Меню

Мощность белого шума формула

Белый шум. Гауссовский белый шум. Физические источники белого шума

  • 9.1. Определение белого шума.
  • 9.2. Гауссовский белый шум.
  • 9.3. Физические источники белого шума.
  • 9.4. Коррелированность процессов.

9.1. Определение белого шума

  • Стационарный в узком смысле случайный процесс с функ-цией спектральной плотности мощности, равной положи-тельной постоянной величине, называется белым шумом.
  • Название произошло из оптики, белый цвет получается смешиванием волн различных частот видимого диапазона.
  • Обычно в процессе белого шума математическое ожидание равно нулю, m = 0.
  • Так как белый шум стационарный в узком смысле процесс то его автокорреляционная функция зависит от одного аргумента τ;
  • KXX(τ) является четной.

9.1. Определение белого шума

  • Функция спектральной плотности KXX(ω) получается из автокорреляционной функции преобразованием Фурье, а поскольку функция KXX(ω) четная, то можно использо-вать косинус-преобразование.
  • Пусть KXX(ω) = c > 0. Обратное преобразование Фурье (или обратное косинус-преобразование) постоянной функции равно δ-функции с коэффициентом c

9.1. Определение белого шума

  • Следовательно, белый шум – некоррелированный процесс, случайные величины X(t1) и X(t2) , то есть их корреляция равна нулю (сл. величины линейно независимы) для любых . Распределение случайной величины X(t0) в определении белого шума не уточняется, оно может быть любым.
  • Энергия сигнала пропорциональна интегралу
  • Отсюда следует, что белого шума не существует.

9.2. Гауссовский белый шум

  • Рассмотрим стационарный некоррелированный гауссовский процесс.
  • Пусть математическое ожидание процесса a = 0, средне-квадратическое равно σ. Тогда ввиду нулевого математи-ческого ожидания
  • Если σ стремится к бесконечности, то такой гауссовский процесс стремится к белому шуму. Но в реальном при-ложении приходится ограничиться конкретным значени-ем среднеквадратического σ . Положим σ = 10 , и найдем спектральную плотность такого процесса.

9.2. Гауссовский белый шум

  • Найти преобразование Фурье функции KXX(τ) гауссовского процесса можно предельным переходом (при ε стремится к 0) преобразования Фурье прямоугольного импульса R(σ2, ε, t) (см. 3.8. Примеры Фурье-преобразований).

В правой части получена функция, которая при ε 0 стремится к спектральной функции плотности KXX(ω) белого шума.

9.2. Гауссовский белый шум

  • Графики приближения спектральной плотности, полученной из гауссовского процесса при σ = 10
  • для ε = 1, 0.5, 0.1

9.2. Гауссовский белый шум

  • Функция действительно стремится к постоянной, но эта постоянная равна нулю. Тем не менее на ограниченном интервале частот функцию приближенно можно считать ненулевой постоянной.
  • Таким образом, стационарный некоррелированный гаус-совский процесс можно рассматривать как приближение к белому шуму. Это реально используется в практических задачах.

9.2. Гауссовский белый шум

  • Применяя свойство эргодичности гауссовского процесса, оценим функции автокорреляции и спектральной плотности по одной реализации объемом n=1000 измерений.
  • График реализации некоррелированного гауссовского процесса при a = 0, σ = 10.

9.2. Гауссовский белый шум

  • График оценки функции автокорреляции (статистическая функция автокорреляции ) при n=1000 , a = 0, σ = 10.

9.2. Гауссовский белый шум

  • График статистической функции спектральной плотности при n=1000 , a = 0, σ = 10 (интеграл вычислялся методом прямоугольников, красная горизонтальная прямая – среднее значение функции)

9.2. Гауссовский белый шум

  • В качестве приближения к белому шуму можно выбирать любой некоррелированный стационарный (достаточно в узком смысле) процесс. Например, можно взять дискретный процесс D(t) с двумя равновероятными состояниями +1 и -1, в моменты t = 0, 1, 2, … процесс принимает одно из этих состояний. (Одна неприятность : если вычислить корреляцию совместного распределения двух таких величин, то окажется, что она не равна нулю).
  • Упражнение. Найти корреляцию совместного распред., характеристики процесса D(t) (математическое ожидание, дисперсию, автокорреляционную функцию, функцию спектральной плотности).

