Меню

Мощность электромагнитной волны от частоты

Электромагнитные волны. Радиосвязь

Блок 13. Электромагнитные волны. Радиосвязь

1. Электромагнитные волны

1. Между изменяющимися во времени электрическим и магнитным полем существует взаимосвязь: переменное магнитное поле порождает вихревое электрическое (электромагнитная индукция), а переменное электрическое поле порождает вихревое магнитное (магнитоэлектрическая индукция). В результате возникает единое электромагнитное поле.

2. Источником электромагнитного поля является переменный ток (ускоренно движущаяся зараженная частица). Так же, как упавший на воду камень, возбуждает волны на поверхности воды, так и при изменении скорости заряженной частицы возникают электромагнитные волны в окружающем пространстве.

3. Электромагнитная волна – возмущение электромагнитного поля, распространяющееся в пространстве. Максвелл предсказал существование электромагнитных волн в 1864 г.

4. Экспериментально их обнаружил Герц в 1887 г. Источником электромагнитных волн стал прямолинейный проводник с промежутком посередине, обладающий свойствами колебательного контура (вибратор Герца). Высокое напряжение, подаваемое к промежутку, вызывало искровой разряд. Такой же разряд возникал в другом вибраторе, концы которого были замкнуты, находящемся на некотором расстоянии от первого. Электромагнитное излучение первого вибратора дошло до второго.

5. Электромагнитные волны существуют и обладают следующими свойствами:

· электромагнитное излучение возникает при ускоренном движении электрических зарядов; электромагнитные волны являются гармоническими: вектора напряжённости электрического поля и индукции магнитного поля будут изменяться гармонически.

· энергия излучения пропорциональна квадрату ускорения излучающей заряженной частицы;

· скорость распространения равна скорости света;

· волна поперечная: вектора напряжённости электрического поля и индукции магнитного поля перпендикулярны друг другу и направлению распространения волны.

6. Характеристики электромагнитных волн

· Длина волны – расстояние, на которое распространяется волна за период колебания её источника λ = υТ

· Плоскополяризованная волна – это волна, в которой колебаниям вектора напряжённости электрического поля и индукции магнитного поля соответствует только одна пара взаимно перпендикулярных плоскостей. Плоскость поляризации определяется плоскостью, в которой происходит изменение вектора напряжённости электрического поля.

· Точечный источник электромагнитного излучения источник, размерами которого по сравнению с расстоянием до него можно пренебречь.

· Фронт волны – это поверхность постоянной фазы напряжённости электрического поля и индукции магнитного поля. Луч показывает направление распространения поля. Луч перпендикулярен фронту волны.

· Объёмная плотность энергии электромагнитного поля складывается из объёмной плотности электрического и магнитных полей равных друг другу в любой момент времени.

· Энергия электромагнитного излучения в объёме пространства равна W= wV=εεoEд2·c∆tS=0,5εεoEм2·c∆t S

· Поток энергии электромагнитной волны – мощность электромагнитного излучения. P =W/∆t

· Плотность потока энергии электромагнитной волны — мощность излучения, приходящаяся на 1 м2 P/ S.

· Интенсивность – среднее значение плотности потока электромагнитной волны – среднее значение энергии, падающей на единицу поверхности в единицу времени.

Зависимость интенсивности от расстояния до источника и от частоты излучения:

a. Интенсивность излучения точечного источника обратно пропорциональна квадрату расстояния до источника I

1/r2, т. к. площадь сферы, внутри которой распространяется поле S = 4πr2.

b. Интенсивность прямо пропорциональна четвёртой степени её частоты I

ω4.

· Электромагнитная волна переносит не только энергию, но и импульс p =W/c.

· Давление волны на поверхность P = 2I/c. Сила радиационного давления Солнца на земной шар около 600000 кН.

2. Спектр электромагнитного излучения

1. Спектр электромагнитных волн имеет широкий диапазон частот от 0 до 3·1022 Гц

· Волны звуковых частот возникают в линиях электропередач.

· Радиоволны возникают в антеннах радио — и телевизионных станций, мобильных телефонах, радарах и т. д.

· Инфракрасные волны, видимый свет, ультрафиолетовые лучи излучаются атомами при изменении энергетических состояний валентных электронов

· рентгеновские лучи излучаются атомами при изменении энергетических состояний электронов внутренних оболочек атомов

· γ-излучение возникает при изменении энергетического состояния атомного ядра.

1. Основные характеристики: частота, длина, скорость, энергия.

2. Основные свойства: отражение, преломление, интерференция, дифракция, поляризация.

3. Основные отличия: а)способы получения; б)характерные свойства; в)области применения.

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

3. Радиосвязь

1. Радиосвязь – передача и приём информации с помощью радиоволн, распространяющихся в пространстве без проводов. Длинные и средние волны огибают поверхность Земли и отражаются от ионосферы и от поверхности Земли. Короткие волны отражаются от ионосферы и от Земли. УКВ распространяются прямолинейно (телевидение и радиолокация)

2. Виды радиосвязи:

· радиотелеграфная (передача сигналов в виде точек и тире, кодирующих буквы и цифры в азбуку Морзе;

· радиолокация (обнаружение объектов и их координат с помощью отражения радиоволн, расстояние до объекта находится по формуле S = ct/2, где t – время прохождения импульса до объекта и обратно);

· радиовещание и радиотелефонная связь (передача в эфир речи, музыки, звуковых эффектов с помощью электромагнитных волн);

· телевидение (передача в эфир звука и видеоизображения с помощью электромагнитных волн).

3. Радиопередатчик излучает радиоволны, а радиоприёмник улавливает и декодирует излучаемый сигнал. Передатчик состоит из генератора высокочастотных колебаний, источника звуковых колебаний и антенны. Антенна – открытый колебательный контур, индуктивно связанный с катушкой колебательного контура. Генератор высокочастотных электромагнитных колебаний состоит из колебательного контура C-L, транзистора, выполняющего роль клапана, открывающего доступ энергии в колебательный контур. Транзистор связан с контуром при помощи индуктивной катушки Lсв. Колебания звуковой частоты, возникающие в микрофоне, практически не излучаются, а высокочастотные, вырабатываемые генератором, не несут информации. Модулирующее устройство (микрофон) изменяет высокочастотные колебания, и антенна излучает высокочастотные колебания, несущие информацию, которая содержится в колебаниях звуковой частоты.

4. Амплитудная модуляция – изменение амплитуды высокочастотных колебаний по закону изменения звукового сигнала. Амплитуда тока модулированного сигнала I = I0cosω0t + 0,5I1cos(ω0 – Ω)t + 0,5I1cos(ω0 + Ω) t. Антенна излучает высокочастотные модулированные колебания

5. Из формулы видно, что для передачи звукового сигнала (частота до20000Гц) потребуется ширина канала связи – полоса частот, необходимая для передачи данного звукового сигнала, в 40кГц. Если радиочастоту разделить на диапазоны (длинные, средние, короткие и ультракороткие волны), в каждом диапазоне может работать несколько радиостанций. Например, в диапазоне средних волн 3·105 – 3·106Гц может работать более 60 радиостанций, а в УКВ-диапазоне от 3·107 до 3·108Гц может работать более 6000 радиостанций. (3·106 – 3·105 )/40000=62;

Читайте также:  Линейка процессоров snapdragon по мощности

( 3·108 – 3·107)/40000 = 6250

6. Детекторный радиоприёмник состоит из приёмной антенны, индуктивно связанного с ней колебательного контура, детектора (высокочастотный полупроводниковый диод) конденсатора, исполняющего роль фильтра и наушников. В антенне возбуждаются модулированные высокочастотные колебания. При резонансе такие же колебания возникают в колебательном контуре. Детектор осуществляет детектирование – выделение низкочастотных звуковых колебаний из модулированных колебаний высокой частоты. Сначала происходит выпрямление, а затем выделение низкочастотной огибающей высокочастотных импульсов.

Решение задач

Задача 1. Радиостанция работает на частоте 100 МГц. Считая, что скорость распространения электромагнитных волн в атмосфере равна скорости света в вакууме, найдите соответствующую длину волны. (3м).

Решение. c = λ·ν, λ = c/ ν = 3·108м/с /1081/с = 3м.

Задача 2. Колебательный контур состоит из катушки с индуктивностью 1 мкГн и конденсатора, электроёмкость которого может изменяться в пределах от 100 до 400 мкФ. На каком диапазоне волн может быть настроен этот контур? (188,5 – 377м).

Решение. λ = c/ ν, ν =1/Т, T=2π√LC, λ1 = c2π√LC1 = 188,5 м. При увеличении электроёмкости конденсатора в 4 раза, длина волны увеличивается в 2 раза, следовательно λ2 = 377 м.

Задача 3. Каким может быть максимальное число импульсов, испускаемых радиолокатором в 1 с, при разведывании цели, находящейся в 30 км от него? (5000).

Решение. Для прохождения расстояния до цели и обратно, импульсу электромагнитной волны потребуется время t = S\c = 60000м/м/с = 2·10 -4c. Следовательно в 1с должно быть максимальное количество импульсов 1с/ 2·10 -4c =5000.

Задача 4. Радиолокатор работает на волне 15 см и даёт 400 импульсов в секунду. Длительность каждого импульса 2 мкс. Сколько колебаний содержится в каждом импульсе и какова наибольшая глубина разведки локатора? (4000; 375 км).

Решение. ν =с/λ =3·10 8 м/c /0,15 м = 2·10 9 1/c.

В каждом импульсе будет п = t1·ν= 2·10 -6c·2·10 9 1/c=4000 колебаний.

Время от импульса до импульса t=1/400с -1= 25·10 -4 c.

За это время сигнал пройдёт путь 25·10 -4 c ·3·10 8 м/c =750км, а до цели – половина этого пути = 375 км.

Задача 5. При гармонических электрических колебаниях в колебательном контуре максимальное значение энергии электрического поля конденсатора равно 50 Дж, максимальное значение энергии магнитного поля катушки равно 50 Дж. Как будет изменяться во времени полная энергия электромагнитного поля контура? Как будет изменяться во времени максимальная магнитная энергия катушки? Как буде изменяться энергия катушки в течение периода колебаний?

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

Решение. Полная энергия электромагнитного поля контура остается постоянной.

Максимальная магнитная энергия катушки остается постоянной.

Энергия катушки, как и энергия конденсатора в течение периода колебаний изменяется от 0 до 50 Дж.

Задача 6. Контур радиоприёмника настроен на длину волны 50 м. Как нужно изменить индуктивность катушки колебательного контура приёмника, чтобы он был настроен на волну длиной 25 м?

Решение. λ = c2π√LC . При уменьшении длины волны в 2 раза, индуктивность должна уменьшиться в 4 раза.

Задача 7. Рассмотрим четыре случая движения электрона: 1) электрон движется равномерно прямолинейно; 2) электрон движется равномерно по окружности; 3) электрон движется равноускоренно; 4) электрон совершает гармонические колебания. В каких случаях происходит излучение электромагнитных волн?

Решение. Во всех случаях, когда ускорение не равно 0, т. е. случаи 2, 3, 4.

Задача 8. Определите отношение плотностей потока излучения электромагнитных волн при одинаковой амплитуде колебаний электрического тока в вибраторе, если частоты колебаний 1 МГц и 10 МГц.

Решение. Интенсивность – среднее значение плотности потока электромагнитной волны. Интенсивность прямо пропорциональна четвёртой степени её частоты I

ω4. Следовательно, при увеличении частоты колебаний в 10 раз, интенсивность, а, значит, и плотность потока излучения увеличится в 10000 раз.

Формулы по теме «Электромагнитные волны»

· λ = υТ – длина волны

· P = 2I/c – давление электромагнитной волны на поверхность

· p =W/c – импульс волны

· Объёмная плотность электромагнитной волны

· W= wV=εεoEср2·c∆tS=0,5εεoEо2·c∆t S – энергия электромагнитной волны

· I = Pср/S = cεεoE2 – Средняя плотность потока энергии электромагнитной волны или интенсивность излучения

· S = ct/2 – расстояние до объекта при локации.

Источник



Электромагнитные волны

Содержание

  1. Как появляются и распространяются электромагнитные волны
  2. Условия возникновения электромагнитных волн
  3. Плотность потока электромагнитного излучения
  4. Точечный источник излучения
  5. Зависимость плотности потока излучения от частоты
  6. Свойства электромагнитных волн
  7. Шкала электромагнитных волн

Вспомним, что волна — это колебания, распространяющиеся в пространстве. Механическая волна представляет собой колебания, распространяющиеся в вещественной среде. Тогда электромагнитная волна — это электромагнитные колебания, которые распространяются в электромагнитном поле.

Как появляются и распространяются электромагнитные волны

Представьте себе неподвижный точечный заряд. Пусть его окружают еще много таких зарядов. Тогда он будет действовать на них с некоторой кулоновской силой (и они на него). А теперь представьте, что заряд сместился. Это приведет к изменению расстояния по отношению к другим зарядам, а, следовательно, и к изменению сил, действующих на них. В результате они тоже сместятся, но с некоторым запаздыванием. При этом начнут смещаться и другие заряды, которые взаимодействовали с ними. Так распространяется электромагнитные взаимодействия.

Теперь представьте, что заряд не просто сместился, а он начал быстро колебаться вдоль одной прямой. Тогда по характеру движения он будет напоминать шарик, подвешенный к пружине. Разница будет только в том, что колебания заряженных частиц происходят с очень высокой частотой.

Вокруг колеблющегося заряда начнет периодически изменяться электрическое поле. Очевидно, что период изменений этого поля, будет равен периоду колебаний заряда. Периодически меняющееся электрическое поле будет порождать периодически меняющееся магнитное поле. Это магнитное поле, в свою очередь, будет создавать переменное электрическое поле, но уже на большем расстояние от заряда, и т.д. В результате появления взаимно порождаемых полей в пространстве, окружающем заряд, возникает система взаимно перпендикулярных, периодически меняющихся электрических и магнитных полей. Так образуется электромагнитная волна, которая распространяется от колеблющегося заряда во все стороны.

Читайте также:  График насоса мощность кпд

Электромагнитная волна не похожа на те возмущения вещественной среды, которые вызывают механические волны. Посмотрите на рисунок. На нем изображены векторы напряженности →E и магнитной индукции →B в различных точках пространства, лежащих на оси Oz, в фиксированный момент времени. Никаких гребней и впадин среды при этом не появляется.

В каждой точке пространства электрические и магнитные пол меняются во времени периодически. Чем дальше расположена точка от заряда, тем позднее ее достигнут колебания полей. Следовательно, на разных расстояниях от заряда колебания происходят с различными фазами. Колебания векторов →E и →B в любой точке совпадают по фазе.

Длина электромагнитной волны — расстояние между двумя ближайшими точками, в которых колебания происходят в одинаковых фазах.

Длина электромагнитной волны обозначается как λ. Единица измерения — м (метр).

Обратите внимание на рисунок выше. Векторы магнитной индукции и напряженности поля, являющиеся периодически изменяющимися величинами, в любой момент времени перпендикулярны направлению распространения волны. Следовательно, электромагнитная волна — поперечная волна.

Условия возникновения электромагнитных волн

Электромагнитные волны излучаются только колеблющимися заряженными частицами. При этом важно, чтобы скорость их движения постоянно менялась, т.е. чтобы они двигались с ускорением.

Наличие ускорения — главное условие возникновения электромагнитных волн.

Электромагнитное поле может излучаться не только колеблющимся зарядом, но и заряженной частицей, перемещающейся с постоянно меняющейся скоростью. Интенсивность электромагнитного излучения тем больше, чем больше ускорение, с которым движется заряд.

Представим заряд, движущийся с постоянной скоростью. Тогда создаваемые им электрическое и магнитное поля будут сопровождать его как шлейф. Только при ускорении заряда поля «отрываются» от частицы и начинают самостоятельное существование в форме электромагнитных волн.

Впервые существование электромагнитных волн предположил Максвелл, который посчитал, что они должны распространяться со скоростью света. Но экспериментально они были обнаружены лишь спустя 10 лет после смерти ученого. Их открыл Герц. Он же подтвердил, что скорость распространения электромагнитных волн равна скорости света: c = 300 000 км/с.

Плотность потока электромагнитного излучения

Излученные электромагнитные волны несут с собой энергию. Рассмотрим поверхность площадью S, через которую электромагнитные волны переносят энергию.

На рисунке выше прямые линии указывают направления распространения электромагнитных волн. Это лучи — линии, перпендикулярные поверхностям, во всех точках которых колебания происходят в одинаковых фазах. Такие поверхности называются волновыми поверхностями.

Плотность потока электромагнитного излучения , или интенсивность волны — отношение электромагнитной энергии ΔW, проходящей за время Δt через перпендикулярную лучам поверхность площадью S, к произведению площади S на время Δt.

Плотность потока электромагнитного излучения обозначается как I. Единица измерения — Вт/м 2 (ватт на квадратный метр). Поэтому плотность потока электромагнитного излучения фактически представляет собой мощность электромагнитного излучения, проходящего через единицу площади поверхности.

Численно плотность потока электромагнитного излучения определяется формулой:

Выразим I через плотность электромагнитной энергии и скорость ее распространения с. Выберем поверхность площадью S, перпендикулярную лучам, и построим на ней как на основании цилиндр с образующей cΔt (см. рисунок ниже).

Объем цилиндра: ΔV = ScΔt. Энергия электромагнитного поля внутри цилиндра равна произведению плотности энергии на объем: ΔW = w cΔtS. Вся эта энергия за время Δt пройдет через правое основание цилиндра. Поэтому получаем:

Следовательно, плотность потока электромагнитного излучения равна произведению плотности электромагнитной энергии на скорость ее распространения.

Плотность электромагнитной энергии — энергия электромагнитного излучения в единице объема. Обозначается как w. Единица измерения — Дж/м 3 .

Пример №1. Плотность потока излучения равна 6 мВт/м 2 . Найти плотность энергии электромагнитной волны.

Точечный источник излучения

Источники излучения электромагнитных волн могут быть весьма разнообразными. Простейшим является точечный источник.

Точечный источник — источник излучения, размеры которого много меньше расстояния, на котором оценивается его действие.

Предполагается, что точечный источник посылает электромагнитные волны по всем направлениям с одинаковой интенсивностью. В действительности таких источников не существует. Но за такие источники излучения можно принять звезды, так как расстояние между ними существенно больше размеров самих звезд.

Энергия, которую переносят электромагнитные волны, с течением времени распределяется по все большей и большей поверхности. Поэтому энергия, передаваемая через поверхность единичной площадки за единицу времени, т. е. плотность потока излучения, уменьшается по мере удаления от источника.

Поместим точечный источник в центр сферы радиусом R. Площадь поверхности сферы S = 4πR 2 . Если считать, что источник по всем направлениям за время Δt излучает суммарную энергию ΔW, получим:

Плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника.

Пример №2. Плотность потока электромагнитного излучения на расстоянии 5 метров от точечного источника составляет 20 мВт/м 2 . Найти плотность потока электромагнитного излучения на расстоянии 10 метров от этого источника.

Расстояние по условию задачи увеличилось вдвое. Так как плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника, при увеличении расстояния вдвое интенсивность излучения уменьшится в 4 раза. То есть, она станет равной 5 мВт/м 2 .

