Меню

Мощность активная реактивная тангенс

Компенсация реактивной мощности в сетях напряжением 6.3-10.5/0,4 кВ

Причины необходимости компенсации реактивной мощности у потребителя электроэнергии. Некоторые аспекты применения коэффициентов мощности cos φ и реактивной мощности tg φ. Особенности компенсации реактивной мощности в сетях напряжением 6.3-10.5/0,4 кВ.

Выработка, передача и потребление электроэнергии переменного тока сопряжено с решением ряда проблем и ключевой из них можно смело считать проблему компенсации реактивной мощности. В сетях переменного тока de facto потребителями реактивной мощности являются, как звенья самой сети (линии электропередачи, трансформаторы подстанций, шунтирующие реакторы и т.д.), так и все без исключения приемники электроэнергии, причем львиную долю реактивной мощности (порядка 60%) потребляют асинхронные двигатели сетей среднего и низкого напряжения, около четверти всей реактивной мощности приходится на трансформаторы разного назначения, в том числе трансформаторы понижающих подстанций и одну десятую часть делят между собой приемники, использующие для запуска и работы переменное магнитное поле (индукционные печи, выпрямители и т.д.).

Генераторы электростанций в нормальном режиме работы вырабатывают активную мощность, в режиме перевозбуждения — реактивную мощность в объемах от 20% до 70% от средней потребности в реактивной мощности распределительных сетей, понижающих подстанций и приемников электроэнергии у потребителей. Также незначительная доля потребности в реактивной мощности компенсируется емкостью воздушных и кабельных линий, но все это в совокупности не решает и даже отчасти усугубляет проблему дефицита реактивной мощности и вызываемых этим негативных последствий, поскольку транспорт реактивной мощности от генераторов электростанций:

  • снижает объемы передаваемой активной мощности, около 10% которой и так теряется в различных звеньях сетей разного напряжения;
  • значительно повышает риски перегрева линий электропередач; перегружает трансформаторы подстанций более высокого уровня;
  • уменьшает число оптимальных для подключения к сети потребителей;
  • приводит к падению сетевого напряжения и ухудшению качества передаваемой электроэнергии.

По этим причинам в РД 34.20.185-94 «Инструкция по проектированию городских электрических сетей» (п. 5.2.9), «Методических указаниях по проектированию развития энергосистем» Минпромэнерго (п. 5.36.3), «Правилах технической эксплуатации электрических станций и сетей Российской Федерации» Минэнерго РФ (п. 6.3.16) и ряде других нормативно-правовых актов определена необходимость использования устройств компенсации реактивной мощности у потребителей, что снижает объемы перетоков мощности и в целом увеличивает пропускную способность сетей различного напряжения.

Некоторые аспекты применения коэффициентов мощности cos φ и реактивной мощности tg φ.

В «Приложении к Порядку расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии (договоры энергоснабжения)» (Приказ №49 Минпромэнерго России от 22 февраля 2007 года) определены предельные значения коэффициентов мощности cos φ и реактивной мощности tg φ в зависимости от точки присоединения потребителя к распределительной сети.

Положение точки присоединения потребителя к электрической сети tgφ cosɸ
Напряжением 110 кВ (154 кВ) 0.5 0.9
Напряжением 35 кВ (60 кВ) 0.4 0.93
Напряжением 6-20 кВ 0.4 0.93
Напряжением 0,4 кВ 0.35 0.94

При аудите электрической распределительной сети или сегмента электрической сети, находящегося в балансовой принадлежности потребителя может использоваться, как коэффициент мощности cos φ, определяемый отношением активной мощности к полной мощности, так и коэффициент реактивной мощности tg φ, численно равный отношению реактивной к активной мощности. Вместе с тем таблица ниже демонстрирует недостаточность коэффициента мощности cos φ для точной оценки потребности в потреблении реактивной мощности.

cos φ 1.0 0.99 0.97 0.95 0.94 0.92 0.9 0.87 0.85 0.8 0.7 0.5 0.316
tg φ 0.0 0.14 0.25 0.33 0.36 0.43 0.484 0.55 0.60 0.75 1.02 1.73 3.016
РМ,% 0.0 14 25 33 36 43 48.4 55 60 75 102 173 301.6

Из данных таблицы видно, что даже при высоких значениях коэффициента мощности cos φ = 0.95 электроприемниками/звеньями электрической сети потребляется реактивная мощность величиной в 33% от активной мощности, а уже при значении коэффициента мощности cos φ = 0.7 объемы потребляемой активной и реактивной мощности сравниваются. Поэтому более целесообразно выполнять оценку распределительной сети/сегмента сети в балансовой принадлежности потребителя по коэффициенту реактивной мощности tg φ, показывающему реальный баланс активной и реактивной мощности.