9.3. Физические источники белого шума

  • Белый шум, как и δ-функция существует лишь как матема-тическая абстракция. Оба это понятия возникли из при-родных явлений, абстрактное

Источник



Белый шум

(аудио)

Белый шум — стационарный шум, спектральные составляющие которого равномерно распределены по всему диапазону задействованных частот. Примерами белого шума являются шум близкого водопада [1] (отдаленный шум водопада — розовый, так как высокочастотные составляющие звука затухают в воздухе сильнее низкочастотных), или шум Шоттки на клеммах большого сопротивления. Название получил от белого света, содержащего электромагнитные волны частот всего видимого диапазона электромагнитного излучения.

Читайте также:  Мощность электро плиты духовки

В природе и технике «чисто» белый шум (то есть белый шум, имеющий одинаковую спектральную мощность на всех частотах) не встречается (ввиду того, что такой сигнал имел бы бесконечную мощность), однако под категорию белых шумов попадают любые шумы, спектральная плотность которых одинакова (или слабо отличается) в рассматриваемом диапазоне частот.

Содержание

Статистические свойства

Термин «белый шум» обычно применяется к сигналу, имеющему автокорреляционную функцию, математически описываемую дельта-функцией Дирака по всем измерениям многомерного пространства, в котором этот сигнал рассматривается. Сигналы, обладающие этим свойством, могут рассматриваться как белый шум. Данное статистическое свойство является основным для сигналов такого типа.

То, что белый шум некоррелирован по времени (или по другому аргументу), не определяет его значений во временной (или любой другой рассматриваемой аргументной) области. Наборы, принимаемые сигналом, могут быть произвольными с точностью до главного статистического свойства (однако постоянная составляющая такого сигнала должна быть равна нулю). К примеру, двоичный сигнал, который может принимать только значения, равные нулю или единице, будет являться белым шумом только если последовательность нулей и единиц будет некоррелирована. Сигналы, имеющие непрерывное распределение (к примеру, нормальное распределение), также могут быть белым шумом.

Дискретный белый шум — это просто последовательность независимых (то есть статистически не связанных друг с другом) чисел. С использованием (правда, не самого лучшего) генератора псевдослучайных чисел пакета Visual C++, дискретный белый шум можно получить так:

x[i] = 2 * ((rand()/((double)RAND_MAX)) — 0.5)

В данном случае x — массив дискретного белого шума (без нулевой частотной составляющей), имеющего равномерное распределение от −1 до 1.

Иногда ошибочно предполагается, что гауссовский шум (то есть шум с гауссовским распределением по амплитуде — см. нормальное распределение) обязательно является белым шумом. Однако эти понятия неэквивалентны. Гауссовский шум предполагает распределение значений сигнала в виде нормального распределения, тогда как термин «белый» имеет отношение к корреляции сигнала в два различных момента времени (эта корреляция не зависит от распределения амплитуды шума). Белый шум может иметь любое распределение — как Гаусса, так и распределение Пуассона, Коши и т. д. Гауссовский белый шум в качестве модели хорошо подходит для математического описания многих природных процессов (см. Аддитивный белый гауссовский шум).

Цветной шум

Для удобства описания в физике введены термины, приписывающие шумовым сигналам различные цвета в зависимости от их статистических свойств, к примеру, розовый шум или синий шум.

Применения

Белый шум находит множество применений в физике и технике. Одно из них — в архитектурной акустике. Для того, чтобы скрыть нежелательные шумы во внутренних пространствах зданий, генерируется постоянный белый шум низкой амплитуды.

В электронной музыке белый шум используется как в качестве одного из инструментов музыкальной аранжировки, так и в качестве входного сигнала для специальных фильтров, формирующих шумовые сигналы других типов. Широко применяется также при синтезировании аудиосигналов, обычно для воссоздания звучания ударных инструментов, таких как тарелки.

Белый шум используется для измерения частотных характеристик различных линейных динамических систем, таких как усилители, электронные фильтры, дискретные системы управления и т. д. При подаче на вход такой системы белого шума, на выходе получаем сигнал, являющийся откликом системы на приложенное воздействие. Ввиду того, что амплитудно-фазовая частотная характеристика линейной системы есть отношение преобразования Фурье выходного сигнала к преобразованию Фурье входного сигнала, получить эту характеристику математически достаточно просто, причём для всех частот, для которых входной сигнал можно считать белым шумом.

Во многих генераторах случайных чисел (как программных, так и аппаратных) белый шум используется для генерирования случайных чисел и случайных последовательностей.

Математический обзор

Вектор случайных чисел

Вектор случайных чисел \mathbf<w data-lazy-src=

\mu_w = \mathbb<E data-lazy-src=

То есть, это случайный процесс с нулевым математическим ожиданием, имеющий автокорелляционную функцию, являющуюся дельта-функцией Дирака. Такая автокорреляционная функция предполагает следующую спектральную плотность мощности: