Меню

Мощность нагрева 10 градусов

Как рассчитать тепловую мощность конвекторов, обогревателей и прочих отопительных приборов

Содержание

  • Простейший расчет тепловой мощности обогревателя
  • Пример расчетов
  • Формула расчета тепловой нагрузки с учетом разницы температур
  • Пример расчетов
  • Формула расчета тепловой мощности с учетом дополнительных факторов
  • Пример расчета
  • Нюансы при расчете мощности водяных конвекторов
  • Модели для примера

Теплотехнический расчет – это вычисление требуемой толщины перекрытий в соответствии теплоизоляционных характеристик материалов и мощности нагревательных приборов. Любое помещение для создания комфортных условий в холодное время года требует определенного количества тепла, и неважно проектируется отопительная система частного дома или требуется обогреть только одну комнату – расчеты необходимы.

Все отопительные приборы независимо от типа устройства (конвекторы, радиаторные батареи, обогреватели, тепловые пушки и т.д.) и типа теплоносителя (водяные, газовые, электрические) отапливают помещения и производимое ими тепло называется тепловой мощностью. Именно эта характеристика имеет важнейшее значение при выборе обогревательного прибора.

Например невозможно обогреть мастерскую площадью 20 м 2 и построенную без теплоизоляции при -15 0 С электрическим обогревателем мощностью 1 кВт, а небольшую ванную комнату, расположенную в центре кирпичного дома запросто.

Количество тепла, которое требуется помещению для обогрева, измеряется в килокалориях, а мощности приборов в ваттах, поэтому для перевода одного значения в другое нужно килокалории поделить на 860 и получатся кВт.

Все производители отопительного оборудования обязательно указывают тепловую мощность прибора в паспорте или инструкции. Однако, следует учитывать, что указанная мощность достигается при соблюдении всех условий эксплуатации т.е. для водяных конвекторов или радиаторов имеет значение температура теплоносители, а для газовых приборов давление газа.

Поэтому помимо мощности отопления производители указывают, для каких условий эксплуатации предназначено оборудование.

Например, если у вас старая система центрального отопления с температурой нагрева 40-50 0 С, рекомендуется приобретать конвекторы для низкотемпературных систем отопления.

Простейший расчет тепловой мощности обогревателя

Существует общепринятый стандарт расчета тепловой мощности обогревателя при высоте помещения не более 3 м. На 10 метров квадратных площади устанавливается 1 кВт мощности прибора.

Эта формула неплохо работает при расчетах электрических отопительных приборов в помещениях с идеальными условиями — высокой теплоизоляцией, минимальной теплопотерей и одним окном с утепленным стеклопакетом. Но существует и примитивный вариант расчета, позволяющий учитывать и высоту комнат.

Простой расчет тепловой нагрузки (Q) помещения:

V (объем помещения/м3) х 40 Вт/1000 = Q (кВт/ч)

Эта формула не позволяет допустить ошибок, связанных с грубым расчетом по принципу 1 кВт на 10 м 2 т.к., учитывает объем комнаты включая высоту потолков. Однако и при таком расчёте легко совершить оплошность и приобрести «слабый» прибор — не учтено много важных факторов.

Пример расчетов

Вводные данные: гостиная в частном доме, ВхШхД – 4х5х6 м.

По первой формуле мы выясняем площадь помещения – 5х6 = 30 м 2 и умножаем на 1 кВт. Получается, что нам потребуется обогреватель на 3 кВт.

Но эти расчеты не гарантируют, что, купив обогреватель мощностью 3 кВт, вы получите комфортную температуру в помещении — в столь примитивном расчете даже не учитывается температура за окном. Если в средней полосе 3 кВт могут и справится с отоплением такой гостиной, но на севере с -35 за окном можете не сомневаться, разочарование от покупки и стучащие зубы вам обеспечены.

По второй формуле мы выясняем объем помещения – 4х5х6 = 120 м 3 .

V х 40 Вт/1000 = 120 х 40 / 1000 = 4,8 кВт

Как можно видеть вторая формула более точно отражает необходимую потребность помещения в тепле. Кроме того учитывайте, что эти расчеты обычно применяются в электрических обогревателях, а с прибором мощностью 5 кВт в час вы разоритесь на счетах за электроэнергию, да и далеко не вся проводка выдержит подобную нагрузку.

