Меню

Механические характеристики электродвигателя постоянного тока последовательного возбуждения

Механические характеристики двигателя постоянного тока последовательного возбуждения в двигательном режиме

Механические характеристики двигателя постоянного тока последовательного и смешанного возбуждения

Механические характеристики двигателя постоянного тока последовательного возбуждения в двигательном режиме

Для электродвигателя последовательного возбуждения, принципиальная схема включения которого представлена на рис. 4.1, уравнение электромеханической характеристики, так же как и для двигателя независимого возбуждения, имеет вид

, (4.1)

где – суммарное сопротивление якорной цепи, состоящее из сопротивления обмотки якоря, обмотки возбуждения и сопротивления внешнего резистора х.

Рисунок 4.1 – Схема включения двигателя постоянного тока последовательного возбуждения.

В отличие от двигателя независимого возбуждения здесь магнитный поток является функцией тока якоря . Эта зависимость носит название кривой намагничивания (рис. 4.2). Так как нет точного аналитического выражения для кривой намагничивания, то трудно дать и точное аналитическое выражение для механической характеристики двигателя последовательного возбуждения.

Если для упрощения анализа пренебречь насыщением магнитной системы и предположить линейную зависимость между потоком и током якоря , то момент двигателя

. (4.2)

Подставив в равенство для угловой скорости двигателя значение тока из (4.2), получим выражение для механической характеристики

. (4.3)

Отсюда следует, что при ненасыщенной магнитной цепи двигателя механическая характеристика изображается кривой (рис. 4.3), для которой ось ординат является асимптотой. Особенностью механической характеристики двигателя последовательного возбуждения является ее большая крутизна в области малых значений момента.Значительное увеличение угловой скорости при малых нагрузках обусловливается соответствующим уменьшением магнитного потока.

Рисунок4.2 – Кривая намагничивания двигателя постоянного тока последовательного возбуждения.

Рисунок 4.3 – Естественная механическая характеристика двигателя постоянного тока последовательного возбуждения.

Уравнение (4.3) дает лишь общее представление о механической характеристике двигателя последовательного возбуждения. При расчетах этим уравнением пользоваться нельзя, так как машин с ненасыщенной магнитной системой обычно в современной практике не строят. Вследствие того, что действительные механические характеристики сильно отличаются от кривой, выраженной уравнением (4.3), построение характеристик приходится вести графо-аналитическими способами. Обычно построение искусственных характеристик производится на основании данных каталогов, где приводятся естественные характеристики и .

Для серии двигателей определенного типа эти характеристики могут быть даны в относительных единицах и . Такие характеристики, называемые универсальными, представлены на рис. 4.4.

В каталогах дается зависимость момента па валу двигателя от тока. При построении механических характеристик принимается зависимость угловой скорости от электромагнитного момента. Это практически допустимо ввиду небольшой разницы между электромагнитным моментом и моментом на валу.

Рисунок 4.4 – Зависимость момента и угловой скорости от тока якоря двигателя постоянного тока последовательного возбуждения (в относительных единицах).

Для построения искусственных (реостатных) характеристик можно воспользоваться следующим методом.

Уравнение естественной характеристики

, (4.4)

где , или

. (4.5)

В случае включения в якорную цепь дополнительного резистора двигатель будет работать на реостатной характеристике, для которой

. (4.6)

При делении (4.5) на (4.4) получим

, (4.7)

. (4.8)

или в относительных единицах

, (4.9)

где – суммарноесопротивление якорной цепи в относительных единицах; ; и .

Порядок построения реостатной характеристики сводится к тому, что, задаваясь некоторыми произвольными значениями тока , по имеющейся естественной характеристике находят . Затем по (4.9) при определенном (для которого строится реостатная характеристика) и том же определяют искомое значение . Таким же образом для других значений определяют искомые значения скорости , и т. д. На рис. 4.5 показаны естественная характеристика двигателя последовательного возбуждения и реостатная , построенные по указанному методу.Пользуясь кривой (рис. 4.4) и электротехническими характеристиками, легко построить механические характеристики двигателя .

На рис. 4.6 приведены естественная и реостатные механические характеристики двигателя последовательного возбуждения, построенные в относительных единицах. С увеличением сопротивления скорость двигателя при том же моменте уменьшается и характеристика смещается вниз. Жесткость характеристики уменьшается с ростом дополнительного сопротивления в якорной цепи.

Рисунок 4.5 – Естественная и реостатная электромеханические характеристики двигателя постоянного тока последовательного возбуждения (в относительных единицах).

