Меню

Метод контурных токов вольтметр

Метод контурных токов для расчёта электрических цепей

При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов позволяет уменьшить количество решаемых уравнений.

Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

В методе контурных токов уравнения составляются на основании второго закона Кирхгофа, причём их равно $ N_<\textrm<в>>-N_<\textrm<у>>+1 $, где $ N_<\textrm<у>> $ – число узлов, $ N_<\textrm<в>> $ – число ветвей, т.е. количество совпадает с количеством уравнений, составляемых по второму закону Кирхгофа.

Опишем методику составления уравнений по методу контурных токов. Рассмотрим её на примере электрической цепи, представленной на рис. 1.

Электрическая схема метод контурных токов для расчёта электрической цепи

Рис. 1. Рассматриваемая электрическая цепь

Для начала необходимо задать произвольно направления контурных токов (рис. 2).

Электрическая схема метод контурных токов для расчёта электрической цепи направление контурных токов

Рис. 2. Задание направления контурных токов в электрической цепи

Количество уравнений, составляемых по методу контурных токов, равно 3. Здесь контур с источником тока так же не рассматривается.

Составим уравнение для контура «1 к.». В контуре «1 к.» контурный ток $ \underline_ <11>$ протекает по всем сопротивлениям $ R_ <2>$, $ \underline_ $, $ \underline_ $. Кроме того, через сопротивление $ R_ <2>$ протекает контурный ток смежного контура «2 к.» $ \underline_ <22>$, причём контурные токи $ \underline_ <11>$ и $ \underline_ <22>$ протекают в противоположных направлениях. Через индуктивное сопротивление $ \underline_ $ также протекает контурный ток $ \underline_ <33>$, причём контурные токи $ \underline_ <11>$ и $ \underline_ <33>$ также протекают в противоположных направлениях. Про составлении уравнения нужно сложить все падения напряжения (аналогично второму закону Кирхгофа), при этом необходимо учесть направление контурных токов: если контурные токи смежных контуров протекают в определённой ветви в одном направлении, то падение напряжения в этой ветви необходимо вносить со знаком «+», в противном случае – со знаком «-». Полученная сумма будет равна сумме ЭДС данного контура, при этом ЭДС берётся со знаком «+», если направление контурного тока совпадает с направлением ЭДС, в противном случае – со знаком «-».

Учитывая вышеизложенное, уравнение по методу контурных токов для контура «1 к.» будет выглядеть следующим образом:

$$ (R_ <2>+ \underline_ + \underline_) \cdot \underline_<11>— R_ <2>\cdot \underline_<22>— \underline_ \cdot \underline_ <33>= \underline_<1>. $$

Аналогично составим уравнение для контура «2 к.». Необходимо учесть, что уравнение для контура с источником тока не составляется, но ток от источника тока также необходимо учитывать в уравнение аналогично контурным токам других контуров. Само уравнение будет выглядеть следующим образом:

$$ -R_ <2>\cdot \underline_ <11>+ (R_ <2>+ R_ <4>+ \underline_) \cdot \underline_<22>— \underline_ \cdot \underline_ <1>= \underline_<2>. $$

Для контура «3 к.»:

$$ -\underline_ \cdot \underline_ <11>+ (R_ <1>+ R_ <3>+ \underline_ + \underline_) \cdot \underline_<33>— R_ <3>\cdot \underline_ <1>= \underline_<3>. $$

В приведённых выше уравнениях $ \underline_ = -\frac<1> <\omega C>$, $ \underline_ = \omega L $.

Таким образом, для того, чтобы найти искомые контурные токи, необходимо решить следующую систему уравнений, где слагаемые с силой тока источника тока перенесены в правую часть уравнений:

$$ \begin (R_ <2>+ \underline_ + \underline_) \cdot \underline_<11>— R_ <2>\cdot \underline_<22>— \underline_ \cdot \underline_ <33>= \underline_ <1>\\ -R_ <2>\cdot \underline_ <11>+ (R_ <2>+ R_ <4>+ \underline_) \cdot \underline_ <22>= \underline_ <2>+ \underline_ \cdot \underline_ <1>\\ -\underline_ \cdot \underline_ <11>+ (R_ <1>+ R_ <3>+ \underline_ + \underline_) \cdot \underline_ <33>= \underline_ <3>+ R_ <3>\cdot \underline_ <1>\end $$