Читайте также:  Теплопередача с постоянной мощностью

Особенности компенсации реактивной мощности в сетях напряжением 6.3-10.5/0,4 кВ

Целесообразность компенсации реактивной мощности для потребителя можно рассматривать, как в техническом, так и экономическом аспектах. В случае подключения потребителя к распределительной сети 6,3 (10,5) кВ конденсаторные установки могут интегрироваться на подстанции в балансовой принадлежности электросетевой компании и тогда потребитель будет иметь чисто техническую выгоду от качества получаемой электроэнергии. При установке КРМ 6,3 (10,5) кВ (или УКРМ 6,3 (10,5) кВ) на шинах РУ 6,3 (10,5) кВ предприятия, или на шинах РУ цеховых ТП 6-10/0,4 кВ, шинах первичных цеховых РП 0,4 кВ, а также непосредственно у электроприемников, потребитель будет иметь, как техническую, так и экономическую выгоду за счет возможности использования активной мощности в более полном объеме и соответственно снижения затрат на «балластную» реактивную мощность.

Источник



Активная, реактивная и полная (кажущаяся) мощности

Активная, реактивная мощности, коэффициент мощности

Простое объяснение с формулами

Активная мощность (P)

Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощности

P = U I — в цепях постоянного тока

P = U I cosθ — в однофазных цепях переменного тока

P = √3 UL IL cosθ — в трёхфазных цепях переменного тока

P = √ (S 2 – Q 2 ) или

P =√ (ВА 2 – вар 2 ) или

Активная мощность = √ (Полная мощность 2 – Реактивная мощность 2 ) или

кВт = √ (кВА 2 – квар 2 )

Реактивная мощность (Q)

Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

Реактивная мощность определяется, как

и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

Формулы для реактивной мощности

Реактивная мощность = √ (Полная мощность 2 – Активная мощность 2 )

квар = √ (кВА 2 – кВт 2 )

Полная мощность (S)

Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

Читайте также:  Регулятор мощности конфорки ego 7 позиционный

Формула для полной мощности

Полная мощность = √ (Активная мощность 2 + Реактивная мощность 2 )

kUA = √(kW 2 + kUAR 2 )

Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

Все эти величины тригонометрически соотносятся друг с другом, как показано на рисунке:

Источник

Что такое активная и реактивная мощность переменного электрического тока?

Содержание

  1. Мощность в цепи переменного электрического тока
  2. Понятие активной мощности
  3. Понятие реактивной мощности
  4. Понятие полной мощности. Треугольник мощностей
  5. Как измеряют cosφ на практике

Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.

Мощность в цепи переменного электрического тока

Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.

Мощность — физическая величина, отражающая скорость преобразования или передачи электрической энергии.

В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.

Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую ( световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.

При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.

Понятие активной мощности

Активная «полезная» мощность — это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в ваттах ( Вт).

Рассчитывается по формуле: P = U⋅I⋅cosφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.

ВАЖНО! Описанная ранее формула подходит для расчета цепей с напряжением 220В, однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73

Понятие реактивной мощности

Реактивная «вредная» мощность — это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.

Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.

Обозначается эта величина латинской буквой Q.

ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах ( Вт), а в вольт-амперах реактивных ( Вар).

Рассчитывается по формуле:

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.

ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.

Емкостные и индуктивные нагрузки

Главным отличием реактивной ( емкостной и индуктивной) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.

Читайте также:  Потребляемая активная мощность синхронного двигателя

Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле ( в течение половины полупериода), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.

ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.

Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.

ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.

Коэффициент мощности cosφ

Коэффициент мощности cosφ ( читается косинус фи)– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.

Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.

ОБРАТИТЕ ВНИМАНИЕ! При более точном расчете следует учитывать нелинейные искажения синусоиды, однако, в обычных расчетах ими пренебрегают.

Значение данного коэффициента может изменяться от 0 до 1 ( если расчет ведется в процентах, то от 0% до 100%). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.

Понятие полной мощности. Треугольник мощностей

Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.

Также рассчитать полную мощность можно путем перемножения напряжения и силы тока соответственно.

ВАЖНО! Полная мощность измеряется в вольт-амперах ( ВА).

Треугольник мощностей – это удобное представление всех ранее описанных вычислений и соотношений между активной, реактивной и полной мощностей.

Катеты отражают реактивную и активную составляющие, гипотенуза – полную мощность. Согласно законам геометрии, косинус угла φ равен отношению активной и полной составляющих, то есть он является коэффициентом мощности.

Как найти активную, реактивную и полную мощности. Пример расчета

Все расчеты строятся на указанных ранее формулах и треугольнике мощностей. Давайте рассмотрим задачу, наиболее часто встречающуюся на практике.

Обычно на электроприборах указана активная мощность и значение коэффициента cosφ. Имея эти данные несложно рассчитать реактивную и полную составляющие.

Для этого разделим активную мощность на коэффициент cosφ и получим произведение тока и напряжения. Это и будет полной мощностью.

Далее, исходя из треугольника мощностей, найдем реактивную мощность равную квадрату из разности квадратов полной и активной мощностей.

Как измеряют cosφ на практике

Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром. Также с этой задачей легко справится цифровой ваттметр.

Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

  1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
  2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

Источник