждения добавочный резистор. При пониженном напряжении добавочный резистор отключается (шунтируется). Основным недостатком вибрационных регуляторов является искрение контактов, вызывающее их ускоренный износ.

Контактно-транзисторный регулятор работает аналогично вибрационному. Отличие заключается в том, что контакты электромагнитного реле, входящего в состав контактно-транзисторного регулятора, служат для управления транзистором. Транзистор работает в ключевом режиме и выполняет ту роль, которую в вибрационном регуляторе выполняют контакты электромагнитного реле. Так как управление транзистором осуществляется малыми токами, то износ контактов в контактно-транзисторном регуляторе существенно ниже, чем в вибрационном.

Общим недостатком вибрационных и контактно-транзисторных регуляторов является нестабильность регулируемого напряжения, вызываемая старением возвратной пружины электромагнитного реле. Этот недостаток полностью исключается в бесконтактных регуляторах напряжения (рис. 1.12).

Рис. 1.12. Принципиальная схема бесконтактного регулятора напряжения

Функции задающего устройства и устройства сравнения в бесконтактном регуляторе напряжения выполняют стабилитрон VD и транзистор VT2, функцию измерительного устройства – делитель напряжения на R2 и R3, функцию устройства воздействия – резистор Rд , транзистор VT1 и резистор R1. При снижении напряжения генератора ниже регулируемого значения стабилитрон VD закрывается, вследствие чего закрывается транзистор VT2, обеспечивая открытие транзистора VT1. Открытый транзистор VT1 шунтирует добавочный резистор Rд, что приводит к возрастанию тока, питающего обмотку возбуждения генератора. Повышение напряжения на выходе генератора вызовет пробой стабилитрона VD (снижение его сопротивления). Поэтому транзистор VT2 перейдет в открытое состояние, а транзистор VT1 – в закрытое. Ток, питающий обмотку возбуждения генератора, снизится, так как в этом случае он будет протекать не через открытый транзистор VT2, а через добавочный резистор Rд.

Разновидностью бесконтактных регуляторов являются интегральные регуляторы, представляющие собой микросхему, имеющую небольшие размеры и способную работать при высоких температурах. Поэтому интегральные регуляторы легко встраиваются в генератор, что положительно сказывается на надежности генераторной установки в целом.

Бортовая электрическая сеть

Бортовая электрическая сеть — это совокупность средств, обеспечивающих соединение источников и потребителей электрической энергии. Основными элементами электрической сети являются: соединительные провода, средства защиты цепей от перегрузок (предохранители, автоматические выключатели), средства коммутации (выключатели, переключатели) и различные соединительные и распределительные устройства. Соединение потребителей в основном осуществляется по однопроводной схеме. В качестве второго провода используется корпус автомобиля. Достоинствами такого соединения являются уменьшение расхода меди, упрощение монтажа проводки. Недостатками являются увеличенная возможность замыкания между проводами и корпусом.

Предохранители используются для защиты электрических цепей от перегрузок. На автомобилях широко применяются плавкие и термобиметаллические предохранители.

Плавкие предохранители имеют плавкую вставку, которая рассчитывается на длительное протекание тока номинального значения. При увеличении тока на 50 % она расплавляется в течение 1 мин. Используемые в настоящее время плавкие предохранители делятся на цилиндрические, штекерные и пластинчатые. Цилиндрические предохранители — самые массовые на российских автомобилях. Их достоинством является простота определения сгоревшего предохранителя. Недостатком является ненадежность контакта при ослаблении прижимных лапок на блоке. Штекерные предохранители международного стандарта имеют штекеры, залитые в корпус из цветной пластмассы: светлокоричневый – 5 А, темнокоричневый – 7,5 А, красный – 10 А, синий – 15 А, желтый – 20 А, белый – 25 А, зеленый – 30 А. Достоинствами этих предохранителей является компактность и надежность, недостатками – сложность визуального определения сгорания предохранителя. Предохранители в виде пластинчатых вставок рассчитаны на ток 30 и 60 А. Они закрепляются на блоках винтами.

Читайте также:  Почему человека дергает током от всего

Термобиметаллические предохранители делятся на предохранители много- и однократного действия. В их состав входит биметаллическая пластина, которая при повышении тока в результате нагрева изгибается и размыкает электрическую цепь. В предохранителях многократного действия после остывания биметаллической пластины электрическая цепь восстанавливается. В предохранителях однократного действия для восстановления электрической цепи необходимо нажать специальную кнопку.

Коммутационная аппаратура включает в себя различные типы выключателей и переключателей.

Основным коммутационным устройством на автомобиле является выключатель с приводом от замкового устройства – замок-выключатель. Замок-выключатель обеспечивает включение первичной цепи системы зажигания, контрольно-измерительных приборов, стартера, стеклоочистителя, радиоприемника и других устройств. На автомобилях с карбюраторным двигателем замок-выключатель называют выключателем зажигания, а на автомобилях с дизелем – выключателем приборов и стартера.

ЛЕКЦИЯ 6

Система пуска

Система пуска предназначена для принудительного вращения вала ДВС. Наибольшее распространение получила электростартерная система пуска (рис. 2.1). Она состоит из аккумуляторной батареи, стартерной цепи (провода, коммутационная аппаратура), стартера, средств облегчения пуска и ДВС.

Рис. 2.1. Структурная схема электростартерной системы пуска

Стартер

Автомобильный стартер служит для сообщения коленчатому валу двигателя определенной начальной частоты вращения. У карбюраторных двигателей эта частота должна быть равна 50. 100 об/мин, у дизелей – 150. 200 об/мин. Пусковой ток у стартеров различного типа достигает 100. 800 А.

Стартер современного автомобиля (рис. 2.2) состоит из электродвигателя 10, приводного механизма и тягового реле. Приводной механизм обеспечивает ввод и удержание шестерни стартера в зацеплении с венцом маховика во время пуска, предохранение якоря стартерного электродвигателя от разноса вращающимся маховиком работающего двигателя. Тяговое реле является одновременно и частью приводного механизма, обеспечивая его перемещение по оси вала якоря, и частью стартерной цепи, замыкая в конце хода якоря тягового электромагнита силовые контакты цепи питания стартерного электродвигателя. В качестве стартерного электродвигателя часто применяются электродвигатели постоянного тока с последовательным возбуждением, так как в этом случае обеспечивается большой пусковой момент. Недостатком этих двигателей является значительная частота вращения при холостом ходе, что вызывает разрушение якоря. Данный недостаток частично устраняется использованием электродвигателей смешанного возбуждения, имеющих дополнительную параллельную обмотку возбуждения. К общим недостаткам двигателей постоянного тока следует отнести повышенный износ электрических контактов в коллекторно-щеточном механизме, вызванный трением и искрением контактов.

Рис. 2.2. Схема стартера с электромагнитным включением: 1—аккумуляторная батарея; 2—выключатель; 3—обмотка тягового реле; 4—подвижный сердечник (якорь); 5—пружина; 6—рычаг; 7—шестерня; 8—вал электродвигателя; 9—маховик; 10—электродвигатель

После пуска двигателя частота вращения коленчатого вала не должна передаваться через шестерню обратно на стартер. В противном случае возможен разнос якоря стартера. Поэтому усилие от вала якоря к шестерне у большинства стартеров передается через муфту свободного хода (рис.2.3), или обгонную муфту. Муфта обеспечивает передачу крутящего момента только в одном направлении – от вала якоря к маховику.

Рис. 2.3. Схема действия сил в роликовой муфте свободного хода

При включении стартера ролики муфты заклиниваются между обоймами муфты. Благодаря этому, крутящий момент от наружной ведущей обоймы передается роликами на внутреннюю обойму. После запуска ДВС наружная обойма становится ведомой, ролики расклиниваются и муфта начинает пробуксовывать (w2>w1). Основными силами, действующими в роликовой муфте при включении стартера, являются: сила тяги Fтяги1, действующая со стороны наружной обоймы на ролики; сила тяги Fтяги2, действующая со стороны роликов на внутреннюю обойму; сила трения Fтр1 (Fтр2 ) между поверхностями роликов и внешней обоймы (поверхностями роликов и внутренней обоймы); сила прижимной пружины Fпр. Муфта работает без пробуксовывания, если Fтяги1

Последнее изменение этой страницы: 2017-05-05; Просмотров: 2683; Нарушение авторского права страницы

Источник

Характеристики генераторов переменного тока

Внешняя характеристика, т. е. зависимость напряжения генера­тора от тока Ur (/г) при n = const, может определяться при самовоз­буждении и независимом возбуждении. Аналитическое выражение зависимости напряжения от тока для фазных величин имеет сле­дующий вид:

где Z — полное сопротивление генератора.

Снижение напряжения при увеличении нагрузки (рис. 1.5) проис­ходит из-за падения напряжения в активном и индуктивном сопро­тивлениях обмоток статора, размагничивающего действия реакции якоря, уменьшающей магнитный поток в воздушном зазоре, из-за падения напряжения в цепи выпрямителя, а в случае самовозбуждения прибавляется падение напряжения на обмотке возбуждения.

Рис. 1.5. Внешняя характеристика генератора переменного тока: а — с самовозбуждением; б — с независимым возбуждением

Из семейства внешних характеристик определяется максмальный ток, который обеспечивается при заданном или регулируемом значении напряжения.

Скоростная регулировочная характеристика Lв ((n)(рис. 1.6,а) обычно определяется при нескольких значениях тока нагрузки. Минимальное значение тока возбуждения определяется при токе на-грузки генератора, равном нулю, и максимальной частоте вращения. Скоростные регулировочные характеристики позволяют определить диапазон изменения тока возбуждения с изменением нагрузки при постоянном напряжении.

Токоскоростная характеристика /г(n) (рис. 1.6,6) имеет важное значение при разработке и выборе генератора.

Все современные автомобильные генераторы обладают свойством самоограничения максимального тока. Это связано с тем, что с увеличением частоты вращения ротора генератора, а следовательно, с увеличением частоты индуцированного в обмотке статора переменного тока увеличивается индуктивное сопротивление обмотки статора генератора, пропорциональное квадрату числа витков в фазе. Вследствие этого с увеличением частоты вращения ток генератора увеличивается медленнее, асимптотически стремясь к некоторому предельному значению. При замыкании внешней цепи на сопротивление нагрузки индуцированная в обмотке статора электродвижущая сила вызывает ток

(1.2)

где Rа> и XL — соответственно активное и индуктивное сопротивление обмотки статора.

Выразив индуктивное сопротивление обмотки статора через частоту и индуктивность, а затем через частоту вращения и индук­тивность:

Читайте также:  Зубная щетка ударила током

X,l= 2 fL = 2 L=Cxn

где L — индуктивноть обмотки статора; Сх — постоянный коэффициент

выражение для тока генератора:

При малой частоте вращения индуктивная составляющая сопро­тивления (Cxn) 2 мала по сравнению с активной составляющей (Rа + Rн) 2 и ею можно пренебречь. При этом ток будет возрастать пропорционально частоте вращения (начальная часть характери­стики на рис. 1.6,6):

С увеличением частоты вращения индуктивная составляющая возрастает и становится значительно больше активной состав­ляющей, следовательно, последней можно пренебречь. При этом ток будет постоянным, не зависящим от частоты вращения, а опре­деляемым параметрами обмоток генератора и и магнитным потоком:

Источник



Характеристики генераторов переменного тока

Основными характеристиками генераторов переменного тока яв­ляются: 1) внешняя; 2) скоростная регулировочная; 3) токоскоростная.

Внешняя характеристика — это зависимость напряжения гене­ратора от тока (Ur(Ir) при п = const. Она может определяться при самовозбуждении и при независимом возбуждении.

При увеличении нагрузки (а значит, и силы тока) происходит снижение выходного напряжения генератора (рис. 1.9). Причинами этого являются: 1) падение напряжения в активном и индуктивном сопротивлениях обмоток статора; 2) размагничивающее действие реакции якоря, уменьшающей магнитный поток в воздушном за­зоре, 3) падение напряжения к цепи выпрямителя; 4) в случае са­мовозбуждения — падение напряжения на обмотке возбуждения. Из семейства внешних характеристик определяется максимальный ток, который обеспечивается при заданном или регулируемом значении напряжения.

Рис. 1.9 Внешняя характеристика генератора переменного тока с независимым возбуждением.

Рис. 1.10. Характеристики генератора переменного тока при Ur=const;

а — скоростная регулировочная характеристика;

б — токоскоростная характеристика

Скоростная регулировочная характеристика Iв(n) (рис.1.10,а) обычно определяется при нескольких значениях тока нагрузки. Минимальное значение тока возбуждения определяется при токе на­грузки генератора, равном нулю, и максимальной частоте вращения. Скоростные регулировочные характеристики позволяют определить диапазон изменения тока возбуждения с изменением нагрузки при повышенном напряжении.

Токоскоростная характеристика Iг(n) (см. рис. 1.10,б) имеет важное значение при разработке и выборе генератора.