Формула расчета тепловой нагрузки с учетом разницы температур

Для более точного определения требуемой тепловой мощности обогревателя или конвектора рекомендуем воспользоваться следующими формулой.

V (объем помещения) х T (разница температур) х φ (коэффициент теплопотери) = ккал/ч

  • V – это упоминаемый выше объем комнаты: ширина * длину * высоты.
  • Т (разница температур) – в зависимости от климатической зоны температура на улице может составлять и -5 0 С и -30 0 С. Поэтому в формулу введен параметр выражающий разницу между средней зимней температурой на улице и желаемой температурой в помещении. Пример: среднее зимнее значение на улице составляет -15 0 С, а в комнате требуется 25 0 С – получается Т = 40 0 С.
  • φ – коэффициент теплопотерь помещений в зависимости от конструкции и изоляции.
    • 3-4 – отсутствие теплоизоляции. Простые деревянные или металлические строения без изоляции.
    • 2-2,9 – низкая теплоизоляция. Кладка в один кирпич, упрощенная конструкция строений, одинарные окна.
    • 1-1,9 – средняя теплоизоляция. Строения с кладкой в два кирпича, стандартные здания, обычная кровля, небольшое количество окон.
    • 0,6-0,9 — высокая теплоизоляция. Мало окон, сдвоенные рамы, кирпичные стены, двойная теплоизоляция, утепленная крыша и толстое основание пола.

Для получения значения мощности конвектора или обогревателя в киловаттах требуется получившееся в число разделить на 860.

Пример расчетов

Вводные данные: гостиная в частном доме, ВхШхД – 4х5х6 м. Дом построен кладкой в два кирпича, на хорошем основании (фундамент), с большим панорамным окном. Средняя температура зимой -15 0 С, желаемая температура в комнате +22 0 С.

  • Выясняем объем помещения – 4х5х6х = 120 м 3 .
  • Определяем разницу температур – 15+22=37 0 С.
  • Подбираем коэффициент – возьмем среднее значение 1,4 т.к. несмотря на стены в два кирпича и утолщенный пол присутствует большое окно.

Подставляем данные в формулу:

V х T х φ = 120 х 37 х 1,4 = 6216 ккал .

Переводим килокалории в кВт – 6216/860= 7,2 кВт.

Получается, что для получения требуемой температуры в гостиной нам потребуется установить обогревательный прибор на 7 кВт.

Естественно в данном случае и речи не может быть об установке электрических приборов. Такие значения можно получить при установке газовых или водяных конвекторов, радиаторных батарей, тепловых пушек и т.д. Однако с учетом размеров гостиной, подобная мощность излишня — снова нет в расчете некоторых важных нюансов.

Формула расчета тепловой мощности с учетом дополнительных факторов

Несмотря на введение коэффициента потерь тепла предыдущая формула не способна отразить всевозможные нюансы помещений. Наример теплопотери квартиры расположенной на 5 этаже в центре девятиэтажного здания ниже, чем у угловой квартиры на последнем этаже. Для получения более точных данных рекомендуем воспользоваться формулой:

Читайте также:  Как увеличить мощность триммера самому

Q = (100 Вт/м 2 х S х φ 1 х φ 2 х φ 3 х φ 4 х φ 5 х φ 6 х φ 7)/1000

  • S – площадь помещения в м 2 .
  • φ 1 – потери тепла через окна:
    • 0,85 – тройной стеклопакет;
    • 1 – двойной стеклопакет;
    • 1,27 – одинарный стеклопакет (стандартный).
  • φ 2 – утепление стен (теплоизоляция):
    • 0,854 – высокое;
    • 1 – кладка в два кирпича;
    • 1,27 – низкое.
  • φ 3 – соотношение общей площади окон к площади пола помещения в %:
    • 1,2 – 50%;
    • 1,1 – 40%;
    • 1 – 30%;
    • 0,9 – 20%;
    • 0,8 – 10%.
  • φ 4 – коэффициент умножения в зависимости от температуры внешней среды в минусовых значениях 0 С:
    • 1,5 – -35 0 С;
    • 1,3 – -25 0 С;
    • 1,1 – -20 0 С;
    • 0,9 – -15 0 С;
    • 0,7 – -10 0 С.
  • φ 5 – сколько стен имеют контакт со внешней средой (выходят на улицу):
    • 1,4 -4;
    • 1,3 -3;
    • 1,2 -2;
    • 1,1 -1.
  • φ 6 – теплоизоляция помещения находящегося сверху над расчетным:
    • 0,8 – обогреваемое;
    • 0,9 – утеплённое, но не отапливаемое;
    • 1 — холодный чердак или крыша.
  • φ 7 – высота в метрах:
    • 1,2 – 4,5м;
    • 1,15 – 4м;
    • 1,1 – 3,5м;
    • 1,05 – 3м;
    • 1 – 2,5м.