Зависимость плотности потока излучения от частоты

Напряженность электрического поля и магнитная индукция электромагнитной волны пропорциональны ускорению заряда. Ускорение при гармонических колебаниях пропорционально квадрату частоты. Поэтому напряженность электрического поля и магнитная индукция также пропорциональны квадрату частоты:

Плотность энергии электрического поля пропорциональна квадрату напряженности поля. Энергия магнитного поля, как это можно показать, пропорциональна квадрату магнитной индукции. Полная плотность энергии электромагнитного поля равна сумме плотностей энергий электрического и магнитного полей. Поэтому плотность потока излучения I пропорциональна:

Плотность потока излучения пропорциональна четвертой степени частоты. Так, при увеличении частоты колебаний зарядов в 2 раза энергия, излучаемая ими, возрастает в 16 раз. При увеличении частоты в 3 раза, энергия излучения увеличивается в 81 раз, и т.д.

Пример №3. Частота электромагнитной волны уменьшилась в 4 раза. Найти, во сколько раз изменилась плотность потока излучения.

Так как плотность потока излучения пропорциональна четвертой степени частоты, мы можем найти плотность потока излучения путем извлечения корня из числа 4 дважды:

Читайте также:  Формула мощности по закону ньютона

Плотность потока излучения уменьшилась в 1,4 раза.

Свойства электромагнитных волн

Современные радиотехнические устройства позволяют провести очень наглядные опыты по наблюдению свойств электромагнитных волн. При этом лучше всего пользоваться волнами сантиметрового диапазона. Эти волны излучаются специальным генератором сверхвысокой частоты (СВЧ). Электрические колебания генератора модулируют звуковой частотой. Принятый сигнал после детектирования подается на громкоговоритель.

Свойство 1 — Поглощение электромагнитных волн
Если расположить рупоры друг против друга и добиться хорошей слышимости звука в громкоговорители, а затем поместить между ними диэлектрик, звук будет менее громким.
Свойство 2 — Отражение электромагнитных волн
Если диэлектрик заменить металлической пластиной, то звук перестанет быть слышимым. Волны не достигают приемника вследствие отражения. Отражение происходит под углом, равным углу падения, как и в случае световых и механических волн. Чтобы убедиться в этом, рупоры располагают под одинаковыми углами к большому металлическому листу. Звук исчезнет, если убрать лист или повернуть его.
Свойство 3 — Преломление электромагнитных волн
Электромагнитные волны изменяют свое направление (преломляются) на границе диэлектрика. Это можно обнаружить с помощью большой треугольной призмы из парафина. Рупоры располагают под углом друг к другу, как и при демонстрации отражения. Металлический лист заменяют затем призмой. Убирая призму или поворачивая ее, наблюдают исчезновение звука.
Свойство 4 — Поперечность электромагнитных волн
Поместим между генератором и приемником решетку из параллельных металлических стержней. Решетку расположим так, чтобы стержни были горизонтальными или вертикальными. При одном из этих положений, когда электрический вектор параллелен стержням, в них возбуждаются токи, в результате чего решетка начинает отражать волны, подобно сплошной металлической пластине. Когда же вектор перпендикулярен стержням, токи в них не возбуждаются и электромагнитная волна проходит через решетку.

Шкала электромагнитных волн

Электромагнитные волны имеют большое разнообразие. Они классифицируются по длине волны λ или связанной с ней частоте ν. Шкала электромагнитных волн включает в себя:

  • радиоволны;
  • оптическое излучение;
  • ионизирующее излучение.

Укажем частоты и длины указанных волн, а также их подробную классификацию в таблице.

Частоты и длины волн электромагнитного излучения видимого спектра смотрите на рисунке ниже.

Источник

Длина, скорость и частота электромагнитной волны.

Онлайн калькулятор перевода длины волны в частоту для широкого диапазона частот, включая радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафи- олетовое излучение, рентгеновские и гамма лучи.

Электромагнитные колебания — это взаимосвязанные колебания электрического и магнитного полей, проявляющиеся в периодическом изменении напряжённости (E) и индукции (B) поля в электроцепи или пространстве. Эти поля перпендикулярны друг другу в направлении движения волны (Рис.1) и, в зависимости от частоты, представляют собой: радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские либо гамма-лучи.