Все современные автомобильные генераторы обладают свойством самоограничения максимального тока. Это связано с тем, что с увели­чением частоты вращения ротора генератора, а следовательно, и час­тоты индуцированного в обмотке статора переменного тока увеличива­ется индуктивное сопротивление обмотки статора генератора. При большой частоте вращения генератора полное сопротивление цепи Zц, в которую включен генератор, становится практически равным индук­тивному сопротивлению X обмотки статора, так как в этом случае X >>RH (RH — сопротивление нагрузки). ЭДС генератора и индук­тивное сопротивление Х обмотки статора изменяются, как известно, пропорционально частоте вращения генератора п. Поэтому при изме­нении частоты вращения генератора в диапазоне больших частот сила тока генератора остается неизменной:

I (n) = = = = const

Регуляторы напряжения

Выходное напряжение генератора зависит от трех величин: 1) частоты вращения его ротора; 2) выходной силы тока генерато­ра; 3) силы тока в обмотке возбуждения генератора. Так как первые две величины в автомобильном генераторе постоянно изменяются, то для обеспечения стабильного напряжения необходимо соответст­вующим образом воздействовать на силу тока в обмотке возбужде­ния генератора. Для этого в генераторную установку вводится регу­лятор напряжения.

Любой регулятор напряжения (рис. 1.11) содержит измери­тельное устройство, устройство сравнения, задающее устройство и устройство воздействия. Измерительное устройство преобразует выходное напряжение генератора в величину, пропорциональную этому напряжению. Устройство сравнения, сравнивает величину на выходе измерительного устройства с эталонной величиной.

Рис. 1.11. Структурная схема регулятора напряжения

Эта­лонной величиной может быть, как напряжение, так и любая другая достаточно стабильная физическая величина, например, сила натяжения пружины в вибрационных и контактно-транзисторных ре­гуляторах. Значение эталонной величины устанавливается с по­мощью задающего устройства. В зависимости от результатов срав­нения устройство сравнения формирует соответствующий сигнал и подает pro на устройство воздействия. Устройство воздействия не­посредственно влияет на силу тока, протекающего , через обмотку возбуждения генератора.

По своей конструкции регуляторы делятся на вибрационные (реле регуляторы), контактно-транзисторные и бесконтактные (.транзисторные) регуляторы.

В вибрационных регуляторахустройством сравнения является электромагнитное реле. При повышенном напряжении на выходе ге­нератора это реле своими контактами включает в цепь питания об­мотки возбуждения добавочный резистор. При пониженном напря­жении добавочный резистор отключается (шунтируется). Основным недостатком вибрационных регуляторов является искрение контак­тов, вызывающее их ускоренный износ.

Контактно-транзисторный регуляторработает аналогично вибрационному. Отличие заключается в том, что контакты электромагнитного реле, входящего в состав контактно-транзисторного ре­гулятора, служат для управления транзистором. Транзистор рабо­тает в ключевом режиме и выполняет ту роль, которую в вибра­ционном регуляторе выполняют контакты электромагнитного реле. Так как управление транзистором осуществляется малыми токами, то износ контактов в контактно-транзисторном регуляторе сущест­венно ниже, чем в вибрационном.

Общим недостатком вибрационных и контактно-транзисторных регуляторов является нестабильность регулируемого напряжения, вызываемая старением возвратной пружины электромагнитного ре­ле. Этот недостаток полностью исключается в бесконтактных ре­гуляторах напряжения(рис. 1.12).

Рис. 1.12. Принципиальная схема бесконтактного регулятора напряжения

Функции задающего устройства и устройства сравнения в бесконтактном регуляторе напряжения выполняют стабилитрон VD и транзистор VT2, функцию измерительного устройства — делитель напряжения на R2 и R3, функцию устройства воздействия — ре­зистор Rд, транзистор VT1 и резистор R1. При снижении напря­жения генератора ниже регулируемого значения стабилитрон VD закрывается, вследствие чего закрывается транзистор VT2, обеспе­чивая открытие транзистора VTI. Открытый транзистор VT1 шун­тирует добавочный резистор Ra, что приводит к возрастанию тока, питающего обмотку возбуждения генератора. Повышение напря­жения на выходе генератора вызовет пробой стабилитрона VD (сни­жение его сопротивления). Поэтому транзистор VT2 перейдет в от­крытое состояние, а транзистор VT1 — в закрытое. Ток, питающий обмотку возбуждения генератора, снизится, так как в этом случае он будет протекать не через открытый транзистор VT2, а через до­бавочный резистор Rд.

Разновидностью бесконтактных регуляторов являются интег­ральные регуляторы, представляющие собой микросхему, имеющую небольшие размеры и способную работать при высоких тем­пературах Поэтому интегральные регуляторы легко встраиваются в генератор, что положительно сказывается на надежности генера­торной установки в целом.

Источник