Как видите в формуле расчета тепловой мощности обогревательного оборудования учтено значительно больше значений влияющих на теплопотери.

Пример расчета

Вводные данные: гостиная в частном доме, ВхШхД – 4х5х6 м. Дом построен кладкой в два кирпича, на утепленном фундаменте с большим панорамным окном, со стандартным остеклением, занимающим 50% от площади пола. Средняя температура зимой -15 0 С. На втором этаже отапливаемые спальни, две стены выходят на улицу.

Выясняем требуемые значения и коэффициенты:

  • S – 30м 2 .
  • φ 1 – 1,27.
  • φ 2 – 1.
  • φ 3 – 1,2.
  • φ 4 – 0,9.
  • φ 5 – 1,2.
  • φ 6 – 0,8.
  • φ 7 – 1,15.

Подставляем значения в формулу:

Q = (100 Вт/м 2 х S х φ 1 х φ 2 х φ 3 х φ 4 х φ 5 х φ 6 х φ 7)/1000

Q = (100 Вт/м 2 х 30 х 1,27 х 1 х 1,2 х 0,9 х 1,2 х 0,8 х 1,15)/1000 = 4,543 кВт

Исходя из этого уточненного расчета, получается, что нам нужно организовать отопление на 4,5-5 кВт.

Эта формула предпочтительна для расчета тепловой мощности отопительных систем, причем она подходит для расчета отопления в небольших жилых помещениях и в организации отопления промышленных объектов.

Важно! Для увеличения срока службы теплового оборудования и для учета непредвиденных ситуаций, рекомендуется добавлять небольшой запас в 10-15 %.к полученной тепловой мощности.

Нюансы при расчете мощности водяных конвекторов

Для выяснения необходимой мощности конвектора водяного отопления нужно учитывать дополнительные факторы, среди которых температура и давление рабочей среды (воды в отопительной системе).

Производители в паспортах и инструкций к водяным конвекторам указывают требуемую температуру теплоносителя, при которой прибор достигнет заявленной мощности. По санитарным нормам температура воды в централизованной системе отопления должна быть 70 градусов.

Однако в зависимости от состояния системы тепловой напор может быть ниже (в старых строениях) или выше (в новостройках). Большинство бытовых конвекторов работают при температуре до 95 0 С, однако максимальная температура, которую выдерживают водяные конвекторы это 120-150 0 С в зависимости от модели. В частных домах определение теплового напора проще — каждый пользователь может контролировать и задавать требуемые рабочие режимы самостоятельно.

Если вы уверены в требуемой температуре теплоносителя, можно приступать к расчетам по описанным формулам. Если вы проживаете в домах старого фонда, система отопления оставляет желать лучшего и зимой батареи нагреваются в пределах 30-60 0 С, выбирайте специализированные конвекторы, рассчитанные на работу в низкотемпературных отопительных системах.

Источник



Расчет мощности и габаритов электрического нагревателя

Расчет электрических и геометрических параметров электронагревателя определяется, принимая во внимание множество нюансов. Для корректного расчета мощности электронагревателя необходимо знать теплофизические свойства нагреваемой среды, такие как плотность и теплоемкость, вязкость и теплопроводность. Однако, для общего понимания процесса расчета нагревательного оборудования, в данной статье мы приведем несколько формул и объясним основные принципы расчета нагревателей.

РАСЧЕТ ТРЕБУЕМОЙ МОЩНОСТИ

В зависимости от типа нагрева (статический или динамический), формулы расчета мощности несколько отличаются.

Расчет мощности нагревателя для нагрева жидкости в резервуаре достаточно точно может быть произведен по следующей формуле:

P= ((V* ρ * Сp* (Т2-T1)/(3600* t)) +К, где

P – мощность электрического нагревателя, кВт;

V – нагреваемый объем в литрах;

ρ – плотность жидкости, кг/м3;

Сp – удельная теплоемкость жидкости, кДж/ кг °С;

Т1 – начальная температура жидкости, °С

Т2 — требуемая температура жидкости, °С

t – требуемое время нагрева, ч;

К – коэффициент запаса (%). Величина коэффициента определяется температурой окружающей среды и толщиной теплоизоляции резервуара. Значения коэффициента принимаются в диапазоне 5….25%.

По данной формуле можно достаточно точно рассчитать требуемую мощность для нагрева жидкости в резервуаре. Если же необходимо рассчитать мощность прочного подогревателя жидкости или газа , то данная формула примет следующий вид:

P= ((V* ρ * Сp* (Т2-T1)/(3600) +К, где

P – мощность электрического нагревателя, кВт;

V – нагреваемый объем нм3/ час;

ρ – плотность нагреваемой среды, кг/м3;

Сp – удельная теплоемкость нагреваемой среды, кДж/ кг °С;

Т1 – температура на входе в подогреватель, °С

Т2 — требуемая температура на выходе из подогревателя, °С

К – коэффициент запаса (%). Величина коэффициента определяется температурой окружающей среды и толщиной теплоизоляции сосуда. Значения коэффициента принимаются в диапазоне 5….25%.

В качестве примера произведем расчет мощности проточного подогревателя для нагрева воздуха с расходом 3000 нм3/час от +5ºС до +40ºС при рабочем давлении 1 атм., тогда:

P = 3000 x 1,24 x 1,05 x (40-5)/ 3600 = 37, 98 кВт

Данной мощности 38 кВт будет достаточно только при идеальных условиях. Под идеальными условиями подразумевается отсутствие теплопотерь, падения напряжений, а также абсолютная точность при изготовлении никель-хромовой спирали нагревательных элементов. К сожалению, на практике идеальных условий не бывает, поэтому в случае стабильного напряжения и расположения подогревателя в отапливаемом помещении, будет достаточно принять запас 10% — тогда требуемая мощность подогревателя составит 42 кВт. Если же напряжение питания нестабильно и оборудование располагается на улице при температуре до -50ºС, то рекомендуется принять запас по мощности не менее 25% — тогда мощность подогревателя должна быть порядка 48 кВт. Если пренебречь запасом мощности и принять только мощность, необходимую на процесс нагрева, то есть вероятность, что подогреватель не сможет выйти на рабочий режим и осуществить подогрев воздуха до +40ºС.

Читайте также:  Регулятор мощности для циркуляционного насоса

РАСЧЕТ ГАБАРИТОВ ОБОРУДОВАНИЯ

Габариты нагревателя определяются исходя из количества нагревательных элементов и погружной длины. Данные параметры зависят от расхода, требуемой температуры нагреваемой среды и от мощности нагервателя. Количество ТЭН и погружная длина подбирается исходя из допустимой удельной мощности. Чем выше температура нагреваемой среды, тем ниже должна быть удельная мощность нагревательных элементов, во избежание перегрева и выхода оборудования из строя. Также, при расчете габаритов нагревателя нужно учитывать, что в случае нагрева до температур выше +100ºС между монтажным фланцем обязательно нужно предусматривать холодную хону от 100 до 400 мм, во избежание перегрева клеммной коробки. Величина холодной зоны определяется температурой нагреваемой среды.

УДЕЛЬНАЯ МОЩНОСТЬ ТЭН

Определяющим параметром, влияющим на габариты изделия является удельная мощность нагревательных элементов, которая измеряется в Вт/см2 т.е. сколько Вт энергии выделяется с 1 см2 поверхности нагревательных элементов. От данного параметра зависят окончательные размеры оборудования — чем удельная мощность выше, тем габаритные размеры подогревателя будут меньше. Но нужно понимать, что нельзя бесконечно увеличивать удельную мощность чтобы сделать нагреватель меньше, тем самым уменьшив его стоимость. Слишком высокая удельная мощность ведет к увеличенной температуре на поверхности нагревательных элементов и сокращению срока службы изделия. Удельная мощность также зависит от диаметра нагревательных элементов. Так при одинаковой мощности и длине, у нагревательного элемента ø16 мм удельная мощность будет меньше, чем у нагревательного элемента ø10 мм.

Удельная мощность нагревательного элемента рассчитывается по следующей формуле:

W = P/n х 3.14 х Ø х L, где

W — удельная мощность (Вт/см2);

P — мощность нагревательного элемента, Вт;

n — количество нагревательных элементов в подогревателе, шт.;

Ø — диаметр нагревательного элемента, см;

L — развернутая рабочая длина нагревательного элемента, см;

В качестве примера, возьмём вышеописанный подогреватель воздуха, мощностью 42 кВт. Предположим, что он состоит из 12 U-образных нагревательных элементов диаметром 10 мм с погружной длинной 2000 мм, из которых 200 мм холодной (ненагреваемой) длины. Рассчитаем удельную мощность нагревательных элементов:

W = 42000/ 12 x 3,14 x 1 х 360 = 3, 09 Вт/ см2

В случае невысоких температур нагрева, можно принять удельную мощность нагревательных элементов по следующей таблице:

нагрев воздуха до температуры +100 и более градусов, нагрев мазута и битума, дизельного топлива, нефти, нагрев термального масла до +300 С

подогрев антифриза с концентрацией более 50%, подогрев термального масла, подогрев воздуха до +80. 90 С, подогрев природного газа

подогрев щелочных растворов, подогрев антифриза с концентрацией до 50%

подогрев воды, проточный подогрев антифриза с концентрацией до 30%

нагрев воды в проточном режиме в больших объемах, электрические парогенераторы.

Указанные в таблице значения являются ориентировочными, более точным является подбор удельной мощности по температуре нагревательных элементов.

ТЕМПЕРАТУРА НА ПОВЕРХНОСТИ НАГРЕВАТЕЛЬНЫХ ЭЛЕМЕНТОВ

Температура на поверхности нагревательных элементов зависит от удельной мощности и расхода нагреваемой среды, но также на нее влияют теплофизические свойства нагреваемой среды и температура на выходе из подогревателя. Если использовать один и тот же проточный нагреватель для нагрева воды и воздуха, то в первом случае температура нагревательных элементов будет меньше т.к. жидкости обладают большей теплоемкостью и лучше снимают тепло с нагревательных элементов. Точный расчет температуры нагревательных элементов производится с помощью специального софта, который учитывает все геометрические параметры нагревателя, количество нагревательных элементов, удельную мощность, тип нагреваемой среды, требуемую температуру и давление. Вручную рассчитать температуру нагревательных элементов без знания углубленного курса теплофизики практически невозможно. Существуют методики определения температуры ТЭН для статического нагрева жидкости, температура ТЭН в данном случае имеет некую зависимость от удельной мощности и температуры нагреваемой среды, но данные методики не являются точными и имеют определенную погрешность. Определив необходимую удельную мощность и рассчитав температуру нагревательных элементов, мы можем понять какие габариты будут у нашего изделия и рассчитать его стоимость.

Если Вы не имеете опыта расчетов подобного оборудования — настоятельно рекомендуем Вам обратиться в наш технический отдел т.к. при неправильном выборе параметров для общепромышленного оборудования Вы рискуете стабильностью его работы и процесса нагрева. Если же речь идет о расчетах взрывозащищенного оборудования, то данные расчеты могут быть выполнены только специалистами т.к. помимо нестабильной работы, при неправильном определении параметров нагревателя есть риск спровоцировать взрывоопасную ситуацию на объекте. Специалисты компании ООО «СИСТЕМЫ ПОДОГРЕВА» имеют специализированное ПО и огромный опыт в данной области. Расчет и подбор оборудования может быть осуществлены в течение 1- 2 рабочих дней.

Источник

Экономное отопление. Что такое энергия, как её считать и экономить.

Мы постоянно пользуемся энергией, греем воду, отапливаем помещение, ездим на автомобиле и надо точно оценивать её потребление.