Рисунок 4.6 – Естественная и реостатные механические характеристики двигателя постоянного тока последовательного возбуждения (в относительных единицах).

Особенностью механических характеристик рассматриваемого двигателя является невозможность получения режима идеального холостого хода.При нагрузке ниже 15-20 % номинальной работа двигателя практически недопустима из-за чрезмерного увеличения скорости якоря.

Источник

Механические характеристики двигателя постоянного тока с последовательным возбуждением. Двигательный режим

date image2015-03-20
views image7949

facebook icon vkontakte icon twitter icon odnoklasniki icon

Схема включения двигателя приведена на рис. 2.8. Якорь двигателя М и обмотка возбуждения LM включены последовательно и получают питание от одного источника U. Поэтому ток якоря Iя является и током возбуждения Iв. Это обстоятельство определяет единственное отличие в конструкции двигателя с последовательным возбуждением от двигателя с независимым возбуждением: обмотка возбуждения LM ДПТ с последовательным возбуждением выполнена проводником того же сечения, что и обмотка якоря.

Рис. 2.8. Схема включения ДПТ с последовательным возбуждением.

При вращающемся якоре в его обмотке наводится э.д.с. вращения Е. На схеме включения двигателя направление Е встречно по отношению направления U, что соответствует двигательному режиму работы. Величина Е равна:

Читайте также:  Dns k47ds712 уменьшить ток подсветки

где ω – угловая скорость двигателя; Ф – поток двигателя; — конструктивный коэффициент двигателя данные для расчета, которого приводятся в справочниках. Здесь р – число пар полюсов двигателя; N – число активных проводников обмотки якоря; а – число пар параллельных ветвей обмотки якоря.

Направление якорного тока IЯ, как и направление Е на схеме включения показано для двигательного режима работы.

Допустимое значение якорного тока двигателя Iя доп ограничивается условиями коммутации и механической прочностью якоря и не должно превышать номинальный ток Iян более чем в 2,5 раза Iя доп ≤ 2,5 Iян.

В соответствии с уравнением равновесия напряжений при установившемся режиме работы двигателя напряжение U, приложенное к якорной цепи двигателя уравновешивается падением напряжения в якорной цепи IяRяц и наведенной в обмотке якоря э.д.с. вращения Е:

где RЯЦ=RЯ+RДП+RКО+RВ+RП – суммарное сопротивление якорной цепи. Здесь RЯ— сопротивление обмотки якоря; RДП – сопротивление обмотки дополнительных полюсов; RКО – сопротивление компенсационной обмотки; RВ – сопротивление обмотки возбуждения; RП – сопротивление пускового реостата.

Величина IЯ в установившемся режиме будет равна:

В режиме пуска Е=0, поэтому из-за небольшого сопротивления обмоток пусковой ток IЯ П может превышать допустимое значение. Для ограничения пускового тока служит пусковой реостат, сопротивление которого RП выбирается таким образом, чтобы IЯ П≤ IЯ ДОП

Из уравнения равновесия напряжений для якорной цепи можно получить аналитическое выражение для механической характеристики двигателя.

Подставив в него вместо э.д.с. вращения Е ее значение и решив полученное уравнение относительно скорости, получим зависимость скорости двигателя ω от тока якоря IЯ ω=f(IЯ), которая называется электромеханической характеристикой:

Поскольку обмотка возбуждения включена последовательно с якорем двигателя, создаваемый ею магнитный поток Ф является функцией тока якоря IЯ. Зависимость Ф= f(IЯ) называется кривой намагничивания и носит нелинейный характер типа «зона насыщения». Точного аналитического описания этой кривой не существует, поэтому нет и точного аналитического описания механической характеристики ДПТ с последовательным возбуждением. Если, пренебрегая насыщением магнитной системы, предположить линейную зависимость между Ф и IЯ с коэффициентом пропорциональности α, то есть считать Ф=αIЯ, то вращающий момент будет равен:

Отсюда величина тока якоря будет равна:

Подставив в уравнение электромеханической характеристики значение для Iя, получим уравнение механической характеристики:

где А=U/kα; В= RЯЦ /(kα) – постоянные величины.

Анализ полученного уравнения показывает, что ось ординат является асимптотой для кривой и что в области малых значений моментов она имеет большую крутизну

При RП=0 и U=Uн двигатель работает на естественной характеристике. Для построения естественной характеристики используются так называемые универсальные характеристики, приводимые в каталогах для каждой серии двигателей. Они представляют зависимости n=f(IЯ) и М= f(IЯ) в относительных единицах. Зная номинальные данные двигателя, можно построить его характеристику в абсолютных величинах. Такая характеристика приведена на рис. 2.9.

Рис. 2.9. Механические характеристики двигателя постоянного тока последовательного возбуждения.

Особенностью характеристики является резкое увеличение скорости при уменьшении момента сопротивления Мс. По этому двигатель постоянного тока с последовательным возбуждением нельзя запускать в тех случаях, когда Мс 0 и скорость двигателя начинает увеличиваться. При независимом возбуждении следствием этого будет увеличение э.д.с. вращения и уменьшение тока якоря и вращающего момента . Увеличение скорости и уменьшение момента двигателя будет продолжаться до тех пор, пока момент двигателя М на станет равным Мс2 и МД станет равным нулю.

При последовательном возбуждении э.д.с. вращения Е оказывается функцией двух величин – увеличивающейся скорости ω и уменьшающегося потока Ф. В результате этого величина Е, а значит и величины IЯ и М, с ростом скорости существенно изменятся не будет, что приводит к сохранению МД>0 и дальнейшему росту скорости. Если сопротивление пускового реостата RП>0, то статическое падение скорости Δωс при одном и том же моменте двигателя будет больше, чем на естественной характеристике. Поэтому реостатные характеристики будут иметь большой наклон к оси абсцисс.

При последовательном возбуждении вращающий момент пропорционален квадрату тока якоря и ограничение пускового тока значением IЯ ДОП≤2,5IЯН позволяет получить гораздо больше чем при независимом возбуждении значение МДОП=5 МН. Коэффициент перегрузки двигателя постоянного тока с последовательным возбуждением по моменту

KП= МДОПН равен пяти. Такой перегрузочной способностью не обладает больше не один электрический двигатель. Именно благодаря этому свойству двигатели с последовательным возбуждением используются в электрическом транспорте и подъемных механизмах.

Источник

ДПТ последовательного возбуждения

ads

В этом двигателе обмотка возбуждения включена последова­тельно в цепь якоря (рис. 29.9, а), поэтому магнитный поток Ф в нем зависит от тока нагрузки I = Ia = Iв. При небольших нагрузках магнитная система машины не насыщена и зависимость магнитно­го потока от тока нагрузки прямо пропорциональна, т. е. Ф = kф Ia (kф — коэффициент пропорциональности). В этом случае найдем электромагнитный момент:

Читайте также:  Пусковой ток led светильника

Формула частоты вращения примет вид

На рис. 29.9, б представлены рабочие характеристики M = F(I) и n= (I) двигателя последовательного возбуждения. При больших нагрузках наступает насыщение магнитной системы двигателя. В этом случае магнитный поток при возрастании нагрузки практически не изменяется и характеристики двигате­ля приобретают почти прямолинейный характер. Характери­стика частоты вращения двигателя последовательного возбуж­дения показывает, что частота вращения двигателя значительно меняется при изменениях нагрузки. Такую характеристику принято называть мягкой.

Двигатель последовательного возбуждения

Рис. 29.9. Двигатель последовательного возбуждения:

а — принципиальная схема; б — рабочие характеристики; в — механические характеристики; 1 — естественная характеристика; 2 — искусственная характе­ристика

При уменьшении нагрузки двигателя последовательного воз­буждения частота вращения резко увеличивается и при нагрузке меньше 25% от номинальной может достигнуть опасных для дви­гателя значений («разнос»). Поэтому работа двигателя последова­тельного возбуждения или его пуск при нагрузке на валу меньше 25% от номинальной недопустима.

Для более надежной работы вал двигателя последовательного возбуждения должен быть жестко соединен с рабочим механиз­мом посредством муфты и зубчатой передачи. Применение ремен­ной передачи недопустимо, так как при обрыве или сбросе ремня может произойти «разнос» двигателя. Учитывая возможность ра­боты двигателя на повышенных частотах вращения, двигатели по­следовательного возбуждения, согласно ГОСТу, подвергают ис­пытанию в течение 2 мин на превышение частоты вращения на 20% сверх максимальной, указанной на заводском щите, но не меньше чем на 50% сверх номинальной.

Механические характеристики двигателя последовательного возбуждения n=f(M) представлены на рис. 29.9, в. Резко падающие кривые механических характеристик (естественная 1 и искус­ственная 2) обеспечивают двигателю последовательного возбуж­дения устойчивую работу при любой механической нагрузке. Свойство этих двигателей развивать большой вращающий момент, пропорциональный квадрату тока нагрузки, имеет важное значе­ние, особенно в тяжелых условиях пуска и при перегрузках, так как с постепенным увеличением нагрузки двигателя мощность на его входе растет медленнее, чем вращающий момент. Эта особенность двигателей последовательного возбуждения является одной из причин их широкого применения в качестве тяговых двигателей на транспорте, а также в качестве крановых двигателей в подъем­ных установках, т. е. во всех случаях электропривода с тяжелыми условиями пуска и сочетания значительных нагрузок на вал двига­теля с малой частотой вращения.

Номинальное изменение частоты вращения двигателя после­довательного возбуждения

где n[0,25] — частота вращения при нагрузке двигателя, составляю­щей 25% от номинальной.

Частоту вращения двигателей последовательного возбуждения можно регулировать изменением либо напряжения U, либо маг­нитного потока обмотки возбуждения. В первом случае в цепь якоря последовательно включают регулировочный реостат Rрг (рис. 29.10, а). С увеличением сопротивления этого реостата уменьшаются напряжение на входе двигателя и частота его вра­щения. Этот метод регулирования применяют главным образом в двигателях небольшой мощности. В случае значительной мощно­сти двигателя этот способ неэкономичен из-за больших потерь энергии в Rрг . Кроме того, реостат Rрг , рассчитываемый на рабочий ток двигателя, получается громоздким и дорогостоящим.

При совместной работе нескольких однотипных двигателей частоту вращения регулируют изменением схемы их включения относительно друг друга (рис. 29.10, б). Так, при параллельном включении двигателей каждый из них оказывается под полным напряжением сети, а при последовательном включении двух дви­гателей на каждый двигатель приходится половина напряжения сети. При одновременной работе большего числа двигателей воз­можно большее количество вариантов включения. Этот способ регулирования частоты вращения применяют в электровозах, где установлено несколько одинаковых тяговых двигателей.

Изменение подводимого к двигателю напряжения возможно при питании двигателя от источника постоянного тока с регулируемым напряжением (например, по схеме, аналогичной рис. 29.6, а). При уменьшении подводимого к двигателю напряжения его механические характеристики смещаются вниз, практически не меняя своей кривизны (рис. 29.11).

clip_image002[1]

Рис. 29.11. Механические характеристики двигателя последовательного возбуждения при изменении подводимого напряжения

Регулировать частоту вращения двигателя изменением маг­нитного потока можно тремя способами: шунтированием обмотки возбуждения реостатом rрг, секционированием обмотки возбужде­ния и шунтированием обмотки якоря реостатом rш. Включение реостата rрг, шунтирующего обмотку возбуждения (рис. 29.10, в), а также уменьшение сопротивления этого реостата ведет к сниже­нию тока возбуждения Iв = Ia — Iрг, а следовательно, к росту частоты вращения. Этот способ экономичнее предыдущего (см. рис. 29.10, а), применяется чаще и оценива­ется коэффициентом регули­рования

Обычно сопротивление рео­стата rрг принимается таким, чтобы kрг >= 50%.

При секционировании об­мотки возбуждения (рис. 29.10, г) отключение части витков об­мотки сопровождается ростом частоты вращения. При шунти­ровании обмотки якоря реоста­том rш (см. рис. 29.10, в) увели­чивается ток возбуждения Iв = Ia+Iрг, что вызывает уменьшение частоты вращения. Этот способ регулирования, хотя и обеспечивает глубокую регулировку, неэкономичен и применяется очень редко.

Читайте также:  Как использовать холодный ток

clip_image002[3]

Рис. 29.10. Регулирование частоты вращения двигателей последователь­ного возбуждения.

Источник



Механические характеристики двигателей постоянного тока

Аналитическое выражение механической характеристики двига­теля постоянного тока можно получить из уравнения равнове­сия напряжений якорной цепи (при установившемся режиме)

где U — напряжение на зажимах двигателя, В; 1Я — ток в цепи якоря, A; Rя — сопротивление цепи якоря, Ом; Ф — магнитный поток двигателя, Вб; ω — угловая скорость якоря, рад/с; сд — коэффициент, зависящий от конструктивных данных двигателя. Решив уравнение (3.1) относительно угловой скорости, по­лучим уравнение скоростной характеристики двигателя

Электромагнитный вращающий момент двигателя (Н • м) пропорционален магнитному потоку и току якоря:

Из уравнения (3.3) ток якоря

Подставив в уравнение (3.2) значение тока, выраженное уравнением (3.4), получим уравнение механической характери­стики двигателей постоянного тока независимо от способа воз­буждения

Рассмотрим механические характеристики двигателей посто­янного тока в зависимости от способа возбуждения.