В данном случае это система из 3 уравнений с 3 неизвестными. Для решения данной системы уравнений удобно пользоваться Matlab. Для этого представим эту систему уравнений в матричной форме:

$$ \begin R_ <2>+ \underline_ + \underline_ & -R_ <2>& -\underline_ \\ -R_ <2>& R_ <2>+ R_ <4>+ \underline_ & 0 \\ -\underline_ & 0 & R_ <1>+ R_ <3>+ \underline_ + \underline_ \end \cdot \begin \underline_ <11>\\ \underline_ <22>\\ \underline_ <33>\end = \begin \underline_ <1>\\ \underline_ <2>+ \underline_ \cdot \underline_ <1>\\ \underline_ <3>+ R_ <3>\cdot \underline_ <1>\end $$

Для решения данной системы уравнений воспользуемся следующим скриптом Matlab:

В результате получим вектор-столбец $ \underline<\bold> $ токов из трёх элементов, состоящий из искомых контурных токов, при этом

Далее в схеме по рис. 2 расставим направления токов в ветвях (рис. 3).

Электрическая схема метод контурных токов для расчёта электрической цепи определение токов в ветвях

Рис. 3. Задание направления токов в электрической цепи

Для определения токов в ветвях необходимо рассмотреть все контурные токи, которые протекают через данную ветвь. Видим, что через ветвь, где протекает ток $ \underline_ <1>$, проходит только один контурный ток $ \underline_ <11>$, и он сонаправлен, отсюда

Через ветвь, где протекает ток $ \underline_ <2>$, проходят контурные токи $ \underline_ <11>$ и $ \underline_ <22>$, причём ток $ \underline_ <11>$ совпадает с принятым направлением тока $ \underline_ <2>$, а ток $ \underline_ <22>$ – не совпадает. Те контурные токи, которые совпадают с принятым направлением, берутся со знаком «+», те, которые не совпадают – со знаком «-». Отсюда

Аналогично для других ветвей

Читайте также:  Как рассчитать ток предохранителя для электродвигателя

$$ \underline_ <5>= \underline_<22>— \underline_<1>, $$

$$ \underline_ <7>= \underline_<33>— \underline_<1>, $$

Итак, метод контурных токов позволяет рассчитывать меньшее количество сложных уравнений для расчёта аналогичной электрической цепи по сравнению с законами Кирхгофа.

Список использованной литературы

  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.

Рекомендуемые записи

Расчёт матриц передачи многополюсников различной формы осуществляется достаточно просто. Матрицы передачи — это математическое описание рассматриваемой…

Во время работы электроэнергетических систем могут возникнуть не только режимы коротких замыканий, но и обрывы. Метод…

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие…

Источник

Метод контурных токов

Метод контурных токов используется для расчета резистивных линейных цепей с постоянными токами и для расчета комплексных схем замещения линейных цепей с гармоническими токами. При этом в расчет вводятся контурные токи – это фиктивные токи, которые замыкаются в независимых замкнутых контурах, отличающихся друг от друга наличием хотя бы одной новой ветви.

Методика расчета цепи методом контурных токов

В методе контурных токов за неизвестные величины принимаются расчетные (контурные) токи, которые якобы протекают в каждом из независимых контуров. Таким образом, количество неизвестных токов и уравнений в системе равно числу независимых контуров цепи.

Расчет токов ветвей по методу контурных токов выполняют в следующем порядке:

1 Вычерчиваем принципиальную схему цепи и обозначаем все элементы.

2 Определяем все независимые контуры.

3 Произвольно задаемся направлением протекания контурных токов в каждом из независимых контуров (по часовой стрелке или против). Обозначаем эти токи. Для нумерации контурных токов можно использовать арабские сдвоенные цифры (I11, I22, I33 и т. д.) или римские цифры.

4 По второму закону Кирхгофа, относительно контурных токов, составляем уравнения для всех независимых контуров. При записи равенства считать, что направление обхода контура, для которого составляется уравнение, совпадает с направлением контурного тока данного контура. Следует учитывать и тот факт, что в смежных ветвях, принадлежащих двум контурам, протекают два контурных тока. Падение напряжения на потребителях в таких ветвях надо брать от каждого тока в отдельности.