Длина, скорость и частота электромагнитной волны

Рис.1

Длина волны, обозначаемая буквой λ и измеряемая в метрах — это расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе. Другими словами, это расстояние, на котором фаза электромагнитной волны вдоль направления распространения меняется на 2π.

Время, за которое волна успевает преодолеть это расстояние (λ), т. е. интервал времени, за который периодический колебательный процесс повторяется, называется периодом колебаний, обозначается буквой (тау) или Т и измеряется в метрах.

Частота электромагнитных колебаний связана с периодом простейшим соотношением:
f (Гц) = 1 / T (сек) .

Скорость распространения электромагнитных волн в вакууме (v) равна скорости света и составляет величину: v = С = 299792458 м/сек .
В среде эта скорость уменьшается: v = С / n , где n > 1 — это показатель преломления среды.
Абсолютный показатель преломления любого газа (в том числе воздуха) при обычных условиях мало чем отличается от единицы, поэтому с достаточной точностью его можно не учитывать в условиях распространения электромагнитных волн в воздушном пространстве.

Соотношение, связывающее длину волны со скоростью распространения в общем случае, выглядит следующим образом:
λ (м) = v (м/сек) *Т (сек) = v (м/сек) / f (Гц) .

И окончательно для воздушной среды:

λ (м) = 299792458 *Т (сек) = 299792458 / f (Гц) .

Прежде чем перейти к калькуляторам, давайте рассмотрим шкалу частот и длин волн непрерывного диапазона электромагнитных волн, которая традиционно разбита на ряд поддиапазонов. Соседние диапазоны могут немного перекрываться.

Диапазон Полоса частот Длина волны
Сверхдлинные радиоволны 3. 30 кГц 100000. 10000 м
Длинные радиоволны 30. 300 кГц 10000. 1000 м
Средние радиоволны 300. 3000 кГц 1000. 100 м
Короткие радиоволны 3. 30 МГц 100. 10 м
Метровый радиодиапазон 30. 300 МГц 10. 1 м
Дециметровый радиодиапазон 300. 3000 МГц 1. 0,1 м
Сантиметровый СВЧ диапазон 3. 30 ГГц 10. 1 см
Микроволновый СВЧ диапазон 30. 300 ГГц 1. 0,1 см
Инфракрасное излучение 0,3. 405 ТГц 1000. 0,74 мкм
Красный цвет 405. 480 ТГц 740. 625 нм
Оранжевый цвет 480. 510 ТГц 625. 590 нм
Жёлтый цвет 510. 530 ТГц 590. 565 нм
Зелёный цвет 530. 600 ТГц 565. 500 нм
Голубой цвет 600. 620 ТГц 500. 485 нм
Синий цвет 620. 680 ТГц 485. 440 нм
Фиолетовый цвет 680. 790 ТГц 440. 380 нм
Ультрафиолетовое излучение 480. 30000 ТГц 400. 10 нм
Рентгеновское излучение 30000. 3000000 ТГц 10. 0,1 нм
Гамма излучение 3000000. 30000000 ТГц 0,1. 0,01 нм

А теперь можно переходить к калькуляторам.

КАЛЬКУЛЯТОР РАСЧЁТА ДЛИНЫ ВОЛНЫ ПО ЧАСТОТЕ

КАЛЬКУЛЯТОР РАСЧЁТА ЧАСТОТЫ ПО ДЛИНЕ ВОЛНЫ

В радиочастотной практике имеет распространение величина Kp, называемая коэффициентом укорочения. Однако здесь существует некоторая путаница. Одни источники интерпретируют эту величину, как отношение длины волны в среде к длине волны в вакууме, т. е. численно равной Kp = 1/n, где n — это, как мы помним, показатель преломления среды. Другие, наоборот — как отношение длины волны в вакууме к длине волны в среде, т. е. Kp = n.
Поэтому надо иметь в виду — если Kp > 1, то значение показателя преломления среды, которое следует подставлять в калькулятор n = Kp, а если Kp < 1, то n = 1/Kp.

Источник