Двигатели постоянного тока параллельного возбуждения. Схема включения двигателя постоянного тока параллельного возбуждения приведена на рис. 3.1, а. Обмотка возбуждения ОВ может быть подключена к той же сети, что и якорь, или к отдельному источнику тока (независимое возбуж­дение). В том и другом случае ток возбуждения не зависит от процессов, происходящих в якоре двигателя и при постоян­ном напряжении сети магнитный поток можно считать посто­янным Ф = const. Обозначив сдФ=kд и подставив его в уравне­ние (3.5), получим уравнение механической характеристики дви­гателя постоянного тока параллельного возбуждения

При М=0 угловая скорость якоря

называется скоростью идеального холостого хода.

Второй член уравнения (3.6) определяет изменение угловой скорости двигателя при изменении момента

Величина Δω зависит не только от момента, но и от сопро­тивления цепи якоря. С увеличением Rя величина Δω увеличивается. С учетом уравнений (3.7) и (3.8) уравнение (3.6) можно записать в виде

Из уравнений (3.6) и (3-.9) видно, что механическая харак­теристика двигателя параллельного возбуждения является пря­мой линией, тангенс угла наклона которой определяется величи­ной Rя/kд 2

На рис. 3.1,6 приведены естественная и искусственные ме­ханические характеристики, полученные введением в цепь якоря реостата. Такие искусственные характеристики используются при пуске и торможении двигателя.

Двигатели постоянного тока последователь­ного возбуждения. Схема включения двигателя последо­вательного возбуждения приведена на рис. 3.2, а. Обмотка воз­буждения ОВ включена последовательно с якорем и по ней протекает ток якоря. Следовательно, магнитный поток двига­теля является функцией тока якоря. Эта зависимость выража­ется графически в виде кривой намагничивания, которая явля­ется нелинейной функцией и не имеет аналитического выра­жения. Поэтому нельзя получить аналитическую зависимость для механической характеристики.

Характерной особенностью двигателей последовательного возбуждения является то, что изменение магнитного потока с изменением тока якоря оказывает большое влияние на ско­рость двигателя. Это хорошо видно из уравнения скоростной характеристики

которое показывает, что с изменением магнитного потока ско­рость двигателя может изменяться в широких пределах.

Если для упрощения предположить, что магнитная цепь двигателя не насыщена и поток пропорционален току

то момент двигателя

Подставив в уравнение скоростной характеристики значе­ние Ф = Сф/я, получим

где R — внутреннее сопротивление цепи якоря, равное сумме сопротивлений обмоток якоря и возбуждения (Rя + rя).

Заменив в уравнении ток якоря его выражением из (3.10), получим уравнение механической характеристики

Уравнение (3.12) представляет собой уравнение кривой, для которой ось ординат является асимптотой. Подобная характе­ристика представлена на рис. 3.2,6. Уравнение (3.12) дает лишь общее представление о механической характеристике двига­теля. При расчетах им пользоваться нельзя, так как аналити­чески учесть намагничивание стали невозможно. Как видно на рис. 3.2,6, механическая характеристика двигателя последова­тельного возбуждения — мягкая. При уменьшении нагрузки уг­ловая скорость резко возрастает, а при М = 0 она стремится к бесконечности. В реальных двигателях ток при холостом ходе не может быть равен нулю вследствие потерь в стали и механических потерь, но угловая скорость может достигнуть опасных по условиям механической прочности значений, равных (5÷6)ωном. Поэтому холостой ход для двигателей последова­тельного возбуждения недопустим.

Двигатели постоянного тока смешанного воз­буждения. Двигатели смешанного возбуждения имеют две обмотки возбуждения (рис. 3.3). Магнитный поток двигателя определяется суммой потоков параллельной ОВпар и последова­тельной ОВпос обмоток:

Вследствие нелинейной зависимости магнитного потока от тока якоря аналитическое выражение механической характери­стики, так же как и для двигателя последовательного возбуж­дения, получить нельзя.

В зависимости от соотношения магнитных потоков обмоток возбуждения механические характеристики имеют различную жесткость. Чем больше доля магнитного потока последователь­ной обмотки, тем мягче характеристика. На рис. 3.3 приведены две естественные характеристики с различным соотношением магнитных потоков обмоток возбуждения. Обмотка параллельного возбуждения создает поток Фпар независимый от тока якоря, поэтому двигатель может работать вхолостую со ско­ростью

Источник