5 Решаем любым методом полученную систему относительно контурных токов и определяем их.

6 Произвольно задаемся направлением реальных токов всех ветвей и обозначаем их. Маркировать реальные токи надо таким образом, чтобы не путать с контурными. Для нумерации реальных токов можно использовать одиночные арабские цифры (I1, I2, I3 и т. д.).

7 Переходим от контурных токов к реальным, считая, что реальный ток ветви равен алгебраической сумме контурных токов, протекающих по данной ветви.

При алгебраическом суммировании без изменения знака берется контурный ток, направление которого совпадает с принятым направлением реального тока ветви. В противном случае контурный ток умножается на минус единицу.

Пример расчёта сложной цепи методом контурных токов

В цепи, изображённой на рисунке 1, рассчитать все токи методом контурных токов. Параметры цепи: Е1 = 24 В, Е2 = 12 В, r1 = r2 = 4 Ом, r3 = 1 Ом, r4 = 3 Ом.

Схема электрической цепи для примера расчета по методу контурных токов

Рис. 1. Схема электрической цепи для примера расчета по методу контурных токов

Решение. Для расчета сложной цепи этим методом достаточно составить два уравнения, по числу независимых контуров. Контурные токи направляем по часовой стрелке и обозначаем I11 и I22 (см. рисунок 1).

По второму закону Кирхгофа относительно контурных токов составляем уравнения:

Решаем систему и получаем контурные токи I11 = I22 = 3 А.

Произвольно задаемся направлением реальных токов всех ветвей и обозначаем их. На рисунке 1 такими токами являются I1, I2, I3. Направление у этих токов одинаковое – вертикально вверх.

Переходим от контурных токов к реальным. В первой ветви протекает только один контурный ток I11. Направление его совпадает с направлением реального тока ветви. В таком случае реальный ток I1 + I11 = 3 А.

Реальный ток второй ветви формируется двумя контурными I11 и I22. Ток I22 совпадает по направлению с реальным, а I11 направлен навстречу реальному. В результате I2 = I22 — I11 = 3 — 3 = 0 А.

В третьей ветви протекает только контурный ток I22. Направление этого тока противоположно направлению реального, поэтому для I3 можно записать I3 = -I22 = -3 А.

Следует отметить, как положительный факт, что в методе контурных токов по сравнению с решением по законам Кихгофа пр иходится решать систему уравнений меньшего порядка. Однако этот метод не позволяет сразу определять реальные токи ветвей.

Источник

Метод контурных токов

В каждой электрической цепи имеются так называемые Р – ребра (они же ветви, звенья, участки) и У – узлы. Для ее описания существует система уравнений, в которых используются два правила Кирхгофа. В них, в качестве независимых переменных, выступают токи ребер. Поэтому количество независимых переменных будет равно количеству уравнений, что дает возможность нормального разрешения данной системы. На практике используются методы, направленные на сокращение числа уравнений. Среди них очень часто используется метод контурных токов, позволяющий выполнять расчеты и получать точные результаты.

Читайте также:  Датчик тока для ардуино 20а

Суть метода контурных токов

Метод контурных токов

Основные принципы данного метода основываются на том факте, что протекающие в ребрах цепи токи, не все считаются независимыми. Присутствующие в системе У-1 уравнения для узлов, четко показывают зависимость от них У-1 токов. При выделении в электрической цепи независимого тока Р-У+1, вся система может быть сокращена до уравнений Р-У+1. Таким образом, метод контурных токов представляет собой очень простое и удобное выделение в цепи независимых токов Р-У+1.

Использование данного способа расчетов допускает, что в каждом независимом контуре Р-У+1 осуществляется циркуляция определенного виртуального контурного тока. Если какое-либо ребро относится лишь к одному конкретному контуру, то значение протекающего в нем реального тока будет равно контурному. В том случае, когда ребро входит в состав сразу нескольких контуров, ток, протекающий в нем, будет представлять собой сумму, включающую в себя соответствующие контурные токи. В этом случае обязательно учитывается направление обхода контуров. Независимыми контурами перекрывается практически вся схема, поэтому ток, протекающий в каком угодно ребре может быть выражен путем контурных токов, составляющих полную систему всех токов.