Но чтобы более эффективно её потреблять, надо знать, сколько энергии содержит тот или иной вид топлива и сколько она стоит.

Что такое энергия и чем она отличается от теплоты?

Теплота, или количество теплоты, — это часть внутренней энергии тела, которая самопроизвольно, без внешнего воздействия переходит от тел более нагретых, к телам, менее нагретым посредством теплопроводности или лучеиспускания (за счет электромагнитного излучения).

Теплопроводность может идти по твердому телу и за счет конвекционных потоков. Таким образом мы имеем три пути передачи тепла:

  • лучистый;
  • по твердому телу;
  • конвекция.

Наиболее эффективный способ теплопередачи – это лучистый, так как можно достичь максимального градиента температур между охлаждаемым и нагреваемым телами, до нескольких тысяч градусов и, соответственно, больших скоростей передачи тепла.

В каких единицах измеряют энергию.

Измеряется она в джоулях, калориях и ваттах.

Исторически сложилось, что физики считают работу, энергию, количество теплоты в джоулях. Теплотехники тепло на обогрев жилья в калориях, а электрики и энергетики считают энергию в ваттах. Калории являются тепловым потоком, потому что эта энергия считается за определенное время.

Читайте также:  Мощность двигателя маз ямз 238

Очень важно понимать, что энергию можно потратить по-разному: можно быстро, а можно медленно.

Теплосчетчик считает потраченные гигакалории тепловой энергии за месяц, а электросчетчик считает потраченные ватты электрической энергии за месяц. Но не просто ватты, а киловатты (кВт), потраченные за один час (кВт/час).

Источники энергии и цена 1 кВт.

Сколько её содержится в 1,0 кг угля, в бензине, газе, солярке, дровах и стомость топлива за 1 кВт выделяемого тепла. Зная эти цифры, вы можете сравнить, с какой надбавкой продается тепло управляющими компаниями. В Новосибирске оно продается по официальному тарифу за 1300,07 руб./гКал (

Для упрощения расчетов можно считать, что 1,0 л солярки, 1,0 л бензина, 1,0 л пропана и также 1,0 кубометр природного газа дают около 10 кВт энергии.

А. Каменный уголь.

В 1,0 кг каменного угля содержится 7-8 кВт энергии, по 0,375 руб/кВт.

Цена 1 кг угля =3 руб. (г. Новосибирск, 2018 г.). Стоимость 1,0 кВт энергии, полученной при сжигании угля, составит:

1,0 кг=3,0 руб./8 кВт =0,375 руб./квт.

Стоимость 1,0 МВт:

Стоимость 1,0 Гкал тепла, полученного от сжигания угля составит:

375/0.8598 = 322 руб

Б. Дрова.

В 1 кг дров примерно 2,5 кВт энергии, по 0,716 руб/кВт.

Средняя стоимость дров в Новосибирске составляет 1 200 руб. за 1,0 м³. Масса 1,0 м³ березовых дров равна примерно 670 кг. Т.е., 1,0 кг дров в среднем стоит около 1,79 руб.

Для получения 1 кВт/час тепловой энергии расходуется примерно 0,4 кг дров:

Стоимость 1,0 кВт/час тепловой энергии при сжигании дров равна, примерно:

В. Природный (магистральный) газ метан.

В 1 м³ примерно 10 кВт энергии, по 0,584 руб/кВт.

Стоимость природного газа в Новосибирске составляет 5,835 руб./м³.

Для производства 1,0 кВт/час. тепловой энергии расходуется примерно 0,1 м³ газа. Соответственно стоимость производства 1,0 кВт тепловой энергии при использовании природного газа равна примерно:

Стоимость 1,0 МВт:

Стоимость 1,0 Гкал тепла, полученного от сжигания газа составит:

583,5/0.8598 = 501,7 руб.

Г. Сжиженный газ.

Для получения тепловой энергии в 1 кВт /час потребляется примерно 0,1 кг сжиженного газа (в зависимости от КПД котла и т.д.). 1,0 л сжиженного газа стоит в Новосибирске 25 руб. Т.е. 1,0 кВт в этом случае стоит примерно 2,5 руб.

Д. Жидкое топливо (солярка).

Стоимость 1,0 литра солярки в Новосибирске 45 руб.