Для того чтобы построить систему независимых контуров, используется простой и наглядный метод создания планарных графов. На данной схеме ветви и узлы цепи размещаются на плоскости таким образом, что взаимное пересечение ребер полностью исключается. С помощью этого метода плоскость разбивается на области, ограниченные замкнутыми цепочками ребер. Именно они и составляют систему независимых контуров. Данный метод более всего подходит для ручных расчетов схем. Однако его применение может стать затруднительным или вовсе невозможным, если рассматриваемая схема не укладывается в рамки планарного графа.

Другим способом расчетов служит метод выделения максимального дерева. Само дерево представлено в виде подмножества звеньев электрической цепи и является односвязным графом, в котором отсутствуют замкнутые контуры. Для того чтобы оно появилось, из цепи постепенно исключаются некоторые звенья. Дерево становится максимальным, когда к нему добавляется любое исключенное звено, в результате чего образуется контур.

Применение метода выделения максимального дерева представляет собой последовательное исключение из цепи заранее установленных звеньев в соответствии с определенными правилами. Каждый шаг в цепи предполагает произвольное исключение одного звена. Если такое исключение нарушает односвязность графа, разбивая его на две отдельные части, в этом случае звено может возвратиться обратно в цепь. Если граф остается односвязным, то и звено остается исключенным. В конечном итоге, количество звеньев, исключенных из цепи, оказывается равным количеству независимых контуров, расположенных в схеме. Получение каждого нового независимого контура связано с присоединением к электрической цепи конкретного исключенного звена.

Применение метода контурных токов для расчета цепи

В соответствии с этой методикой, неизвестными величинами являются расчетные или контурные токи, предположительно протекающие во всех независимых контурах. В связи с этим, все неизвестные токи и уравнения в системе, равны количеству независимых контуров электрической цепи.

Токи ветвей в соответствии с данным методом рассчитываются следующим образом:

  • В первую очередь вычерчивается схема цепи с обозначением всех ее элементов.
  • Далее определяется расположение всех независимых контуров.
  • Направления протекания контурных токов задаются произвольно по часовой или против часовой стрелки в каждом независимом контуре. Они обозначаются с использованием цифровых или комбинированных символов.
  • В соответствии со вторым законом Кирхгофа, затрагивающего контурные токи, составляются уравнения для всех независимых контуров. В записанном равенстве направления обхода контура и контурного тока этого же контура совпадают. Необходимо учитывать и то обстоятельство, что в ветвях, расположенных рядом, протекают собственные контурные токи. Падение напряжения потребителей берется отдельно от каждого тока.
  • Следующим этапом является решение полученной системы любым удобным методом, и окончательное определение контурных токов.
  • Нужно задать направление реальных токов во всех ветвях и обозначить их отдельной маркировкой, чтобы не перепутать с контурными.
  • Далее нужно от контурных токов перейти к реальным, исходя из того, что значение реального тока конкретной ветви составляет алгебраическую сумму контурных токов, протекающих по этой ветви.

Если направление контурного тока совпадает с направлением реального тока, то при выполнении алгебраического суммирования математический знак не меняется. В противном случае значение контурного тока нужно умножить на -1.

Метод контурных токов очень часто применяется для расчетов сложных цепей. В качестве примера для приведенной схемы нужно задать следующие параметры: Е1 = 24В, Е2 = 12В, r1 = r2 = 4 Ом, r3 = 1 Ом, r4 = 3 Ом.

Для решения этой сложной задачи составляются два уравнения, соответствующие двум независимым контурам. Направление контурных токов будет по часовой стрелке и обозначается I11 и I22. На основании второго закона Кирхгофа составляются следующие уравнения:

Читайте также:  Боли мышц после удара током

После решения системы получаются контурные токи со значением I11 = I22 = 3 А. Далее произвольно обозначается направление реальных токов, как I1, I2, I3. Все они имеют одинаковое направление – вверх по вертикали. После этого выполняется переход от контурных к реальным. В первой ветви имеется течение только одного контурного тока т I11. Его направление совпадает с реальным током, поэтому I1 + I11 = 3 А.

Формирование реального тока во второй ветке осуществляется за счет двух контурных токов I11 и I22. Направление тока I22 совпадает с реальным, а направление I11 будет строго противоположно реальному. Таким образом, I2 = I22 – I11 = 3 – 3 = 0 А. В третьей ветке I3 наблюдается течение лишь контурного тока I22. Его направление будет противоположным направлению реального тока, поэтому в данном случае расчеты выглядят следующим образом: I3 = -I22 = -3А.

Основным положительным качеством метода контурных токов по сравнению с вычислениями по законам Кирхгофа, является значительно меньшее количество уравнений, используемых для вычислений. Тем не менее, здесь присутствуют определенные сложности. Например, реальные токи ветвей не всегда удается определить быстро и с высокой точностью.

Источник



Метод контурных токов.Решение задач

Один из методов анализа электрической цепи является метод контурных токов. Основой для него служит второй закон Кирхгофа. Главное его преимущество это уменьшение количества уравнений до m – n +1, напоминаем что m — количество ветвей, а n — количество узлов в цепи. На практике такое уменьшение существенно упрощает расчет.

Основные понятия

Контурный ток — это величина, которая одинакова во всех ветвях данного контура. Обычно в расчетах они обозначаются двойными индексами, например I11, I22 и тд.

Действительный ток в определенной ветви определяется алгебраической суммой контурных токов, в которую эта ветвь входит. Нахождение действительных токов и есть первоочередная задача метода контурных токов.

Контурная ЭДС — это сумма всех ЭДС входящих в этот контур.

Собственным сопротивлением контура называется сумма сопротивлений всех ветвей, которые в него входят.

Общим сопротивлением контура называется сопротивление ветви, смежное двум контурам.

Общий план составления уравнений

1 – Выбор направления действительных токов.

2 – Выбор независимых контуров и направления контурных токов в них.

3 – Определение собственных и общих сопротивлений контуров

4 – Составление уравнений и нахождение контурных токов

5 – Нахождение действительных токов

Итак, после ознакомления с теорией предлагаем приступить к практике! Рассмотрим пример.

Выполняем все поэтапно.

1. Произвольно выбираем направления действительных токов I1-I6.

2. Выделяем три контура, а затем указываем направление контурных токов I11,I22,I33. Мы выберем направление по часовой стрелке.

3. Определяем собственные сопротивления контуров. Для этого складываем сопротивления в каждом контуре.

Затем определяем общие сопротивления, общие сопротивления легко обнаружить, они принадлежат сразу нескольким контурам, например сопротивление R4 принадлежит контуру 1 и контуру 2. Поэтому для удобства обозначим такие сопротивления номерами контуров к которым они принадлежат.

4. Приступаем к основному этапу – составлению системы уравнений контурных токов. В левой части уравнений входят падения напряжений в контуре, а в правой ЭДС источников данного контура.

Так как контура у нас три, следовательно, система будет состоять из трех уравнений. Для первого контура уравнение будет выглядеть следующим образом:

Ток первого контура I11, умножаем на собственное сопротивление R11 этого же контура, а затем вычитаем ток I22, помноженный на общее сопротивление первого и второго контуров R21 и ток I33, помноженный на общее сопротивление первого и третьего контура R31. Данное выражение будет равняться ЭДС E1 этого контура. Значение ЭДС берем со знаком плюс, так как направление обхода (по часовой стрелке) совпадает с направление ЭДС, в противном случае нужно было бы брать со знаком минус.

Те же действия проделываем с двумя другими контурами и в итоге получаем систему:

В полученную систему подставляем уже известные значения сопротивлений и решаем её любым известным способом.

5. Последним этапом находим действительные токи, для этого нужно записать для них выражения.

Контурный ток равен действительному току, который принадлежит только этому контуру. То есть другими словами, если ток протекает только в одном контуре, то он равен контурному.

Но, нужно учитывать направление обхода, например, в нашем случае ток I2 не совпадает с направлением, поэтому берем его со знаком минус.

Токи, протекающие через общие сопротивления определяем как алгебраическую сумму контурных, учитывая направление обхода.

Например, через резистор R4 протекает ток I4, его направление совпадает с направлением обхода первого контура и противоположно направлению второго контура. Значит, для него выражение будет выглядеть

А для остальных

Так решаются задачи методом контурных токов. Надеемся что вам пригодится данный материал, удачи!

Источник