Для получения 1,0 кВт/час тепловой энергии потребляется примерно 0,1 литр солярки (в зависимости от КПД котла и т.д.). Т.е. 1,0 кВт стоит примерно 4,5 руб.

Как посчитать энергию на нагрев воды.

Исходные данные. Вода нагревается от 0,0°С (T1) до 100°С (T2). Разница 100°.

1. Определим сколько необходимо времени на нагрев 1000 литров воды при мощности нагревателя 10 кВт.

t= (0.00117 x V x (T2 — T1))/ W = (0.00117 x 1000 x (100 -0))/ 10 = 11,7 часа.

  • t — время (в часах)
  • V — объём бака (литры);
  • T2 — температура нагретой воды;
  • T1 — исходная температура холодной воды;
  • W — электрическая мощность нагревательного элемента (кВт).

2. Определим мощность нагревательного элемента, необходимую на нагрев 1000 л воды от ноля до 100°С за сутки.

W= (0.00117 x V x (t2 — t1))/ T = (0.00117 x 1000 x (100 -0))/ 24 = 4,875 киловатт в час.

За сутки надо потратить:

4,875 х 24 часа= 117 киловатт энергии.

3. При нагреве одного литра воды на один градус затрачивается 1,17 Вт энергии.

На разогрев 1 литра воды на 100°С нужно:

117 000 Вт / 1000 л =117 ватт энергии

Получается что для разогрева 1 литра воды на 1°С надо израсходовать 1,17Вт.

117Вт / 100°С = 1,17 Вт/литр

Запомним эту цифру, она показывает сколько энергии затратится на нагрев 1,0 л воды в чайнике от нуля градусов до 100°С. Если мощность обычного чайника составляет 1,0 кВт (в час), то время нагрева составит примерно 7 минут.

Для упрощения расчетов, можно округлить количество затраченной энергии на нагрев 1,0 литра воды до 1,0 Вт, чтобы быстро делать в уме все необходимые расчеты по затратам энергии на нагрев воды, время нагрева, а также требуемую для этого мощность.

4. Пример расчета, без учета энергии на потери.

Сколько времени потребуется для того, чтобы нагреть 1000 л воды, температурой от 10°С до 80°С котлом мощностью 20 кВт.

Для нагрева требуется израсходовать энергии:

(T2 — T1) *1кВт=(80-10)х1=70 кВт

При мощности котла 20кВт это произойдет через:

70 кВт/20=3,5 часа.

5. Приведем пример расчета расходов топлива на отопление дома.

При сжигании 50 кубометров природного газа, получаем 500 кВт

Этим количеством энергии можно отопить 100 м² жилья зимой в течение двух холодных дней:

100м² * 0,1кВт/м² * 24часа=240 кВт в день

Как отмечалось выше, один кубометр газа метана при сжигании выделяет около 10 кВт энергии (

10 кКал). По строительным нормам расход (в среднем по Сибири) регламентируется на уровне 1,0 кВт на 10 м² площади (100 Вт/м²) при высоте помещения до

3 м и когда на улице -40°С. Соответственно расчетный расход газа при проектировании отопления дома площадью 100 м² холодной зимой (если все время будет -40°С) за месяц:

1 м³ х 24 часа х 30 дней =720 м³/месяц.

Так как не бывает все время -40°С, поэтому примерный расчетный расход на практике уменьшится в 2 раза и составит примерно 360 м³, что при цене газа около 6 руб. составит 2160 руб./мес.

Потери тепла, а соответственно расход газа конечно же еще зависят и от утепления дома.

Надо учитывать еще расходы газа на нагрев горячей воды и на приготовление пищи.

Стоимость энергии в кВт, выделяемой при сжигании газа будет 6 руб./10 кВт =0,6 руб./кВт. А стоимость электроэнергии сегодня составляет 3,0 руб./кВт. Поэтому в 5 раз дешевле готовить на газовой плите, чем на электрической.

Сопоставление стоимости отопления.

В расчете на дом 100 м². Стоимость энергии, в зависимости от её источника и расходы на отопление за отопительный сезон, который составляет 8 месяцев в г. Новосибирске (по ценам 2018 г.) представлена в таблице.

Источник